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Abstract: Autophagy is an evolutionarily conserved cellular recycling process in cell homeostasis and
stress adaptation. It confers protection and promotes survival in response to metabolic/environmental
stress, and is upregulated in response to nutrient deprivation, hypoxia, and chemotherapies.
Autophagy is also known to sustain malignant cell growth and contributes to cancer stem cell
survival when challenged by cytotoxic and/or targeted therapies, a potential mechanism of disease
persistence and drug resistance that has gathered momentum. However, different types of human
leukemia utilize autophagy in complex, context-specific manners, and the molecular and cellular
mechanisms underlying this process involve multiple protein networks that will be discussed in this
review. There is mounting preclinical evidence that targeting autophagy can enhance the efficacy
of cancer therapies. Chloroquine and other lysosomal inhibitors have spurred initiation of clinical
trials and demonstrated that inhibition of autophagy restores chemosensitivity of anticancer drugs,
but with limited autophagy-dependent effects. Intriguingly, several autophagy-specific inhibitors,
with better therapeutic indexes and lower toxicity, have been developed. Promising preclinical
studies with novel combination approaches as well as potential challenges to effectively eradicate
drug-resistant cells, particularly cancer stem cells, in human leukemia are also detailed in this review.

Keywords: autophagy; hematological malignancies; chronic myeloid leukemia; acute myeloid
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1. Macroautophagy Is a Cellular Recycling Process and Is Tightly Regulated

Macroautophagy, hereafter autophagy, is a catabolic cell recycling process that degrades cellular
components to increase nutrient availability and eliminate toxic waste. This process was coined
“autophagy”, meaning “self-eating”, by Christian de Duve at the 1963 Ciba Foundation symposium on
lysosomes, to describe the digestion of cellular components [1]. Since the characterization of autophagy
by Dr. Yoshinori Ohsumi in 1992, research into its roles in homeostasis, immunity, ageing, cancer,
and other diseases have been rapidly progressing [1,2]. Autophagy is especially important for cells
that undergo hypoxia, stress, and quiescence, making it a key protective mechanism of stem cells
such as hematopoietic stem cells (HSCs) or cancer stem cells, including leukemic stem cells (LSCs).
For example, HSCs need to clear harmful oncogenic waste such as reactive oxygen species (ROS)
and utilize autophagy for this process [3–5]. However, upon oncogenic transformation of HSCs,
the same protective attributes of autophagy can become utilized by LSCs to protect them from the
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hypoxic microenvironment and exposure to therapy [6,7]. Therefore, it is important to understand that
autophagy can have multiple, context-dependent roles with therapeutic implications, which will be
further explored and explained in this review later on.

Once activated, the autophagy process proceeds by sequestering degradation targets
in an independent double-membrane vesicle, followed by fusion with a lysosome for
degradation [8,9]. The process is separated into four main parts: induction, nucleation, elongation,
and fusion/completion. All the players in this process were first characterized in yeast and then
homologous proteins were found in mammalian cells. For the purposes of this review, the mammalian
homologues will be described.

The initiation complex of autophagy is comprised of the ULK1/2-ATG13-FIP200 interacting
proteins, which remain stable in the cell regardless of nutrient availability (Figure 1) [10]. Dysregulation
of the initiation complex, and pathways upstream of the autophagy initiation complex, can significantly
alter cellular autophagy levels, making it important for proper metabolic function. This complex
actively initiates autophagy unless it is inhibited through phosphorylation of ULK1/2 and ATG13
by mTORC1, which is up-regulated by high nutrient density in the cell, as well as many other
processes [10]. Upon cell starvation or mTORC1 inhibition, the initiation complex is released,
and it activates nucleation through phosphorylation of BECN1 within the ATG14-containing class III
phosphatidylinositol 3-kinase (PtdIns3K) complex [11]. The PtdIns3K complex localizes at the site of
the phagophore generation, which can be the endoplasmic reticulum, the plasma membrane, the golgi
apparatus, the mitochondria, or other double membrane structures [12]. This complex contains PIK3C3,
PIK3R4, PtdIns3K, and BECN1, with BECN1 being the most crucial for regulation and induction of
autophagy [13,14]. VPS34 deposits lipid phosphatidylinositol (PI) on the surface of the phagophore,
which is then phosphorylated into phosphatidylinositol-3-phosphate (PI3P) and serves as a docking
site for proteins bringing degradation targets into the autophagosome [15]. Several family members of
the initiation complexes such as BECN1 and VPS34 are subjected to genetic mutations or altered gene
expression in human leukemia, which can cause significant molecular and cellular downstream effects
in the autophagy process [7,14,16,17].

