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Abstract
Background This study aimed to identify metallo-β-lactamases (MBLs) and AmpC β-lactamases-producing Escherichia 
coli isolates obtained from hemodialysis (HD) patients with urinary tract infections (UTI).
Methods and results A total of 257 HD patients with UTI were included in this study, from which 47 E. coli isolates were 
collected. Antibiotic susceptibility was tested by disc diffusion method. MBLs and AmpC production were phenotypically 
detected by imipenem-ethylenediaminetetracetate and cefoxitin/boronic acid assays, respectively. The presence of MBLs 
and AmpC genes was examined by polymerase chain reaction (PCR). Fosfomycin and ampicillin were the most and the least 
effective antibiotics against E. coli isolates, respectively. Moreover, 61.7% (29/47) of E. coli isolates were multidrug-resistant 
with seven different antibiotypes. Antibiotype V (AMP–CIP–IMP–MEM–CPD–CRO–CTX–GEN–LEV–SXT–TOB) was the 
most prevalent profile. Besides, 24 (51.1%) isolates were simultaneously resistant to imipenem and meropenem. Phenotypic 
assay showed MBL production in 16 (66.7%) of the 24 carbapenem-resistant E. coli isolates. The distribution of MBL genes 
in carbapenem-resistant E. coli was as follows: blaIMP 18 (72%), blaVIM 7 (28%), and blaNDM 1 (4%). AmpC was detected 
in 61.7% (29/47) of the isolates using the phenotypic method. The presence of AmpC genes was confirmed by PCR in only 
26 of 29 (86.7%) AmpC producers. The frequencies of blaDHA-1, blaACC , and blaCMY-2 were 6 (20.7%), 11 (37.9%), and 21 
(72.4%), respectively.
Conclusions The emergence of MBL and AmpC coproducing E. coli isolates calls for an urgent surveillance program for 
timely diagnosis and screening of these genes in our healthcare systems.

Keywords AmpC · Escherichia coli · Hemodialysis patients · Metallo-β-lactamases · Urinary tract infections

Introduction

Dialysis is a procedure to remove excess fluids and waste prod-
ucts from the human body. There are two different methods 
of dialysis: peritoneal dialysis and hemodialysis (HD). The 
second method uses a machine located outside the body to 
remove blood and pump it into a dialyzer [1]. HD patients are 
at high risk for various infections, not only due to the inva-
siveness of this method, but also because of the immunosup-
pression caused by the inflammation and uremia [2]. In HD 
patients with chronic renal disease, infection is the leading 
cause of death. These patients are at risk of urinary tract infec-
tions (UTIs) which can lead to serious complications. Because 
of the problems in collecting urine samples from anuric or 
oliguric HD patients, UTIs are initially difficult to diagnose. 
Previous evidence suggests that multidrug-resistant bacterial 
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pathogens of UTIs are more common in HD patients compared 
with those with normal renal function [3]. Despite extensive 
studies on UTIs in many countries, little is known about hemo-
dialysis patients.

Infections such as UTIs, cause high economic costs and 
morbidity rates, making them one of the most significant dis-
eases in hospitals and communities. In Asia, UTIs are the main 
causes of mortality and morbidity. According to diagnostic 
and clinical reports, approximately 150 million people become 
infected with UTI each year worldwide [4, 5]. The prevalence 
of UTIs is mainly influenced by a variety of factors includ-
ing gender, age, urological instruments, impaired immunity, 
indwelling urinary catheters, and underlying diseases such 
as diabetes mellitus [6]. Escherichia coli, Klebsiella pneu-
moniae, Staphylococcus aureus, Enterococcus faecalis, and 
Proteus mirabilis are the commonest bacteria causing UTIs. 
Community-acquired UTI is most commonly caused by E. coli 
bacteria, which are abundant in the gastrointestinal microflora 
of humans [7, 8].

