
Specific RNA binding to ordered phospholipid bilayers
Tadeusz Janas, Teresa Janas and Michael Yarus*

Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA

Received February 20, 2006; Revised March 13, 2006; Accepted March 24, 2006

ABSTRACT

We have studied RNA binding to vesicles bounded by
ordered and disordered phospholipid membranes. A
positive correlation exists between bilayer order and
RNA affinity. In particular, structure-dependent RNA
binding appears for rafted (liquid-ordered) domains in
sphingomyelin-cholesterol-1,2-dioleoyl-sn-glycero-
3-phosphocholine vesicles. Binding to more highly
ordered gel phase membranes is stronger, but
much less RNA structure-dependent. All modes of
RNA-membrane association seem to be electro-
static and headgroup directed. Fluorometry on 1,2-
dimyristoyl-sn-glycero-3-phosphocholine liposomes
indicates that bound RNA broadens the gel-fluid
melting transition, and reduces lipid headgroup
order, as detected via fluorometric measurement of
intramembrane electric fields. RNA preference for
rafted lipid was visualized and confirmed using
multiple fluorophores that allow fluorescence and
fluorescence resonance energy transfer microscopy
on RNA molecules closely associated with ordered
lipid patches within giant vesicles. Accordingly,
both RNA structure and membrane order could
modulate biological RNA–membrane interactions.

INTRODUCTION

It would be of great interest if there were an unexplored con-
nection between RNA information and cellular membranes.
For example, membrane affinity might localize the gene pro-
ducts of particular messages. Perhaps surprisingly, RNA
sequences that bind the fluid (liquid disordered) phase of a
phospholipid bilayer have previously been easily selected and
characterized (1–3). In this case, consortia of several RNAs
bind the bilayer as complexes. On this basis, a multi-subunit
RNA membrane transporter specific for L-tryptophan has been
constructed. Transporter properties suggest free RNA move-
ment and thus dependence on a fluid membrane environment
(4). Below, we characterize the affinity of RNA to vesicle

membranes containing phospholipid in more ordered states,
using Fluorescence resonance energy transfer (FRET) micro-
scopy, fluorescence spectroscopy and gel chromatography
techniques.

Membrane phospholipids exist in four major states of order
at temperatures close to physiological. The lamellar gel state
(called Lb’) is maximally ordered or frozen. Ripple gel
(ordered, corrugated) phase (Pb’), liquid-ordered (Lo) state
and fluid (liquid disordered, liquid crystalline) state (La)
progressively decline in order (5). A phospholipid membrane
will pass from gel to ripple to fluid if temperature increases at
equilibrium (6).

The intermediate liquid-ordered state above will be of par-
ticular importance below; there phospholipids diffuse freely
within the bilayer (as in the fluid state), while keeping fatty
acyl chains in an extended, kink-free conformation (as in
ripple or gel states). Cholesterol can convert both gel and
fluid phospholipid to liquid-ordered (7). In fact, a proposed
role for cholesterol in animal plasma membranes is to reduce
the tendency of membrane lipids to separate into fluid and gel
phases by forming an intermediate liquid-ordered phase (8). At
physiological temperatures, cellular membranes probably
coexist as domains of fluid and liquid-ordered. This biological
balance of states may itself be regulated (9,10). Liquid-ordered
lipid clusters containing cholesterol and sphingolipids,
surrounded by fluid glycerophospholipids are often called
‘rafts’ (11); such clusters are detectable, using several inde-
pendent biochemical and biophysical assays, in animal plasma
membranes [for review see (12)].

Sphingomyelin and cholesterol-rich regions in biological
membranes can be readily documented via sphingolipid- or
cholesterol-specific fluorescent probes (13). Probes specific
for sphingolipids include cholera toxin B [specific for mono-
sialoganglioside GM1 (14)] and the earthworm peptide lysenin
[specific for sphingomyelin (15)].

Rafts may also be detected via their elevated cholesterol;
probes specific for cholesterol include the polyene antibiotic
filipin [from Streptomyces filipinensis (16)], the peptide
perfringolysin [q toxin (17)], the naturally occurring fluores-
cent cholesterol analog dehydroergosterol [DHE (18)] and
fluorescent-labeled poly(ethylene glycol)-cholesteryl ethers
[PEG-Chols (19)]. In the simpler synthetic membranes of
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giant lipid vesicles cholesterol/sphingomyelin rafts have been
detected using peptide/antibiotic-fluorophores, fluorescent
phospholipids, indocarbocyanine dyes and the planar dye per-
ylene (20–23). Below we use these methods for visualization
of ordered phospholipid to detect the relative dispositions of
liquid-ordered (rafted) lipid patches and membrane-bound,
selected RNAs.

MATERIALS AND METHODS

Materials

The following were purchased from Avanti Polar Lipids
(Alabaster, AL): 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
(DPPC); 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC);
1,2-dimyristoleoyl-sn-glycero-3-phosphocholine (DMOPC);
1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC); cholest-
erol (CHOL); N-stearoyl-D-erythro-sphingosylphos-
phorylcholine (Stearoyl Sphingomyelin, SM), ovine brain
ganglioside GM1. Fluorescent probes: DPH-HPC, RH-421,
Pacific Blue-PE, YOYO-1, AlexaFluor555-CTB, Lissamine
Rhodamine-PE were purchased from Molecular Probes
(Eugene, OR). Perylene was from Sigma (St Louis, MO).
RNA 10 (113mer; 2) serves in these experiments as a repre-
sentative structure with no affinity for fluid membranes. RNA
80N (121mer, 80mer central randomized tract) similarly ser-
ves as a sample for simultaneous characterization of many
RNA structures. RNA sequences were transcribed in vitro
with T7 RNA polymerase, as described elsewhere (2).