Next, the elongation step requires the conjugation of two ubiquitin-like (UBL) proteins to the
membrane of the phagophore for it to mature into an autophagosome (Figure 1) [18]. Members of the
lipidation cascade during phagophore elongation are subjected to many mutations and dysregulation
in human leukemia, and loss of key enzymes in the cascade can cause complete loss of autophagy.
The first system forms the ATG12-ATG5-ATG16L1 dimeric complex, which associates with the
membrane via attachment of ATG16L1 [18]. The complex is brought together through the irreversible
conjugation of the UBL protein ATG12 to ATG5, catalyzed by the E1-like activating enzyme
ATG7 and the E2-like conjugating enzyme ATG10 [19–21]. ATG16L1 binds to ATG5 and then
ATG16L1 dimerizes with another ATG12-ATG5-ATG16L1 complex, followed by attachment to the
phagophore membrane [22]. The second UBL conjugation system attaches lipidated mammalian
ATG8 homologues to the autophagosome membrane; these homologues are divided up into the
MAP1-LC3 (LC3) and GABARAP subfamilies, with the LC3 system being the most understood [15,23].
The translated LC3 protein is first cleaved by ATG4 protein homologues (most abundantly ATG4B) into
LC3-I, which has an exposed C-terminus glycine residue necessary for subsequent conjugation [24].
The E1-like activating enzyme ATG7 then transfers LC3-I to the E2-like conjugating enzyme ATG3 [25].
The ATG12-ATG5-ATGL1 complex recruits lipid phosphatidyethanolamine (PE) from lipid membranes
and catalyzes the lipidation of LC3-I to PE and the attachment of PE to the membrane to form
LC3-II [26]. Once the autophagosome is fully formed, ATG4 cleaves off the PE domain from
LC3-II to release LC3-I back into the cytosol to be reused in subsequent rounds of the process [27].
Members within this cascade such as ATG4B, ATG7, and ATG5 not only show dysregulation in
leukemia, but can also be effectively targeted to halt the autophagy process, thus, making interruption
of autophagosome maturation an attractive area of study [6,28,29].
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Figure 1. Schematic overview of the autophagy process and genetic and drug targets to inhibit specific 
aspects of autophagy. Macroautophagy involves four main steps: induction, nucleation, elongation, 
and fusion/completion. Upon inhibition of mTORC1 by PI3K/AKT, the autophagy process is initiated, 
for example, when cells undergo starvation. The autophagy process then begins with the formation 
of a double-membrane structure, the phagophore, which elongates and matures into an 
autophagosome, sequestering the cytoplasmic cargo. The autophagosome fuses with lysosomes, 
generating autolysosomes, and the engulfed content is degraded through proteases, and 
macromolecules are released into the cytosol. Various, indicated ATG proteins and complexes 
facilitate certain steps in this catabolic pathway. In addition, the conversion of LC3-I to LC3-II, as well 
as the degradation of p62, together with the enclosed cargo, serve as markers of active autophagy in 
molecular and immunochemical assays. Chloroquine and other lysosomal compounds, as well as 
newly developed inhibitors and genetic targets to specifically block the autophagy pathway at certain 
points, are indicated. ROS = Reactive oxygen species; PI3K = Phosphoinositide3-kinase; AKT = Protein 
kinase B; mTORC1 = mammalian target of rapamycin complex I; ATG = Autophagy-related gene; 
ULK = Unc-51-like autophagy activating kinase; FIP200 = FAK family-interacting protein of 200 kDa; 
PiP3 = Phosphatidylinositol(3,4,5)-trisphosphate; VPS34 = Class III PI3K vacuolar protein sorting 34. 
Solid black and green arrows indicate activation and direction of autophagy steps; red dotted lines 
show inhibition; dotted green arrow indicates recycling of LC3-II-PE by ATG4s. 
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Figure 1. Schematic overview of the autophagy process and genetic and drug targets to inhibit
specific aspects of autophagy. Macroautophagy involves four main steps: induction, nucleation,
elongation, and fusion/completion. Upon inhibition of mTORC1 by PI3K/AKT, the autophagy
process is initiated, for example, when cells undergo starvation. The autophagy process then
begins with the formation of a double-membrane structure, the phagophore, which elongates and
matures into an autophagosome, sequestering the cytoplasmic cargo. The autophagosome fuses
with lysosomes, generating autolysosomes, and the engulfed content is degraded through proteases,
and macromolecules are released into the cytosol. Various, indicated ATG proteins and complexes
facilitate certain steps in this catabolic pathway. In addition, the conversion of LC3-I to LC3-II, as well
as the degradation of p62, together with the enclosed cargo, serve as markers of active autophagy
in molecular and immunochemical assays. Chloroquine and other lysosomal compounds, as well as
newly developed inhibitors and genetic targets to specifically block the autophagy pathway at certain
points, are indicated. ROS = Reactive oxygen species; PI3K = Phosphoinositide3-kinase; AKT = Protein
kinase B; mTORC1 = mammalian target of rapamycin complex I; ATG = Autophagy-related gene;
ULK = Unc-51-like autophagy activating kinase; FIP200 = FAK family-interacting protein of 200 kDa;
PiP3 = Phosphatidylinositol(3,4,5)-trisphosphate; VPS34 = Class III PI3K vacuolar protein sorting 34.
Solid black and green arrows indicate activation and direction of autophagy steps; red dotted lines
show inhibition; dotted green arrow indicates recycling of LC3-II-PE by ATG4s.