Treatment of infections has been complicated by the emer-
gence of multidrug-resistant (MDR) strains of E. coli. Beta-
lactam antibiotics are prescribed drugs for UTI treatment. 
These agents are a class of extended-spectrum antibiotics 
and include all antibiotics that have a β-lactam ring in their 
structure [9, 10]. The worldwide distribution of E. coli harbor-
ing metallo-β-lactamases (MBLs) and AmpC β-lactamases 
(AmpC) is a serious threat, and due to MBL production, car-
bapenem resistance is progressively spreading among clinical 
isolates of E. coli [11]. Varied types of MBL genes have been 
identified around the world. The blaNDM, blaVIM, and blaIMP 
are among the most common MBLs [12].

The increasing emergence of AmpC (pAmpC) β-lactamases 
mediated by plasmids is also of growing concern. Six families 
of pAmpC β-lactamases have been defined by Pérez-Pérez and 
Hanson as EBC, MOX, FOX, CIT, DHA, and ACC. Among 
E. coli strains, the CMY-2 type is the most commonly known 
pAmpC. In recent decades, the frequency of AmpC-producing 
E. coli strains, which are mostly MDR, has increased signifi-
cantly. Therefore, the detection of AmpC-positive strains is of 
utmost importance for appropriate treatment [13].

Considering the importance of these issues and knowing 
that studies on the prevalence of β-lactamase genes in E. coli 
strains isolated from HD patients with UTIs from all over the 
world, and especially from Iran are very rare, this study aimed 
to identify the MBLs and AmpC β-lactamases-producing E. 
coli isolates in HD patients with UTIs.

Methods

Study design and specimen collection

This descriptive cross-sectional study was conducted from 
October 2019 to July 2020. Written informed consent was 
obtained from all patients who participated in this study 
before the start of the work. A total of 257 HD patients 
with clinical suspicion of UTI (fever, chills, burning sensa-
tion during urination, cloudy urine, frequent and low urine 
output, unpleasant odor of urine) admitted to Army hospi-
tals in Tehran city, were included in this study. The Army 
hospitals are located in Tehran, the capital of the country 
of Iran. These hospitals are for general referral and have all 
specialized and advanced medical departments. All patients 
with suspected UTI symptoms had their urine samples col-
lected by clean-catch midstream protocol. A urine specimen 
was deemed positive for UTI if it contains a single microor-
ganism with a count of ≥  105 CFU/ml. E. coli isolates were 
identified by phenotypic and biochemical tests including 
Gram staining, lactose fermentation on MacConkey agar, 
triple sugar iron agar reaction, indole production, motility 
test, and Simmons' citrate test [14]. All culture media used 
in this study, were prepared and purchased from Merck Co, 
Germany.

Antibiotic susceptibility testing (AST)

AST was conducted using disc diffusion method, according 
to the recommendations of Clinical and Laboratory Stand-
ards Institute (CLSI) [15]. The AST was performed with the 
following antibiotic discs: imipenem (IMP, 10 μg), merope-
nem (MEM, 10 μg), amikacin (AMK, 30 μg), gentamicin 
(GEN, 10 μg), tobramycin (TOB, 10 μg), ampicillin (AMP, 
10 μg), cotrimoxazole (SXT, 25 μg), fosfomycin (FOS, 
10 μg), piperacillin–tazobactam (PTZ, 100/10 μg), ceftriax-
one (CRO, 10 μg), ceftazidime (CAZ, 30 μg), cefpodoxime 
(CPD, 10 μg), cefotaxime (CXT, 30 μg), nitrofurantoin (NF, 
300 μg), ciprofloxacin (CIP, 10 μg), and levofloxacin (LEV, 
10 μg) (Mast, UK). E. coli ATCC 25922 was used as a con-
trol strain for the susceptibility tests. Isolates resistant to at 
least three classes of antibiotics were considered as MDR 
isolates.