Preparation of large unilamellar vesicles (LUV)

The appropriate lipids were dissolved in chloroform or
chloroform/methanol (2/1) and solvent was evaporated
under a stream of nitrogen gas, then desiccated under vacuum
for at least 2 h. The lipids were resuspended in HEPES buffer
(50 mM HEPES, 50 mM NaCl, 5 mM MgCl2 and 2 mM CaCl2,
pH 7.0) or in HEPES buffer with varied NaCl concentration,
and multilamellar liposomes were formed by gentle vortex.
The suspension was subjected to seven freeze-thaw cycles by
repeated immersion in liquid nitrogen followed by warming in
60�C water. LUV were prepared by extrusion using the Avanti
MiniExtruder with a filter pore diameter of 100 nm.

Preparation of giant vesicles (GV)

GV used for fluorescence microscopy were prepared as
described elsewhere (3). The lipids (DOPC, sphingomyelin,
cholesterol, 250 nmol total) in chloroform/methanol and any
fluorescent probe (0.2 mol% of lipids) were mixed, placed in a
small glass vial, and dried using a weak stream of nitrogen to a
thin film along the bottom of the vial. The vial was placed for
2 h in vacuum to remove residual solvents and HEPES buffer
was added. The lipid thin layer was heated to 55�C (above the
main phase transition of SM mixed with DOPC and choles-
terol), hydrated under nitrogen and slowly cooled to room
temperature for several hours. GV (2–10 mm) were collected
from the upper layer of the solution.

Gel filtration: RNA–liposome binding assay

32P-labeled RNA in water was denatured for 3 min at 65�C.
HEPES buffer (50 mM NaCl, 50 mM HEPES, 5 mM MgCl2

and 2 mM CaCl2, pH 7.0) was added and RNA was folded by
slow cooling to appropriate temperatures (18, 23 or 36�C).
LUV were exposed to folded radiolabeled RNA (0.25 mM) for
5 min at appropriate temperature. Gel filtration of RNA/
liposome mixture was performed using Sephacryl S-1000
Superfine (1.0 ml bed in a 1 ml plastic tuberculin syringe
barrel), which admits lipid vesicles with diameters up to
300 nm for fractionation. The eluted fractions were analyzed
for 32P RNA content by scintillation counting and for lipo-
somes by A320 turbidity (2). Co-elution of RNA and liposomes
indicates binding. Recovery of both vesicles and RNA was
typically complete (>95%).

Anisotropy using fluorescence spectroscopy

Steady-state fluorescence anisotropy experiments on DPH (1,6
diphenyl-1,3,5-hexatriene)-HPC in 100 nm DMPC liposomes
(1:100 mol ratio, probe: lipid) were performed on a Photon
Technology International QM-2000-6SE fluorescence spec-
trometer using manual polarizers. Excitation and emission
wavelengths were 384 and 429 nm, respectively. LUV
(75 mM) in HEPES buffer were added to folded RNA and
incubated for 15 min at mole ratio 75:1 (lipid:RNA). Fluor-
escence intensity was measured with the analyzing polarizer
oriented parallel (Ijj) or perpendicular (I?) to the excitation
polarizer, and anisotropy, r, was calculated:

r ¼
Ijj � gI?

Ijj þ 2gI? ‚

where g represents an optical correction factor for slightly
unequal horizontal and vertical polarized excitation intensit-
ies. Lipid vesicles in the absence of DPH-HPC were used to
correct for light scattering.

Membrane dipole potential using fluorescence
spectroscopy

Steady-state fluorescence experiments on an electric-field-
sensitive dye RH-421 [N-(4-sulfobutyl)-4-(4-(4-(dipentyl-
amino)phenyl)butadienyl)pyridinium, inner salt (24,25)] in
100 nm DMPC liposomes (1:200 mol ratio, probe/lipid)
were performed on a Photon Technology International QM-
2000-6SE fluorescence spectrometer. Lipid vesicles (75 mM)
in HEPES buffer were added to folded RNA and incubated for
15 min at mole ratio 75:1 (lipid/RNA). For detecting changes
in membrane electric field, a dual-wavelength ratiometric
method was used (24), which takes advantage of the field’s
effect on differently oriented transition dipoles. Fluorescence
was detected at 670 nm, at excitation 440 or 540 nm, and the
ratio of fluorescence intensities, 440/540, was calculated.

FRET microscopy

RNA 10 at a final concentration of 87 nM in the HEPES buffer
was mixed with the fluorescence dye YOYO-1 iodide (final
concentration 910 nM). YOYO-1 is quite specific for nucleic
acid, showing no observable fluorescence in the presence of
vesicles alone. GV labeled with fluorescent probes were gently
mixed with YOYO-labeled RNA at a volume ratio of 10:1, and
mounted on glass coverslips. The images were collected on a
Zeiss Axioplan2 fluorescence microscope (Carl Zeiss, Jena)
with a 100· Plan-APO objective lens (numerical aperture 1.4).
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Images were recorded with a Cooke SensiCam charge-coupled
device camera and processed with the use of SlideBook soft-
ware (Intelligent Imaging Innovations). The signals measured
in the FRET channel (sensitized FRET) were corrected for
crosstalk (26). In our system, �24% of perylene emission,
17% of Pacific Blue-PE emission, 0.2% of YOYO excitation,
31% of YOYO emission, and 12% of the AlexaFluor555-CTB
excitation, and 5% of the Lissamine Rhodamine-PE excitation
were detected in the corresponding FRET channels.