In the final step of autophagy, the autophagosome must close off from the cytosol and fuse
with the lysosome to degrade its contents (Figure 1). This is the most commonly targeted step
in the autophagy pathway because of the well-characterized lysosomal inhibitors chloroquine
(CQ) and hydrochloroquine (HCQ) [30]. The completed autophagosome is trafficked through
the cell to the lysosomes by microtubules, and then fuses with the lysosome to form an
autophagolysosome [31]. The acidic hydrolases within the lysosome degrade the macromolecules
engulfed by the autophagosome into their smaller components, such as amino acids, nucleotides,
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fatty acids, or carbohydrates [32]. These molecules are released back into the cytosol to be recycled in
metabolic processes.

Autophagy is a tightly-regulated catabolic response to numerous types of cellular stresses
such as nutrient starvation, hypoxia, growth factor deprivation, endoplasmic reticulum (ER) stress,
various metabolic challenges, and importantly, cancer therapy drugs [33]. Various proteins and
pathways are responsible for sensing the levels of these stressors within the cell and then inhibiting
or inducing the autophagic response, and many of them are dysregulated in human hematological
malignancies. The carbon and nitrogen content of the cell is detected by cAMP-dependent protein
kinase A (PKA) and mTOR pathways, and these two mediators block autophagy in nutrient-rich
conditions [34,35]. The energy-sensing kinase AMP-activated protein kinase (AMPK) up-regulates
autophagy through ULK1 phosphorylation during low-energy conditions, as determined by the
AMP/ATP ratio [11]. ER stress activates autophagy when the cytosolic Ca2+ concentrations increase
and the calmodulin-dependent protein kinase kinase 2 (CAMKK2) activates AMPK, or when unfolded
proteins in the ER accumulate and induce autophagy [36]. Hypoxia also positively regulates autophagy
through inhibition of mTORC1 by reactive oxygen species (ROS) [37]. Several other pathways that
become activated by extracellular signals, such as growth factors and insulin, are down-regulated
in the absence of ROS and result in an upregulation of autophagy [38]. This adaptive and sensitive
response of a cell to changing conditions and nutrient availability promotes homeostasis and cell
viability and is important to the integrity of hematopoietic stem cells.

2. Autophagy Is Critical in the Maintenance of Hematopoietic Stem Cells

HSCs are a rare population that ensure life-long hematopoiesis, and as such must be carefully
maintained and protected to counteract damage and accumulation of mutations that could initiate or
promote leukemia development [39–41]. Several studies have shown that autophagy plays key roles
in the maintenance and metabolism of murine HSCs. Conditional, hematopoietic-specific deletions
of the essential autophagy genes Atg7, Atg5, or the ULK1-interacting partner Fip200 in a mouse
model diminished normal HSC activities, promoted a pre-leukemic phenotype, and consequently
impaired survival of these mice [3,29,42]. Moreover, Mortensen et al. demonstrated that LSK cells
(lin−Scal+cKit+, mouse stem/progenitor cells) from Atg7 knockout mice displayed an accumulation
of mitochondria, mitochondrial superoxide, and DNA damage, with increased cell proliferation
rates [29]. Warr et al. showed later that mouse HSCs quickly induce autophagy upon metabolic
challenges and that this adaptive response is driven by the pioneer transcription factor FOXO3A [4].
Interestingly, a proportion of aged murine HSCs have, similar to young HSCs, high basal autophagy
levels with robust long-term regenerative potential, while most HSCs in aged mice, or Atg12 knockout
HSCs, exhibit overactive mitochondrial metabolism, loss of quiescence, and expansion of the myeloid
compartment [5]. Together, these data indicate that the functions of HSCs, at least in part, depend on
proficient autophagy and that perturbations in autophagy in these cells can pave the path for the
initiation and development of hematological malignancies.

3. Autophagy Plays Context-Dependent Roles in Leukemia Initiation, Progression,
and Drug Resistance

Leukemia is often referred to as a clonal stem cell disorder where self-renewing LSCs have
been described to initiate tumor formation and later cause chemotherapy resistance or failure and
disease relapse [43–46]. LSCs can either originate from transformed HSCs or their more differentiated
and mutated progeny, depending on the type of leukemia, disease stage, and other contributing
factors [47–50]. Intriguingly, several studies have shown that LSCs and leukemic blasts can utilize
autophagy to respond to the specific energetic demands during accelerated cell proliferation and to
counteract chemotherapeutic stress, to ensure their survival. For example, in chronic myeloid leukemia
(CML), we and others demonstrated that patient-derived LSCs possess high levels of basal autophagy
gene expression compared to more mature cells or their normal counterparts, and that targeting
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autophagy by genetic or pharmacological inhibition resulted in reduced leukemic cell viability and
enhanced sensitivity to standard chemotherapy [6,7,51]. In contrast, studies in acute myeloid leukemia
(AML) suggest a different function for autophagy, since autophagy seems often to be reduced in
human AML blasts and loss of key autophagy genes leads to leukemia initiation and progression in
mouse models [42,52,53]. Interestingly, in either case, autophagy can have cytoprotective roles that can
be utilized to enhance chemotherapeutic agent sensitivity in leukemic cells [6,54]. These seemingly
paradoxical roles for autophagy highlight its complexity and context-specific functions, and hence,
will be discussed in more detail in the context of each leukemia separately.