Phenotypic detection of MBLs

The presence of MBLs was screened by the combined imi-
penem-ethylenediaminetetracetate (IMP-EDTA) disc test. 
Briefly, isolates to be tested were inoculated on a Mueller 
Hinton Agar (Merck Co, Germany) plate using lawn cul-
ture method. One disc of IMP (10 μg) alone and another 
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disc in combination with EDTA (750 μg/ml) were applied 
20 mm apart and incubated for 18–24 h at 37ºC. Strains 
were confirmed as MBL producers once an increase of ≥7 
mm in the inhibition zone of IMP-EDTA combination disc 
was observed compared to the IMP disc alone [16].

Phenotypic detection of AmpC

The cefoxitin (FOX) disc (30 μg)/boronic acid was used to 
screen AmpC-producing isolates as previously described 
[17]. Isolates with the inhibition zones of <18 mm in 
diameter against FOX discs were considered potentially 
positive for AmpC screening and were subjected to further 
testing, using FOX disc alone and in combination with 
boronic acid (Sigma, USA). The presence of a 5-mm or 
larger increase in the inhibition zone diameter of the FOX 
disc in combination with boronic acid compared to the 
FOX alone, was considered as positive AmpC production.

Molecular detection of MBLs and AmpC genes

The presence of AmpC genes (blaCMY-2, blaDHA-1, and 
blaACC ) [18] and MBLs genes (blaIMP, blaVIM, and blaNDM) 
[19] was detected by polymerase chain reaction (PCR). 
Genomic DNA extraction was performed using the boil-
ing method [20]. The PCR was performed in a final vol-
ume of 25 μl consisting of DNA template (50 ng), dNTPs 
(100 μM), Taq buffer (5×), Taq DNA polymerase (1 U; 
Cinnagen, Iran), and forward and reverse primers (25 
pM each). The PCR mixtures were subjected to thermal 
cycling. PCR reactions included 30 amplification cycles 
in a Mastercycler (Eppendorf, Germany) under the follow-
ing conditions: denaturation at 95 °C/5 min, annealing at 
55 °C/30 s, and extension at 72 °C/45 s, with a final exten-
sion at 72 °C/6 min. Amplified products were visualized 
using electrophoresis on a 1% agarose gel stained with 
safe stain (Sinaclon, Iran), in a Tris-Borate-EDTA buffer 
(Promega, USA). Water was used as a negative control in 
the study, and the positive controls were K.pneumoniae 
ATCC 700603, P.aeruginosa ATCC 27853, P.aeruginosa 
ST 147, K.pneumoniae KP696465, E.coli KX 342010 and 
E.coli KX342011.

Statistical analysis

Data were entered and statistically analyzed using Microsoft 
Excel 2019 (Microsoft Corporation, USA) and the Statistical 
Package for the Social Sciences (SPSS) software version 22 
(IBM SPSS Statistics, USA) [21]. The results were presented 
as descriptive statistics in the form of relative frequency.

Results

Bacterial isolates and antibiotic resistance

In this study, a total of 47 E. coli isolates were obtained from 
urine samples of HD patients, with an overall prevalence of 
18.3% (47/257). The isolates were obtained from 21 (44.7%) 
males and 26 (55.3%) females (female/male ratio =1.23), 
respectively. The mean age of the patients was (31 ± 1) 
years, and ranged from 2 to 65 years. The E. coli isolates 
showed the highest susceptibility (87.2%) and esistance 
(100%) to FOS and AMP antibiotics, respectively. PTZ and 
NF were the second and third most effective antibiotics, 
respectively. More than 70% of the isolates were resistant 
against third-generation cephalosporin (TGC) antibiotics. As 
well, 24 (51.1%) isolates were simultaneously resistant to 
IMP and MEM. The susceptibility rate results for all antibi-
otics tested are shown in Table 1. The results of AST showed 
that 61.7% (29/47) of E. coli isolates were MDR with seven 
different antibiotypes (Table 2). Antibiotype V (AMP-CIP-
IMP-MEM-CPD-CRO-CTX-GEN-LEV-SXT-TOB) was the 
most prevalent profile (31.0%).