RESULTS

RNA binding to highly ordered gel state membranes

We prepared liposomes from synthetic phosphatidylcholines
having the same head-groups but different acyl chains and
therefore different transition temperatures: DMPC (two
14-carbon saturated chains), DMOPC (two 14-carbon
mono-unsaturated chains), DPPC (two 16-carbon saturated
chains), and DOPC (two 18-carbon mono-unsaturated chains).
Using these vesicles, we tested the affinity of �120 nt RNAs to
ordered lipid bilayers. We employed gel filtration that separ-
ates voided liposomes from included RNA. Two RNAs serve
as models. RNA 10, a previously characterized structure which
was shown not to bind detectably to a fluid phospholipid
membrane (2,3), and RNA 80N, a 121mer with a central
80mer random sequence, which allows characterization of
the behavior of many RNA sequences and structures simul-
taneously. 80N RNA was used as the initial pool for membrane
RNA selection and also showed no significant binding to fluid
phase phospholipid membranes (2).

Figure 1A shows a basic assay; free RNA 10 is retarded by
Sephacryl S-1000 at 18�C. When incubated with DMPC lipo-
somes (in ripple gel phase at this temperature), radiolabeled
RNA 10 tracks the liposome peak (�80% binding). Thus,
RNA 10 binds strongly to this highly ordered membrane.
At the membrane transition temperature of 23�C (even mixture
of ripple-gel and fluid phases; Figure 1B), the affinity of RNA
10 for DMPC liposomes is reduced (�58% binding) in
comparison with 18�C, but still quite strong. In contrast,
the melted, fully fluid DMPC membrane at 36�C
(Figure 1C) binds little RNA (<0.1% co-migration).

Such temperature-dependent membrane binding does not
reflect a temperature-dependent change in RNA structure.
RNA 10 shows no association with other fluid phospholipid
(phosphatidylcholine) bilayers: neither with DMOPC (Tm ¼
�2�C) liposomes at 18�C (Figure 2A) or 23�C (Figure 2B),
nor with DOPC liposomes (also in fluid state, Tm ¼ �18�C) at
23 and 36�C (Figure 2B and C). However, the RNA affinity for
DPPC liposomes (probably in the gel ripple phase at 36�C) is
similar to DMPC liposomes tested at 18�C (in the same phase),
despite the elevated temperature (Figure 2C). Therefore,
RNA-membrane affinity varies with the gel-fluid state of
the phospholipid, not the temperature.

Binding of RNA 10 and RNA 80N (Figure 3A) to DMPC
liposomes at 18�C is reversible. RNA 10 bound to DMPC
liposomes at 18�C, then incubated at 36�C for 10 min,
shows only residual binding of �2% on subsequent chroma-
tography at 36�C (RNA 10 data not shown). Thus, RNA bind-
ing tracks the temperature-induced membrane transition
precisely, decreasing as lipid order decreases.

The affinity of RNA 80N both for DMPC (18�C) and DPPC
(36�C) bilayers in ripple gel phase declines with increased
NaCl (Figure 3B). A similar effect is observed for DMPC
bilayers at 23�C (Figure 3A), suggesting electrostatic interac-
tion of RNA and ordered lipid phases. This is consistent with a
salient role for the phosphocholine headgroup in RNA affinity
for fluid membranes (1). Despite this salt sensitivity, a small,
but measurable fraction of RNA sequences are bound at
150 mM salt, that is, at physiological ionic strength (1–3%
of RNA; Figure 3B).

To characterize RNA effects on ordered phospholipids, we
measured fluorescent anisotropy on DMPC liposomes labeled
with DPH-HPC fluorescent lipid (Figure 4A). The fluorescent
probe DPH is attached to the fatty acid hydrocarbon and buried

Figure 1. Temperature-dependence of RNA 10 binding to DMPC liposomes
measured by gel filtration. Elution profiles at 18�C (A), 23�C (B), 36�C (C);
triangles—RNA without liposomes; circles—RNA reacted with liposomes;
squares—liposomes with RNA. RNA concentration 0.25 mM, liposome con-
centration 10 mg/ml.
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in the hydrophobic interior of the bilayer. Incubation of RNA
10 with DMPC liposomes (at molar ratio 1:75, RNA/
phospholipid) broadens (by �60%) the ripple gel-fluid
phase transition, without shifting the transition temperature.
Apparently, bound RNA interferes with, and lessens overall
lipid cooperativity during the gel-fluid conversion.

Changes in membrane electric field were also followed by
incorporating the oriented potential-sensitive RH-421 dye (24)
(Figure 4B) and using the dual-wavelength ratiometric fluor-
escence method. Membrane-bound RNA 10 reduces (�10%)
the membrane field below and at the ripple gel-fluid phase
transition. This likely means (consistent with anisotropy
above) that RNA interferes with head-group ordering, and
thereby also supports a binding interaction between RNA
and bilayer head-group dipoles.