3.1. The Molecular and Functional Roles of Autophagy in CML

CML is a multi-lineage myeloproliferative neoplasm that originates from HSCs and is
characterized by uncontrolled proliferation of hematopoietic cells, particularly an excessive number
of granulocytes in the peripheral blood. More than 95% of patients harbor a characteristic reciprocal
chromosomal translocation product, called BCR-ABL1, that originates in a HSC and leads to
overexpression of its protein (p210BCR-ABL), with constitutively activated tyrosine kinase activity,
giving rise to and sustaining the CML clone [55–57]. The identification of BCR-ABL1 as the major
driver in the pathogenesis of CML led to the development of targeted therapies with ABL1 tyrosine
kinase inhibitors (TKIs) such as Imatinib, Dasatinib, and Ponatinib [58,59]. Treatments with TKIs
in the initial chronic phase of CML have been shown to induce remarkable haematological and
cytogenetic responses, however, treatments of advanced stage patients or individuals with ABL1 kinase
domain mutations are much more challenging and most importantly, none of these monotherapies
are curative [60–62]. Strong evidence indicates that LSCs, including quiescent LSCs, are insensitive
to TKIs and constitute a critical source of leukemia recurrence and a significant reservoir for the
emergence of TKI-resistant sub-clones, necessitating lifelong treatment for most patients [57,63–70].
Interestingly, it has been reported that CML stem cells are not strictly dependent on the tyrosine kinase
activity of BCR-ABL1 for survival and that they may be effectively protected by the bone marrow
microenvironment and/or exploit signaling pathways such as autophagy [51,71–73].

The connection between autophagy and CML was first documented by an increased autophagic
response following treatment with imatinib mesylate (IM) or other non-targeting drugs in CML cell
lines and primary patient samples [51,74]. This response was attributed to ROS generation, ER stress,
and a dose-dependent increase in gene and protein expression of key autophagy players [51,75,76].
The increase in autophagy induces CML cells to become senescent rather than apoptotic, causing them
to be more elusive to treatment [77]. Thus, the regulation of autophagy in CML has been largely
explored in the context of BCR-ABL1, but may be influenced by different signaling pathways.
For example, the mammalian target of rapamycin (mTOR) in the TORC1 signaling pathway is a
well-known negative regulator of autophagy, and BCR-ABL1 has been shown to suppress autophagy
via the PI3K/AKT/FOXO4/ATF-5 pathway by stimulating transcription of mTOR [78–80]. On the
other hand, it has been shown that autophagy is induced by BCR-ABL1 via the rapamycin-insensitive
mTORC2 signaling complex and helps CML cells to recover from TKI treatment [74,81]. The kinase
mTOR can be part of two distinct complexes, TORC1 and TORC2 [80]. While the TORC1 complex
and its negative regulation on autophagy has been extensively studied, much less is known about
the TORC2 complex that stimulates and mediates autophagy during amino acid starvation [80].
TORC2 promotes autophagy via its downstream target Ypk1, which in turn inhibits calcineurin,
allowing activation of the eIF2α kinase Gcn2 and phosphorylation of 4E-BP1 T37/46 and S65 to
activate autophagy [80].

Key enzymes in the LC3 conjugation cascade, such as ATG7 and ATG4B, have both been
implicated as critical for CD34+ CML cell survival, while genetic inhibition of ATG4B or ATG7
was able to increase apoptosis of CML stem and progenitor cells and sensitize them to TKIs [6,28].
Interestingly, knockdown of ATG7 also led to metabolic reprogramming that resulted in increased
oxidative phosphorylation and mitochondrial ROS accumulation and caused primary CML cells to
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differentiate into erythroid cells [28]. Mechanistically, a recent study demonstrated that ULK1 could
inhibit ATG4B activity and LC3 processing by phosphorylating ATG4B on serine 316, resulting in
inhibition of its catalytic activity both in vitro and in vivo [82]. Notably, this activity seems to be
regulated by PP2A-mediated dephosphorylation. MST4, a member of the mammalian sterile20-like
(STE) serine/threonine kinase (STK) family, was found to stimulate autophagy by activating ATG4B
through phosphorylation of ATG4B S383, which stimulates ATG4B to act on LC3, thereby increasing
autophagic flux [83]. Of even more interest, inhibiting ATG4B can enhance the anti-tumor effects of
radiotherapy in a solid tumor model. Our group investigated ROS-mediated autophagy in the context
of protein–protein interactions between BCR-ABL1, the scaffold protein AHI-1, and the cytoskeletal
modulator DNM2 [75]. Here, the identified AHI-1-BCR-ABL-DNM2 complex was shown to regulate
endocytosis and ROS generation, both of which lead to autophagy induction in CML, but knockdown
of DNM2 disrupted these activities and reduced autophagy induction in primitive leukemic cells [75].
Ianniciello et al. also demonstrated that proficient autophagy is required for CD34+ CML cells
to proliferate when they transition from hypoxic to normal oxygen conditions, which mimics the
leukemic commitment as the cells migrate away from the hypoxic bone marrow niche [84]. Together,
these findings reinforce the concept that autophagy is a critical pro-survival pathway in CML and
contributes to drug resistance and disease progression. The recognition of the innate and acquired
mechanisms that make CML stem cells resistant to TKIs has thus prompted considerable interest in
developing new treatment strategies, including targeting autophagy.