Detection of MBLs and AmpC genes

The results of the IMP-EDTA combined disc test con-
firmed the MBL production in 16 (66.7%) out of 24 car-
bapenem-resistant E. coli isolates. PCR results showed 
that all 24 carbapenem-resistant E. coli isolates had at least 
one MBL gene. The distribution of MBL genes among 

Table 1  The results of antibiotic susceptibility testing

Antibiotic Total Escherichia coli, N (%)

Sensitive Intermediate Resistant

Gentamicin 12 (25.5) 8 (17.0) 27 (57.4)
Amikacin 28 (59.6) 10 (21.3) 9 (19.1)
Levofloxacin 27 (57.4) 2 (4.3) 18 (38.3)
Ciprofloxacin 18 (38.3) – 29 (61.7)
Tobramycin 14 (29.8) 5 (10.6) 28 (59.6)
Fosfomycin 41 (87.2) – 6 (12.8)
Cefpodoxime 7 (14.9) 4 (8.5) 36 (76.6)
Cefotaxime 9 (19.1) 4 (8.5) 34 (72.3)
Ceftriaxone 7(14.9) – 40 (85.1)
Ceftazidime 4 (8.5) 7 (14.9) 36 (76.6)
Ampicillin – – 47 (100)
Cotrimoxazole 9 (19.1) – 38 (80.9)
Meropenem 23 (48.9) – 24 (51.1)
Imipenem 19 (40.4) 4 (8.5) 24 (51.1)
Piperacillin–tazobactam 38 (80.9) – 9 (19.1)
Nitrofurantoin 36 (76.6) – 11 (23.4)
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carbapenem-resistant E. coli isolates was as follows: blaIMP 
18 (72%), blaVIM 7 (28%), and blaNDM 1 (4%). Two iso-
lates showed coexistence of MBL genes. Results from FOX 
disc/boronic acid detected 61.7% (29/47) potential AmpC 
producers. However, the presence of AmpC genes was con-
firmed by PCR in only 26 of 29 (86.7%) AmpC producers. 
The frequency rates of the resistance genes blaDHA-1, blaACC , 
and blaCMY-2 among AmpC β-lactamase-producing strains 
were 6 (20.7%), 11 (37.9%), and 21 (72.4%), respectively. 
Ten isolates showed coexistence of AmpC genes. Over-
all, the frequencies of MBL and AmpC genes were 51.1% 
(24/47) and 55.3% (26/47), respectively. Fifteen (31.91%) E. 
coli isolates had no MBL and AmpC genes, and 18 (38.3%) 
isolates had both of these genes, simultaneously (Table 3). 
The electrophoresis image of some MBL and AmpC positive 
isolates is shown in Fig. 1.

Discussion

At present, a paucity of epidemiological information is avail-
able on E. coli strains causing UTIs, as well as on their anti-
biotic resistance profiles and resistance mechanisms in HD 
patients from many countries including Iran. The novelty 
of this study was to address these issues in a region of Iran. 
The present study investigated the prevalence and antibio-
type patterns of UTI-causing E. coli isolates in HD patients 
against 16 antibiotics.

The results showed an overall prevalence of 18.3% for 
UTI-causing E. coli isolates in HD patients. This rate was 
much lower than the rate (43%) reported by Sadeghi et al. 
[22] from Isfahan, Iran, but in kidney transplant patients. 
In another research in USA, a frequency rate of 29.3% was 
reported for E. coli isolates in HD patients [23]. The ration-
ale behind these discrepancies is likely the differences in 
studied population, patient screening programs, and pre-
dominant pattern of UTI-inducing pathogens in each region.