RNA binding to phospholipid rafts

Liposomes composed of ternary mixtures of lipids (unsatur-
ated lipid, saturated lipid, cholesterol) exhibit phase separation
(27) and can be used as models for multiple phases (micro-
domains, rafts) occurring in membranes of living cells (28).
We studied the binding of RNA 10 and RNA 80N to raft-
containing lipid vesicles composed of dioleoylphos-
phatidylcholine (DOPC), sphingomyelin (SM) and cholesterol
(CHOL).

Figure 5A shows moderate (�17%) binding of RNA 10 to
liposomes containing 60 mol% DOPC, 30 mol% of SM, and
10 mol% of CHOL using gel filtration at 23�C. Changing
temperature to 36�C gave similar results (�15% binding).
As shown in Figure 5B, cholesterol modulates the extent of
RNA 10 binding (at constant 30 mol% SM) giving rise to the
optimal (maximal) binding at 10 mol% CHOL in the ternary
mixture. Therefore this membrane composition was chosen for
fluorescence and FRET microscopy experiments below.

At higher than 10 mol% concentration, CHOL gradually
reduces binding of RNA 10; with 30 mol% of CHOL, <3%
of RNA is bound. This reduction probably results from
contraction in liquid-ordered (raft) domains at higher mem-
brane cholesterol concentrations (29,30). We observed a

Figure 2. Effect of lipid bilayer order on RNA 10 affinity for large unilamellar
phosphatidylcholine liposomes at 18�C (A), 23�C (B), 36�C (C); Pb, lipid
bilayer in ripple-gel phase; La, lipid bilayer in liquid-disordered phase;
Pb’ + La, lipid bilayer at the main phase transition temperature. RNA concen-
tration 0.25 mM, liposome concentration 10 mg/ml.

Figure 3. Effect of (A) temperature and (B) the ionic strength on RNA 80N
binding to large unilamellar phosphatidylcholine liposomes. Pb, lipid bilayer in
ripple-gel phase; La, lipid bilayer in liquid-disordered phase; Pb’ + La, lipid
bilayer at the main phase transition temperature. RNA concentration 0.25 mM,
liposome concentration 10 mg/ml.

Figure 4. (A) Fluorescence anisotropy of DPH-HPC in DMPC liposomes in the
presence (gray) and in the absence (black) of RNA 10; (B) Dipole-field-
dependent ratio of fluorescence intensities, 440/540, of RH-421 in DMPC
liposomes in the presence (gray) and in the absence (black) of RNA 10. Data
were collected by temperature scanning at 1�C/min. RNA concentration 1 mM,
liposome concentration 75 mM.
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qualitatively similar optimum for RNA 10 binding to LUV
made of ternary mixtures of lipids held constant at 45% sphin-
gomyelin. X-ray diffraction detects a single fluid phase at
(1:1:1) DOPC/SM/CHOL (31) confirming that at higher cho-
lesterol concentrations liquid-ordered domains (rafts) gradu-
ally disappear. At 0 mol% CHOL (70 mol% DOPC, 30 mol%
SM) sphingomyelin domains in the gel state exist within the
liquid-crystalline DOPC matrix (31,32) and the observed �6%
RNA 10 binding can be attributed to affinity for the SM gel
state. We confirmed this affinity using an RNA-sphingomyelin
liposome binding assay performed at 23�C (data not shown).
These findings, taken together, suggest that RNA localization
to raft (liquid-ordered) membrane domains could be controlled
by changing the availability of rafted patches via local lipid
composition.

We confirmed selective RNA 10 binding to lipid rafts using
an independent technique—fluorescence and FRET micro-
scopy applied to microscopically resolved giant (multi-
micrometer) lipid vesicles. Below we show two kinds of
experimental micrographs. In the first series (Figure 6A),
bilayers were generally labeled using a blue dye—Pacific
Blue attached to the head group of phosphatidylethanolamine

(PacBlue-PE), RNA 10 was labeled with green YOYO-1,
which undergoes a large fluorescent enhancement upon inter-
calation into RNA structures (3), and lipid rafts were labeled
with red AlexaFluor555 attached to cholera toxin B
(AlexaFluor-CTB). A small amount (�0.1 mol%) of gangli-
oside GM1 was incorporated into the bilayer during vesicle
formation. GM1 molecules strongly partition into rafts (14), so
the red fluorescence of GM1-bound toxin can be used to visu-
alize liquid ordered membranes (23).

Clearly, the green YOYO signal and the red raft signal are
co-extensive in space, showing that the RNA has approxim-
ately uniformly coated the membrane’s raft phase. In contrast,
the RNA is present at much lower concentration, if at all, in the
blue-only, or fluid membrane regions. This image, therefore,
suggests selective RNA binding to rafts. Second, and at even
finer resolution, we observe a strong FRET signal between
YOYO and AlexaFluor (shown in false color in Figure 6A,
VI). This image shows that the rafted lipid and the RNA are
not just co-extensive, but in close (nanometer range) proxim-
ity, as they would be if RNA were floating in the rafted phos-
pholipid membrane. This FRET signal is consistent with the
separate locations of fluid and rafted membranes in merged
images of YOYO and AlexaFluor (Figure 6A, IV). The
presence of AlexaFluor-CTB itself does not change the affinity
of RNA 10 for lipid vesicles (controls not shown; but see
experiment just below). PacBlue PE does have some pre-
ference for liquid-disordered phase; however, this fraction-
ation is rather weak (23). A detectable, but much more
limited PacBlue!YOYO FRET (fluid!RNA) signal is
visible (Figure 6A, V), which may result from contacts
between sharply folded membranes.