3.2. The Molecular and Functional Roles of Autophagy in AML

Unlike CML, AML is a very heterogeneous disease and represents much more context-dependent
complexity regarding the role of autophagy in disease initiation and progression. Acute leukemias
are characterized by the rapid accumulation of clonal, immature myeloid blasts, with incomplete
differentiation, in the patients’ bone marrow and peripheral blood, and are often accompanied by
multi-lineage cytopenias [85,86]. Although major progress has been made in identifying different
molecular and genetic subgroups, AML therapies and long-term patient outcomes have not improved
significantly over the past 40 years [87,88]. One of the foremost hurdles to a cure is thought to be the
presence of LSCs or leukemia-initiating cells that, in many patients, constitute a small subpopulation
of self-renewing cells at the top of a hierarchical organization with resistance to chemotherapy,
causing treatment failure and relapse [89–92]. Immunodeficient mouse models show that these
leukemic cells can produce AML upon xenotransplantation, including in secondary and tertiary
recipients, and generate non-LSC committed progenitors unable to be serially transplanted, all features
of functionally true LSCs [90,91,93–95]. Initial immunophenotypic analyses demonstrated that the
majority of AML patient cells express the surface antigen CD34+, with LSCs mostly residing in the
CD34+CD38− subfraction [91,96,97]. However, more recent studies revealed that many patients
harbor, at minimum, two distinct LSC populations that coexist in the CD34+CD38− (Lymphoid-primed
multipotent progenitor (LMPP)- or multipotent progenitor (MPP)-like LSCs) and in the CD34+CD38+

(granulocyte-macrophage progenitor (GMP)-like LSCs) subfractions or less often in the CD34−

subfraction, with the former, more immature CD34+CD38− subpopulation containing a higher LSC
frequency in comparative xenotransplantation experiments [98–101]. Moreover, some AML patients
lack expression of CD34, the CD34− AML cells, and here, LSCs can mostly be detected in the CD34−

compartment, with very few LSCs being present in the much smaller CD34+ fraction [99,100,102,103],
highlighting the heterogeneity of AML and the complexity of studying and understanding the disease.

AML patients usually harbor genetic abnormalities that often originate from chromosomal
translocations and rearrangements, such as t(8;21), t(15;17), inv(16), t(6;9), t(9;11), or t(11;19),
and characterize, in some cases, a particular prognostic leukemic subtype [104–107]. Recent molecular
studies demonstrated that additional mutations in receptor kinases, key signaling mediators,
proto-oncogenes, or epigenetic enzymes, for example FLT3-ITD, TP53, c-KIT, or IDH1/2 mutations,
often determine the course and severity of the disease [108–113]. Interestingly, sequencing and
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in silico studies have shown that a high frequency of AML patients carry often heterozygous
deletions, missense mutations, or copy number changes of key autophagy genes, particularly AML
patients with complex karyotypes [42,114,115]. For example, heterozygous chromosomal loss of
5q, 16q, or 17p correlate with the encoded regions for the autophagy genes ATG10 and ATG12,
GABARAPL2 and MAP1LC3B, or GABARAP, respectively [42]. In line with these observations,
Watson et al. also demonstrated that human AML blasts exhibit low expression of several
autophagy genes, including ATG10, ATG5, ATG7, BECN1, GABARAP, GABARAPL1/2, and MAP1LC3B,
decreased autophagic flux, and high ROS levels [42]. Furthermore, this study showed that
heterozygous loss of Atg5 or Atg7 in a MLL-ENL AML mouse model led to more aggressive
leukemia progression, suggesting a tumor-suppressive role for autophagy [42]. Similarly, Jin et al.
confirmed that Ficoll-enriched leukemic blasts from AML patients express significantly lower transcript
levels of ULK1, FIP200, ATG14, ATG5, ATG7, ATG3, ATG4B, and ATG4D compared to granulocytes
from healthy donors [52]. In addition, Rudat et al. determined, in a large RNAi screen for
“rearranged during transfection” receptor tyrosine kinase (RET) effectors, that mTORC1-mediated
suppression of autophagy can stabilize mutant FLT3 in AML, while an increase in autophagy was
achieved through RET inhibition and led to FLT3 depletion [53]. In contrast, Heydt et al. showed
that FLT3-ITD increases autophagy in AML cell lines and patient cells via ATF4 and that inhibition
of autophagy or ATF4 abolishes FLT3 inhibitor resistance [116]. Moreover, a recent investigation
by Folkerts et al. revealed that various leukemic cell lines, and purified CD34+ cells from AML
patients, exhibit inconsistent levels of basal autophagic flux, with particularly high levels in immature
ROSlow LSC blasts and adverse AML risk groups, such as those with TP53 mutations [117]. In this
study, knockdown of ATG5 in primary AML cells resulted in impaired engraftment of human cells
in immunodeficient NSG mice, an observation that is in contrast to previous work and would rather
suggest a tumor-promoting role for autophagy in this context [117]. Interestingly, other reports showed
that ATG5 or ATG7 are required for the efficient initiation of AML in the context of MLL-AF9, the most
common alteration found in infant AML, with poor prognosis, but that autophagy is no longer
needed for the maintenance of established AML or LSC functions in secondary xenotransplantation
experiments [54,118–120]. However, in a different murine MLL-ENL AML model, knockout of Atg5 or
Atg7 decreased the number of functional LSCs, increased activation of mitochondria and ROS levels in
these cells, and extended survival of leukemic mice [121]. Together, these representative, variable data
suggest a highly complex, context-dependent role for autophagy in leukemic transformation vs.
maintenance and LSC properties in AML.