According to the results of AST, MEM and IMP were 
among the relatively least effective antibiotics, with resist-
ance rates of about 50%. These results were in contradic-
tion with previous reports by Critchley et al. [24] from 
USA, Raeispour et al. [25] from Iran, and Duicu et al. [26] 
from Romania who showed the efficacy of more than 90% 
for these two antibiotics. The emergence of carbapenem-
resistant Gram-negative bacteria in recent years has posed 
a new challenge to medical centers, both in Iran and other 
parts of the world [27, 28]. This phenomenon may arise 
from the high prevalence of different carbapenemase genes 
that can develop resistance to carbapenem antibiotics [28]. 
Although FOS was the most effective antibiotic, its resist-
ance rate (12.8%) was higher than the rate reported in 
South Korea (6.7%) [29].

Of the three aminoglycosides studied here, AMK 
showed the highest efficacy compared to GEN and TOB, 
supporting previous studies from USA [24] and Gabon 
[30]. However, a survey by Kushwaha et al. [31] from 
Nepal showed an opposite result: GEN had higher efficacy 
against UTI-inducing E. coli isolates than AMK and TOB. 
In this study, more than half of the E. coli isolates were 
resistant to GEN and TOB, which was higher than the 
report of Naziri et al. [32] from Iran.

This higher resistance rate could be explained by the 
excessive parenteral administration of these antibiotics in 
our region. Our study explored a high resistance rate, rang-
ing from 72.3 to 85.1%, against TGC antibiotics, which 
was in agreement with previous researches conducted by 
Raeispour et al. [25] and Lee et al. [33], but in contrast 
to findings achieved from USA [24] and Gabon [30]. The 
high resistance rates against TGCs is possibly rooted in 
increasing the spread of extended-spectrum β-lactamase 
genes in UTI pathogens in Iran and other countries during 
recent decades, which were not investigated in the current 
study [34, 35].

Table 2  Different antibiotypes of 29 multidrug-resistant (MDR) E. coli isolates

AMP Ampicillin, AN Amikacin, CAZ Ceftazidime, CIP Ciprofloxacin, CPD Cefpodoxime, CRO Ceftriaxone, CTX Cefotaxime, FOS Fosfomy-
cin, GEN Gentamicin, IMI Imipenem, LEV Levofloxacin, MEM Meropenem, NF Nitrofurantoin, PTZ Piperacillin–tazobactam, SXT Cotrimoxa-
zole, TOB Tobramycin

MDR profile Antibiotypes Number 
of isolates 
(%)

I CIP–CPD–CRO–CTX–SXT–TOB–NF 1 (3.4)
II AMP–CAZ–CIP–PTZ– IMI–MEM–CPD–CRO–CTX–FOS–GEN–SXT–TOB–LEV 4 (13.8)
III AMP–CAZ–CIP–PTZ–IMI–MEM–CPD–CRO–CTX–GEN–LEV–SXT–TOB 5 (17.2)
IV AMP–AN–CIP–CPD–CRO–CTX–GEN–SXT–TOB–NF 3 (10.3)
V AMP–CIP–IMI–MEM–CPD–CRO–CTX–GEN–LEV–SXT–TOB 9 (31.0)
VI AMP–AN–CIP–IMI–MEM–CPD–CRO–CTX–GEN–SXT–TOB–NF 6 (20.7)
VII CIP–CPD–CRO–CTX–SXT–NF 1 (3.4)
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Table 3  MBLs and AmpC 
profiles of all 47 Escherichia 
coli isolates

Ec Escherichia coli, F female, M male, MBL Metallo-β-lactamase, AmpC AmpC beta-lactamase