In the second series of micrographs (Figure 6B), a new set of
membrane reporters was used. Rafts were tagged with a blue
dye—perylene (22), RNA 10 was labeled with YOYO-1, and
fluid lipid bilayers incorporated a red dye (Lissamine
Rhodamine) attached to the head group of phosphatidyleth-
anolamine (LisRh-PE). Again, both coextension (suggesting
mutual affinity) and a strong FRET signal coming from
perylene (in rafts) to YOYO (in RNA) is visible (confirming
intimate contact; Figure 6B, V). The FRET signal appears
specific to ordered membrane in merged images of perylene
and YOYO (Figure 6B, IV), and thereby shows that RNA-raft
affinity is not dependent on cholera toxin (above). These
experiments also seem to eliminate certain more complex
RNA behaviors; e.g. that RNA might bind only to boundaries
between raft and fluid domains. Again, a much smaller
YOYO!LisRh FRET signal (by comparison to peryle-
ne!YOYO) is visible (Figure 6B, VI), probably again attrib-
utable to the juxtaposed fluid and rafted domains in some areas
of these multilayered giant lipid vesicles.

To this point we have documented the affinity of RNA for
rafted and gelled phospholipid domains. We now wish to show
that these affinities, surprisingly, are distinct and in part,
highly sensitive to RNA structure. Table 1 contains a survey
of RNA structures, using RNAs related to the RNA 10 model,
as well as RNAs of totally independent structure. While these
data are not sufficient to closely define binding motifs, they
show that there is an unanticipated difference in specificities.
Binding of different RNAs to DMPC liposomes at 23�C (even
mixture of gel and fluid) is (within experimental variation)
�50%, without regard to detailed RNA structure. This extends

Figure 5. Cholesterol modulation of RNA 10 binding to LUV composed of
DOPC/SM/CHOL. (A) Elution profiles obtained by gel filtration for DOPC/
SM/CHOL (60:30:10 mol%, respectively) liposomes; triangles, RNA without
liposomes; circles, RNA reacted with liposomes; squares, liposomes.
(B) Cholesterol-dependence of RNA 10 binding to DOPC/SM/CHOL
liposomes at constant (30 mol%) SM concentration. RNA concentration
0.75 mM, liposome concentration 2.5 mg/ml.
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even to the randomized sequences of RNA 80N, which com-
prise a varied sample of primary, and presumably higher order
structures. Thus the ripple gel phase binds RNA almost with-
out regard to superstructure, presumably via a multicharge—
multidipole type of phospholipid–RNA interface, as discussed
above.

In contrast, RNA binding to lipid rafts exhibits
RNA-structure specificity. The computed RNA secondary
structures in the table are the output of BayesFold, a Bayesian
folding program (33). The highest level of binding (17 or 16%)
was observed for RNA 10 and RNA 67-2, a derivative of RNA
10 having 8 nt changed within the left-hand hairpin loop.
Apparently the leftward loop’s sequence was not crucial to
the RNA—raft association. However, changing the central
part of RNA 10 by replacing 40 nt (in RNA 10Trp, 4) or by
60 nt [in RNA 10Arg(D)5] reduces raft binding to 9 and 2.2%.
For the random pool of RNA sequences (RNA 80N) binding
does not exceed 1%, similar to the unique structure, RNA
Trp70-93 which has no sequence in common with RNA 10,
being independently derived (34). Thus, RNA binding to
CHOL-SM rafts varies at least 20-fold when RNA structure
is varied. Definition of these ordered membrane-binding RNA
substructures will likely require closely controlled sequence/
structure comparisons.

Accordingly, RNA binding to gel phase phospholipid
membranes appears to be nearly independent of detailed
RNA primary, secondary and tertiary structure. Rafted

(liquid-ordered) membranes, in contrast, distinguish different
RNA folds strongly, even when the estimated RNA structures
do not appear distinctive to the experimental onlooker
(Table 1).

DISCUSSION

Thus, we can correlate RNA affinity for membranes with
phospholipid order. Taking randomized nucleotide sequences
(with their 50% base pairing) as a rough-and-ready sample of
‘all’ RNA structures suggest that a greater fraction of RNA
structures bind bilayers as phospholipid order increases: fluid
< raft < ripple < gel. RNA binding to lipid ripple-gel phase
(at the phase transition temperature) unexpectedly shows no
significant RNA-structure specificity. On the other hand, a
state of intermediate order (the liquid-ordered or rafted
state, believed to occur in biological membranes) shows
RNA-structure dependent affinity (Figures 5 and 6 and
Table 1). Conceivably, this is attributable in part to the binding
of RNA to a rigid phosphocholine lattice in the gel state, but to
a conformable, more fluid receptor in rafts.

Reciprocally, RNA binding to ripple gels decreases both
membrane electric field and fatty acyl chain-mediated cooper-
ativity. Unpublished data suggest that the same is true of
binding to rafted phospholipids. These data suggest that
these RNAs prefer and stabilize different lipid arrangement(s)

Figure 6. RNA 10 binding to liquid-ordered rafts visualized by FRET microscopy. (A) Blue, Pacific Blue-PE (PacBlue-PE) in giant lipid vesicles composed of
DOPC/SM/CHOL (60:30:10 mol%, respectively) and 0.1 mol% of ganglioside GM1; green, YOYO-1 intercalated within RNA 10; red, AlexaFluor555 attached to
cholera toxin B (AleFluor-CTB) bound to the ganglioside GM1 within liquid-ordered regions of giant lipid vesicles. (B) Blue, perylene in the liquid-ordered regions
of giant lipid vesicles composed of DOPC/SM/CHOL (60:30:10 mol%, respectively); green, YOYO-1 intercalated in RNA 10; red, LissamineRhodamine-PE in giant
lipid vesicle membranes. The width of the images is 8 mm.
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than that in unbound ordered bilayers, thus paralleling our
previous conclusions for fluid bilayers (3). RNA binding to
all phospholipid bilayers is sensitive to ionic strength. These
observations suggest an electrostatic affinity in the main, des-
pite the observed difference in raft and gel specificity for RNA
structures.