Notably, and similar to CML, many studies in AML have shown another consistently
critical role for autophagy with treatment implications: pro-survival protection of leukemic cells
upon chemotherapy. For instance, it has been demonstrated that treatment of AML cells with
cytarabine (AraC), anthracyclines, or sorafenib activates and increases autophagic flux in these
cells, including LSCs, allowing them to resist chemotherapy [54,121,122]. However, in these cases,
targeting of autophagy by genetic or pharmacological means, combined with chemotherapy, seems to
hold great promise in developing more effective treatment strategies, as discussed later.

3.3. The Molecular and Functional Roles of Autophagy in Lymphocytic Leukemia

Lymphocytic leukemias arise in the bone marrow from a lymphoid progenitor cell, or in the case
of chronic lymphocytic leukemia (CLL) from marginal zone B-cells, and take on either a blast-like
T-cell or B-cell phenotype [123,124]. Acute lymphocytic leukemia (ALL) is the most common pediatric
cancer and, much like AML, ALL is widely diverse in its presentation and driver mutations and
progresses quickly if left untreated. CLL—the most common adult leukemia—is more indolent and
differentiated than ALL but is also genetically diverse [123]. Within ALL cases, the most common
phenotype is the B-cell-like leukemia (B-ALL), and CLL only presents as B-cell-like. Targeted treatments
for lymphocytic leukemia are still limited due to the molecular heterogeneity, but clinical advances
have greatly improved the prognosis of these diseases with non-targeted chemotherapies [123–126].
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However, subsets of patients acquire therapeutic resistance through unknown mechanisms, and both
ALL and CLL have identified autophagy as a potential resistance pathway.

An autophagic treatment response has been identified in lymphoblastic leukemia, specifically after
metabolic chemotherapeutics used to target ALL. Standard treatment of B-ALL is the administration
of synthetic glucocorticoids (GC) to slow down cellular glucose intake and induce cell death [127].
Following GC treatment in B-ALL, there is a reduction in glucose and glutamine cellular intake but
unexpectedly an increase of glutamine synthesis [128]. Dyczynski et al. showed that in the absence of
normal nutrient intake, there is increased autophagic flux to catabolically make up for the lost nutrients;
a byproduct of this catabolism, ammonia, is then utilized by glutamate–ammonia ligase to synthesize
glutamine intracellularly, allowing the cells to provide their own glucose supply [128]. B-ALL patients
that were GC-resistant also had 36 differentially expressed autophagy genes (26 upregulated and
10 downregulated) compared to GC-sensitive patients, suggesting the autophagic GC response is
important for treatment-mediated apoptosis [129]. ALL treatment with L-asparaginase (L-asp) also
targets metabolism by hydrolyzing glutamine and asparagine to glutamic acid and aspartic acid,
respectively, thus reducing aerobic metabolism [126]. Upon L-asp treatment, ALL cells induce
autophagy to compensate for the metabolic stress, and inhibition of autophagy using CQ induces
treatment sensitivity in vitro and in vivo [130].

There are genetic connections between lymphoblastic leukemia driver mutations and autophagy.
B-ALL patients with the ETV6-RUX1 translocation have significantly increased expression of the
autophagy initiating lipidase VPS34 compared to normal hematopoietic stem/progenitor cells,
and the presence of the ETV6-RUNX1 fusion protein was found to have a causal relationship to
VPS34 overexpression through epigenetic regulation [131]. In CLL, a positive prognostic factor is
the deletion of 13q14, containing microRNA-15 and -16, both of which target anti-apoptotic B-cell
CLL/lymphoma 2 (BCL-2) leading to BCL-2 upregulation in CLL [132]. BECN1 is negatively regulated
by the binding of BCL-2, and therefore BCL-2 upregulation suppresses BECN1 activity and inhibits
autophagy [133]. Another positive prognostic factor of CLL is the expression of SLAMF1, which is
involved in autophagosome recruitment and autophagic flux activation [134]. These positive CLL
prognostic markers (13q14 deletion and stable SLAMF1 expression) have opposing downstream
mechanistic effects on autophagy, yet both positively affect CLL prognosis, showcasing once more
how molecular heterogeneity can change the role of autophagy.