Strain ID Gender AmpC 
producer

MBL pro-
ducer

AmpC genes MBL genes

Ec 1 M + + blaDHA-1, blaACC blaIMP

Ec 2 F + − blaCMY-2 blaIMP, blaVIM

Ec 3 M − + − blaIMP

Ec 4 M + + blaCMY-2 blaVIM

Ec 5 F − − − −
Ec 6 F + − blaDHA-1, blaACC , blaCMY-2 blaVIM

Ec 7 M + + blaCMY-2 blaIMP

Ec 8 F + − blaCMY-2 blaVIM

Ec 9 F − − − −
Ec 10 M − + − blaIMP

Ec 11 F + + − blaVIM

Ec 12 F + − blaACC , blaCMY-2 −
Ec 13 F + − blaCMY-2 blaIMP

Ec 14 M − + − blaIMP

Ec 15 M − − − −
Ec 16 F + + blaACC , blaCMY-2 blaVIM

Ec 17 F − − − −
Ec18 M + + blaCMY-2 blaIMP

Ec 19 F − − − −
Ec 20 M + + blaDHA-1, blaACC blaIMP

Ec 21 F − − − −
Ec 22 M + + blaACC blaVIM, blaNDM

Ec 23 M + − blaCMY-2 −
Ec 24 F + − blaCMY-2 blaIMP

Ec 25 M − − − −
Ec 26 M + − blaACC −
Ec 27 F + − blaCMY-2 blaIMP

Ec 28 M − − − −
Ec 29 F + − blaCMY-2 −
Ec 30 M − − − −
Ec 31 F + − blaDHA-1, blaCMY-2 blaIMP

Ec 32 F + − − −
Ec 33 M − − − −
Ec 34 M + − blaCMY-2 blaIMP

Ec 35 F + − blaCMY-2 −
Ec 36 F + + blaDHA-1, blaCMY-2 blaIMP

Ec 37 M − + − blaIMP

Ec 38 F + − blaACC −
Ec 39 F + − blaACC , blaCMY-2 −
Ec 40 M − − − −
Ec 41 F + − − −
Ec 42 M − + − blaIMP

Ec 43 F + + blaACC , blaCMY-2 blaIMP

Ec 44 F − − − −
Ec 45 F + − blaCMY-2 −
Ec 46 M − − − −
Ec 47 F + + blaDHA-1, blaACC , blaCMY-2 blaIMP
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The resistance rates against CIP and LEV were 61.7% and 
38.3%, respectively. Reports from Iran by Halaji et al. [34] 
and Raeispour et al. [25] stated the resistance rates of 54.3% 
and 34% for CIP, respectively. These rates were lower than 
those of the current study. The administration of CIP, as the 
first-line therapy, against UTI-inducing bacteria might be 
the reason for this higher resistance rate. Another finding 
obtained in the present work was the exceptional efficacy of 
NF with a susceptibility rate of 76.6%.

In line with our result, Lee et al. [33] reflected the high 
susceptibility rates (74.3%-100%) of NF against different 
UTI-inducing bacteria and stated that 99.2% of E. coli iso-
lates were NF-susceptible. Similarly, Raeispour et al. [23] 
implied that 90% of UTI-inducing E. coli isolates were sus-
ceptible to this antibiotic, as well. In another study in Gabon, 
which was comparable with ours, Mouanga Ndzime et al. 
[30] identified NF as the most effective drug against UTI-
inducing E. coli isolates.

Likewise, a high proportion (80.9%) of E. coli isolates 
were susceptible to PTZ, confirming the results observed 
by Critchley et al. [24] in the USA and Halaji et al. [34] in 
Iran. In this study, AMP and SXT (with resistance rates of 
100% and 80.9%, respectively) were among the less effective 
antibiotics, a result consistent with those observed in the 
Gabon [30], USA [24], and Iran [34].

This result for AMP was not far-fetched because in recent 
years, many Gram-negative bacilli carrying β-lactamase 
enzymes have readily become resistant to a wide range of 
β-lactam antibiotics. As SXT has always been one of the 
first-line drugs for the treatment of UTIs, according to the 
observed evidence, it is recommended to prescribe this drug 
with regard to the results of antibiotic susceptibility tests.