RNAs binding to ripple gel phase at physiological ionic
strength (1–3%) implies that one must look through 30–100
molecules (or 2400–8000 nt) to find a binding structure. If we
(very approximately) conceptualize the binding site as a linear
sequence, this in turn suggests that structures that bind
have approximately the prevalence expected of a particular

hexanucleotide (4�6 ¼ 1/4096). Such a binding site implies
that well-bound RNAs are rare among unselected RNAs, but
makes it likely also that they will be easily selected at higher
ionic strength, even as RNA structures that bound completely
fluid phospholipid were rare, but easily selected (1–2). Initial
rarity but easy selection also seems an ideal set of properties
for evolution of controlled affinity between phospholipid
membranes and biological RNAs.

Interestingly, given results of this work, there appears to be
a parallel of surprising depth between RNA–membrane and
peptide–membrane interactions. The protein phospholipase A2

enzyme has particular affinity for the corrugations of the ripple

Table 1. RNA binding to LUV composed of DMPC or DOPC/SM/CHOL (60:30:10 mol%, respectively)

Name of RNA RNA length (nt) RNA 2� structure calculated by BayesFold RNA binding, % total RNA binding % total
DMPC LUV
(gel + fluid phase)

[DOPC/SM/CHOL]
LUV (raft phase)

10 113 55 17

67-2 109 46 16

10Trp 114 50 9.0

10Arg(D)5 112 51 2.2

80N 121 varied 47 0.9

Trp 70-93 109 44 0.7

Binding assay was performed in HEPES buffer (50 mM HEPES, 50 mM NaCl, 5 mM MgCl2 and 2mM CaCl2, pH 7.0) at 23�C. The regions of RNA structures with
changed nucleotides (in comparison with RNA 10) are in bold. For simplicity, the RNA unrelated to RNA 10 is shown completely bold, instead of broken by accidental
matches. Line drawings are one output of BayesFold, a Bayesian RNA folding program (33).
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gel phase (35). Similarly, membrane RNAs (1–4) resemble
some toxins and antimicrobial (bactericidal or fungicidal)
water-soluble peptides [for a review see (36)] in preferential
binding to lipid packing defects (37), more extensive binding
to ripple gel than fluid phase (38), preferential binding to the
edges of membrane pores (39), membrane destabilization (40),
broadening of the transition temperature range and decreasing
the slope of the transition (41), lowering of membrane internal
electric field (42), and membrane pore formation (36). Most of
these properties can now be duplicated by RNA–membrane
examples.

Studies on the reconstituted membranes containing proteins
have shown that proteins immobilize and order lipid hydro-
phobic chains adjacent to the protein molecule (12). On one
hand, this parallels the effect of bound RNAs in changing the
lipid state. On the other hand, we also speculate that re-ordered
lipid associated with proteins may either attract or repel mem-
brane RNAs. Therefore there may be, implicit in these results,
a new directing principle for ordered nucleoprotein arrays on
membrane surfaces.

One consequence of these parallels has to do with antibiotic
activity. Because bacteria readily evolve resistance to antimi-
crobial peptides (43), this work suggests that nucleic acids
might be useful additions to the antimicrobial armamentarium.

Scattered observations on nucleic acid affinity and mem-
brane order preexist. Adsorption of radioactive poly(U) and
tRNA to fluid mitochondrial and egg phosphatidylcholine
liposomes has been detected (44) but at levels 100 times
weaker than here, comparable with observed binding of
RNA to fluid membranes. Conversely, stable binding of
pTZ plasmid DNA (2880 bp) to a room temperature DPPC
bilayer (gel phase), after overnight incubation at 4�C, has been
reported (45) using atomic force microscopy. However, the
authors were unable to detect binding of DNA to DMPC
liposomes at 23�C (transition temperature, thus ripple gel
plus fluid). Similar results appear (46) for binding of single-
strand �25 nt phosphorothioate oligonucleotides to phos-
phatidylcholine liposomes using a fluorescent dye specific
for DNA: binding was higher for an ordered lipid bilayer.

Finally, in considering possible controlled membrane affin-
ity for RNAs in living cells, this work raises the possibility that
RNA-membrane association might be varied by selection of
suitable RNA structures (or might be modulated via small
RNA or small-molecule RNA ligands) as well as by varying
the composition and order of phospholipids in different
cellular membrane domains. Bound RNAs in turn will change
the local bilayer structure and activities, whether in fluid or
more ordered phospholipid patches.

ACKNOWLEDGEMENTS

We thank Dr J. Richard McIntosh (University of Colorado,
MCD Biology) for the use of his fluorescence microscope,
and also Dr Joseph J. Falke (University of Colorado,
Department of Chemistry and Biochemistry) for use of his
spectrofluorometer. This work was supported by NIH
Research Grant GM-30881. Funding to pay the Open Access
publication charges for this article was provided by NIH
GM-30881

Conflict of interest statement. None declared.