4. Targeting Autophagy Is Critical to Eradicate Drug-Resistant and Cancer Stem Cells in
Human Leukemia

Overcoming drug resistance and eliminating cancer stem cells remain major challenges in the
treatment of human leukemia and other cancers. According to the cancer stem cell model, it will be
necessary to eliminate LSCs to achieve a long-term cure for human leukemia. LSCs are at the root
of the disease and evidence indicates that these are the cells that endure standard chemotherapy
and expand upon relapse [57,135]. Notably, many studies have shown that autophagy plays a
key role in the cytoprotection of leukemic cells, including LSCs, and hence, autophagy has been
intensively investigated as a promising, novel target, with most approaches focusing on inhibition
of autophagy with combination treatments (Figure 1 and Table 1). In this context, noteworthy is a
phase II clinical trial that combines hydroxychloroquine (HCQ) with Imatinib in CML (NCT01227135,
CHOICES: CHlOroquine and Imatinib Combination to Eliminate Stem cells). However, three other
phase I/II clinical trials strongly suggest that specificity and potency issues with HCQ will require more
selective and potent autophagy inhibitors to achieve optimal responses in cancer patients [30,136–138].
Baquero et al. have lately explored second-generation autophagy inhibitors in CML models [7].
By combining Lys05, an analogue of CQ, or PIK-III, a selective VPS34 inhibitor, with the TKI
nilotinib, the group was able to demonstrate more effective targeting of viable human LSCs in vitro
and in vivo compared to single agents [7]. Recently, specific ATG4B inhibitors were developed for
pre-clinical proof-of-concept studies [139,140]. LV-320, a styrylquinoline, was identified by in silico
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screening and high content cell-based screening. It can inhibit autophagic flux, shows excellent
tolerability, and has a good pharmacokinetics (PK) profile [140]. Treatment with LV-320 of several
drug-resistant and mutated CML and aggressive BCR-ABL1+ B-ALL cell lines and TKI-insensitive CML
patient LSCs effectively inhibited cell growth and these effects could be enhanced when combined
with TKIs [141,142]. Although the biological effects of the ATG4B antagonist NSC185058 have not
been described in hematological malignancies, it was recently reported that it can suppress the
activation and lipidation of LC3B and the degradation of p62/SQSTM1, which result in significantly
reduced cell viability and xenograft growth in vitro and in vivo when combined with CQ in a
glioblastoma model [83]. Modulators of autophagy regulation have also been investigated as treatment
options. Indirect targeting of the PI3K/AKT pathway with the potent and specific autophagy
inhibitor Spautin-1, which can induce an increase in proteasomal degradation of class III PI3K kinase,
enhanced IM-mediated apoptosis by reducing the expression of the anti-apoptotic proteins MCL-1
and BCL-2, and down-regulation of key autophagy genes such as BECN1 in CML [143].

Table 1. Autophagy combination treatment strategies in leukemia. CLL = Chronic lymphocytic
leukemia; CML = Chronic myeloid leukemia; AML = Acute myeloid leukemia; ALL = Acute
lymphoblastic leukemia.

Autophagy Modifier Combination Strategy Leukemia Types Context Ref

HCQ, Lys05, PIK-III
(VPS34), Spautin-1,
shATG4B, LV-320,

NSC185058

+TKIs CML In vitro and
in vivo [6,7,83,142,143]

CQ +L-asp ALL In vitro and
in vivo [130]

CQ, siATG5 +Tigecycline CML In vitro [144]

HCQ +NVP-BEZ235 CML In vitro and
in vivo [145]

HCQ, shATG7 +Vismodegib CML In vitro [146]

atg7−/− +AraC Murine AML In vitro and
in vivo [121]

CQ, Bafilomycin A1,
siMAP1LC3, siSQSTM1 +Cytarabine AML In vitro [147]

CQ, 3-MA, shATG7 +AraC AML In vitro and
in vivo [54,148]

Bafilomycin A1, siBECN1 +Statins CLL, CML, AML,
ALL In vitro [149]

− shS100A8+adriamycin
or vincristine CML, AML, ALL In vitro [17]

CQ, 3-MA +rhArginase AML, ALL In vitro [150,151]

− rhArginase+AraC or
dexamethasone CML, AML, ALL In vitro and

in vivo [152,153]