REFERENCES

1. Khvorova,A., Kwak,Y.G., Tamkun,M., Majerfeld,I. and Yarus,M.
(1999) RNAs that bind and change the permeability of phospholipid
membranes. Proc. Natl Acad. Sci. USA, 96, 10649–10654.

2. Vlassov,A., Khvorova,A. and Yarus,M. (2001) Binding and disruption
of phospholipid bilayers by supramolecular RNA complexes. Proc. Natl
Acad. Sci. USA, 98, 7706–7711.

3. Janas,T. and Yarus,M. (2003) Visualization of membrane RNAs. RNA,
9, 1353–1361.

4. Janas,T., Janas,T. and Yarus,M. (2004) A membrane transporter for
tryptophan composed of RNA. RNA, 10, 1541–1549.

5. Lewis,R.N.A.H. and McElhaney,R.N. (2005) The mesomorphic phase
behavior of lipid bilayers. In Yeagle,P.L. (ed.), The structure of
biological membrane. CRC Press, Boca Raton, pp. 53–120.

6. Koynova,R. and Caffrey,M. (1998) Phases and phase transitions of the
phosphatidylcholines. Biochim. Biophys. Acta, 1376, 91–145.

7. Simons,K. and Vaz,W.L.C. (2004) Model systems, lipid rafts, and cell
membranes. Annu. Rev. Biophys. Biomol. Struct., 33, 269–295.

8. McMullen,T.P.W., Lewis,R.N.A.H. and McElhaney,R.N. (2004)
Cholesterol–phospholipid interactions, the liquid-ordered phase and
lipid rafts in model and biological membranes. Curr. Opin. Colloid
Interface Sci., 8, 459–468.

9. Hazel,J.R., McKinley,S.J. and Gerrits,M.F. (1998) Thermal acclimation
of phase behavior in plasma membrane lipids of rainbow trout
hepatocytes. Am. J. Physiol., 275, R861–R869.

10. Deshnium,P., Gombos,Z., Nishiyama,Y. and Murata,N. (1997) The
action in vivo of glycine betaine in enhancement of tolerance of
Synechococcus sp. strain PCC 7942 to low temperature. J. Bacteriol.,
179, 339–344.

11. Simons,K. and Ikonen,E. (1997) Model systems, lipid rafts, and cell
membranes. Nature, 387, 569–572.

12. McConnell,H.M. and Vrljic,M. (2003) Liquid-liquid immiscibility in
membranes. Annu. Rev. Biophys. Biomol. Struct., 32, 469–492.

13. Ishitsuka,R., Sato,S.B. and Kobayashi,T. (2005) Imaging lipid rafts.
J. Biochem., 137, 249–254.

14. Stauffer,T.P. and Meyer,T. (1997) Compartmentalized IgE
receptor-mediated signal transduction in living cells. J. Cell Biol., 139,
1447–1454.

15. Kiyokawa,E., Baba,T., Otsuka,N., Makino,A., Ohno,S. and
Kobayashi,T. (2005) Spatial and functional heterogeneity of
sphingolipid-rich membrane domains. J. Biol. Chem., 280,
24072–24084.

16. Sokol,J., Blanchette-Mackie,E.J., Kruth,H.S., Dwyer,N.K.,
Amende,L.M., Butler,J.D., Robinson,E., Patel,S., Brady,R.O.,
Comly,M.E., Vanier,M.T. et al. (1988) Type C Niemann-Pick
disease—Lysosomal accumulation and defective intracellular
mobilization of low density lipoprotein cholesterol. J. Biol. Chem., 263,
3411–3417.

17. Waheed,A.A., Shimada,Y., Heijnen,H.F., Nakamura,M., Inomata,M.,
Hayashi,M., Iwashita,S., Slot,J.W. and Ohno-Iwashita,Y. (2001)
Selective binding of perfringolysin O derivative to cholesterol-rich
membrane microdomains (rafts). Proc. Natl Acad. Sci. USA, 98,
4926–4931.

18. Mukherjee,S., Zha,X., Tabas,I. and Maxfield,F.R. (1998) Cholesterol
distribution in living cells: fluorescence imaging using
dehydroergosterol as a fluorescent cholesterol analog. Biophys. J., 75,
1915–1925.

19. Sato,S.B., Ishii,K., Makino,A., Iwabuchi,K., Yamaji-Hasegawa,A.,
Senoh,Y., Nagaoka,I., Sakuraba,H. and Kobayashi,T. (2004)
Distribution and transport of cholesterol rich membrane domains
monitored by a membrane-impermeant fluorescent polyethylene
glycol-derivatized cholesterol. J. Biol. Chem., 279, 23790–23796.

20. Dietrich,C., Bagatolli,L.A., Volovyk,Z.N., Thompson,N.L., Levi,M.,
Jacobson,K. and Gratton,E. (2001) Lipid rafts reconstituted in model
membranes. Biophys. J., 80, 1417–1428.

21. Samsonov,A.V., Mihalyov,I. and Cohen,F.S. (2001) Characterization of
cholesterol-sphingomyelin domains and their dynamics in bilayer
membranes. Biophys. J., 81, 1486–1500.

22. Baumgart,T., Hess,S.T. and Webb,W.W. (2003) Imaging coexisting
fluid domains in biomembrane models coupling curvature and line
tension. Nature, 425, 821–824.

23. Bacia,K., Schwille,P. and Kurzchalia,T. (2005) Sterol structure
determines the separation of phases and the curvature of the

Nucleic Acids Research, 2006, Vol. 34, No. 7 2135



liquid-ordered phase in model membranes. Proc. Natl Acad. Sci. USA,
102, 3272–3277.

24. Clarke,R.J. and Kane,D.J. (1997) Optical detection of membrane dipole
potential: avoidance of fluidity and dye-induced effects. Biochim.
Biophys. Acta, 1323, 223–239.

25. Clarke,R.J. and Lupfert,C. (1999) Influence of anions and cations on the
dipole potential of phosphatidylcholine vesicles: a basis for the
Hofmeister effect. Biophys. J., 76, 2614–2624.

26. Sorkin,A.,McClure,M.,Huang,F. andCarter,R. (2000) InteractionofEGF
receptor and Grb2 in living cells visualized by fluorescence resonance
energy transter (FRET) microscopy. Curr. Biol., 10, 1395–1398.

27. Mukherjee,S. and Maxfield,F.R. (2004) Membrane domains. Annu. Rev.
Cell Dev. Biol., 20, 839–866.

28. Edidin,M. (2003) The state of lipid rafts: from model membranes to
cells. Annu. Rev. Biomol. Struct., 32, 257–283.

29. Feigenson,G.W. and Buboltz,J.T. (2001) Ternary phase diagram of
dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation
driven by cholesterol. Biophys. J., 80, 2775–2788.

30. Lawrence,J.C., Saslowsky,D.E., Edwardson,J.M. and Henderson,R.M.
(2003) Real-time analysis of the effects of cholesterol on lipid raft
behavior using atomic force microscopy. Biophys. J., 84, 1827–1832.

31. Gandhavani,M., Allende,D., Vidal,A., Simon,S.A. and McIntosh,S.A.
(2002) Structure, composition, and peptide binding properties of
detergent soluble bilayers and detergent resistant rsfts. Biophys. J., 82,
1469–1482.

32. Veatch,S.L. and Keller,S.L. (2005) Miscibility phase diagrams of giant
vesicles containing sphingomyelin. Phys. Rev. Lett., 94, 148101.

33. Knight,R., Birmingham,A. and Yarus,M. (2004) BayesFold: rational
2� folds that combine thermodynamic, covariation, and chemical data
for aligned RNA sequences. RNA, 10, 1323–1336.

34. Majerfeld,I. and Yarus,M. (2005) A diminutive and specific RNA
binding site for L-tryptophan. Nucleic Acids Res., 33, 5482–5493.

35. Leidy,C., Mouritsen,O.G., Jørgensen,K. and Peters,G.H. (2004)
Evolution of a rippled membrane during phospholipase A2 hydrolysis
studied by time-resolved AFM. Biophys. J., 87, 408–418.

36. Brogden,K.A. (2005) Antimicrobial peptides: pore formers or metabolic
inhibitors in bacteria? Nature Rev. Microbiol., 3, 238–250.

37. Barlic,A., Gutierrez-Aguirre,I., Caaveiro,J.M.M., Cruz,A.,
Ruiz-Arguello,M.B., Perez-Gil,J. and Gonzalez-Manas,J.M. (2004)
Lipid phase coexistence favors membrane insertion of equinatoxin-II, a
pore-forming toxin from Actinia equina. J Biol. Chem., 279,
34209–34216.

38. Castanho,M.A.R.B., Prieto,M. and Jameson,D.M. (1999) The pentaene
macrolide antibiotic filipin prefers more rigid DPPC bilayers: a
fluorescence pressure dependence study. Biochim. Biophys. Acta, 1419,
1–14.

39. Huang,H.W., Chen,F.Y. and Lee,M.T. (2004) Molecular mechanism of
peptide-induced pores in membranes. Phys. Rev. Lett., 92, 198304.

40. Bonev,B.B., Lam,Y.H., Anderluh,G., Watts,A., Norton,R.S. and
Separovicy,F. (2003) Effects of the eukaryotic pore-forming cytolysin
equinatoxin II on lipid membranes and the role of sphingomyelin.
Biophys. J., 84, 2382–2392.

41. Mancheno,J.M., Onaderra,M., del Pozo,A.M., Diaz-Achirica,P.,
Andreu,D., Rivas,L. and Gavilanes,J.G. (1996) Release of vesicle
contents by an antibacterial cecropin A-melittin hybrid peptide.
Biochemistry, 35, 9892–9899.

42. Shapovalov,V.L., Kotova,E.A., Rokitskaya,T.I. and Antonenko,Y.N.
(1999) Effect of gramicidin A on the dipole potential of phospholipid
membranes. Biophys. J., 77, 299–305.

43. Buckling,A. and Brockhurst,M. (2005) RAMP resistance. Nature, 438,
170–171.

44. Budker,V.G., Godovikov,A.A., Naumova,L.P. and Slepneva,I.A. (1978)
Interaction of polynucleotides with natural and model membranes.
FEBS Lett., 95, 143–146.

45. Malghani,M.S. and Yang,J. (1998) Stable binding of DNA to
zwitterionic bilayers in aqueous solutions. J. Phys. Chem., 102,
8930–8933.

46. Lu,D. and Rhodes,D.G. (2002) Binding of phosphorothioate
oligonucleotides to zwitterionic liposomes. Biochim. Biophys. Acta,
1563, 45–52.

2136 Nucleic Acids Research, 2006, Vol. 34, No. 7