Interestingly, autophagy-mediated resistance can also be exploited without the use of TKIs
in CML cells. By inhibiting hedgehog signaling, a critical pathway in the persistence of LSC,
autophagy was shown to be induced, but targeting of both hedgehog signaling and autophagy
effectively eradicated BCR-ABL1+ leukemic cells without the need for TKIs [146]. Similarly, Lu et al.
revealed that resistant CML cells upregulate autophagy upon treatment with Tigecycline, however,
concurrent inhibition of autophagy and mitochondrial translation decreased viability of drug-resistant
cells [144]. This observation was further supported by an elegant study demonstrating that targeting
mitochondrial oxidative phosphorylation, with a combination treatment of Tigecycline and IM,
selectively eliminated CML LSCs in vitro and in a xenotransplantation CML model [154]. In another
study, Mitchell et al. demonstrated that upon prevention of mTOR signaling with the dual PI3K/mTOR
inhibitors PI-103 or NVP-BEZ235, autophagy became elevated in CML and ponatinib-resistant
leukemic cells and in turn effectively sensitized these cells to HCQ treatment [145]. Targeting of
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mTOR signaling has also been investigated in AML, Ph+ALL, and T-ALL [120,147,155–157], and has
led to a phase I clinical trial with NVP-BEZ235 for dose-escalations and relapsed or refractory AML
(NCT01756118).

Similar to CML, numerous studies in AML have focused on inhibiting autophagy to counteract
its cytoprotective role upon first-line chemotherapy. Treatment of AML cell lines and primary
patient cells as well as LSCs with AraC or cytarabine has been shown to induce autophagy
in these cells [54,119,121,122]. However, by combining chemotherapy with ATG7 depletion
or CQ/HCQ/Bafilomycin A1 treatment to block autophagy, the therapeutic effects of AraC or
cytarabine could be enhanced and cell death promoted, even in drug-resistant cells and the LSC
population [54,119,121,122,147,148], suggesting that the autophagy process is critically involved
in treatment response/resistance of AML cells. Other agents that have been shown to stimulate
autophagy in AML cells and that are currently being investigated in combination approaches,
with promising results, include Statins, S100A8, and Arginase [16,17,149–153,158]. Statins act on
a key enzymatic step in cholesterol biosynthesis, thereby limiting the availability of cholesterol in
cells and promoting the induction of autophagy [149,158]. S100A8 interacts with BECN1 to initiate
autophagy and is elevated in resistant AML cells, however, depleting S100A8 sensitizes leukemic cells
to chemotherapy [16,17]. Treatment with human, recombinant Arginase, an enzyme that depletes
arginine, has been shown to target AML blasts due to their dependency on extracellular arginine,
but also increases autophagy in these cells, warranting a combination strategy with 3-methyladenine
or CQ to effectively target leukemic cells [150–152]. While these approaches seem promising for
improved therapeutic interventions upon induced cytoprotective or enhanced basal autophagy in
most leukemic cells, specific attention to the other possible roles of autophagy in certain types
of leukemia is also needed. For example, in some AML cases, autophagy has been shown to be
critical for degradation of oncogenic drivers, such as mutant FLT3, and during drug-induced myeloid
or neutrophil differentiation therapies, suggesting that autophagy initiation is beneficial in certain
contexts [52,53,159]. Considering these circumstances, additional studies are needed to shed light on
the complex roles and mechanistic details of autophagy in the regulation of leukemia initiation and
drug response/resistance, in hopes of identifying the best treatment options for leukemia.

5. Conclusions

Autophagy is not only fundamental in the maintenance and protection of normal HSCs
and progenitors, but also plays critical, albeit complex, roles in the initiation and progression
of hematological malignancies and LSC survival. Hence, it seems to be a double-edged sword;
while HSCs depend on autophagy to finely tune their need for building blocks under changing
nutrient demands and to clear damaged organelles, such as mitochondria, to counteract possible
damage by high ROS levels, resistant LSCs in CML express high basal levels of key autophagy genes
combined with elevated autophagic flux, and inhibition of autophagy in LSCs decreases their clonal
proliferation capacities and sensitizes them to standard targeted therapies with TKIs. Furthermore,
the complex and context-dependent functions of autophagy are evident in AML, where both
leukemic transformation and leukemia maintenance are highly influenced by the autophagic pathway.
Disruption of functional autophagy can lead to efficient initiation and more aggressive disease
progressions, for instance in MLL-mutated AML cells, but the autophagy process may also stabilize
oncogenic drivers such as FLT3-ITD, which is elevated in poor risk primary AML patient cells and most
importantly, ensures survival of leukemic blasts and LSCs upon chemotherapy. Due to the numerous
interesting observations that autophagy has a critical cytoprotective role, various approaches have
been investigated in model systems, including AML, combining autophagy inhibition with standard
chemotherapies, with promising results. However, as prior work has demonstrated, the inter- and
possibly also intra-mutational heterogeneity of AML patients and their dominating disease clones
will require further detailed studies to translate these findings into safe clinical options in the future.
In addition, more specific and highly effective autophagy inhibitors are being developed and multiple
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investigations are underway, highlighting the importance of autophagy and its potential in improved
treatment strategies in hamatological malignancies, especially for patients at high risk of drug resistance
and disease progression.
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