One notable finding of this study was the relatively high 
prevalence of MDR (61.7%) E. coli isolates. Previous stud-
ies have reported various MDR frequencies, ranging from 

55.1 to 100% for UTI-causing E. coli isolates [25, 30, 34]. 
In this study, 7 different antibiotypes were seen in MDR 
isolates. Previous study from Saudi Arabia showed 70 dif-
ferent antibiotypes in E. coli isolates collected from clini-
cal samples [36]. In another study by Alanazi et al. [37], 
7 different antibiotypes were seen in UTI-causing E. coli 
isolates against ciprofloxacin, ampicillin and co-trimoxa-
zole antibiotics. In this study, according to the results of 
the antibiogram, the most effective antibiotic against these 
MDR isolates was the FOS that can be considered for 
treatment of the MDR UTI-causing E. coli. These results 
necessitate the development of a surveillance program for 
antibiotic consumption to control the spread of MDR E. 
coli isolates in healthcare systems of our country. In recent 
years, the outbreak of E. coli sequence type 131 (ST131) 
isolated from urine culture has become one of the global 
health problems due to the high prevalence of multidrug 
resistance. This clone has a wide range of virulence factors 
including siderophores, adhesins, and toxins which disrupt 
host defense mechanisms. The majority of these factors are 
found on mobile genetic elements (MGEs) or pathogenic-
ity islands (PAI), which are capable of being horizontally 
transmitted among different species [38, 39]. MGEs have 
a huge impact on bacterial genomes, including causing 
marked differences in genome size and pathogenicity. 
Although bacteria have several mechanisms for resisting 
lateral gene transfer, MGEs play a major role in bacterial 
evolution and contribute greatly to adaptation to new and 
changing ecological niches. Most of the resistance genes 
are acquired by horizontal transfer of plasmids and other 
MGEs, and this process has been associated with the suc-
cessful dissemination of particular lineages. Also, MGEs 
have an important role in virulence gene acquisition and 
forming new subpopulations among pandemic clones such 
as E. coli ST131 [38, 39].

Fig. 1  Agarose gel electrophoresis (1.0%) of blaDHA PCR products. 
From left to right: L indicates DNA Ladder (100 bp), lanes 1 and 6 
demonstrate blaDHA-positive (405 bp) Escherichia coli isolates, lanes 
2,3,4,5,7,8,9,10, and 11 indicate blaDHA-negative E. coli isolates, NC 
indicates negative control, PC indicates positive control of blaDHA 
gene (405 bp) (a). Agarose gel electrophoresis (1.0%) of blaIMP PCR 

products. From left to right: L indicates DNA Ladder (100 bp), lanes 
1, 2, 3, 7, and 10 demonstrate blaIMP-positive (568  bp) E. coli iso-
lates, lane 4, 5, 6, 8, and 9 show blaIMP-negative E. coli isolates, NC 
indicates negative control, PC indicates positive control of blaIMP 
gene (568 bp) (b)
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This study investigated the production of MBL and 
AmpC β-lactamases in UTI-inducing E. coli isolates in HD 
patients. To the best of our knowledge, this was the first 
study in this regard in Iran. Today, there are multiple pheno-
typic methods for detecting β-lactamases, but owing to the 
multiplicity of different types of these enzymes, none of the 
phenotypic methods can identify all types. Therefore, their 
detection is mostly based on molecular methods such as PCR 
or real-time PCR [40, 41].

In our survey, AmpC and MBL phenotypes were detected 
in 29 (61.7%) and 16 (34%) UTI-causing E. coli isolates, 
respectively. Similar to these results, Helmy et  al. [42] 
reported a prevalence of 66.6% for AmpC-producing E. 
coli isolates in Egyptian UTI patients using phenylboronic 
acid method. A higher prevalence rate (87.5%, n = 175/200) 
was also reported for the detection of phenotypic AmpC in 
UTI-inducing E. coli isolates collected from New Zealand 
by Drinkovic et al. [43]. In opposition to our findings, Jamil 
et al. [44] stated a lower frequency (16%, n = 12/75) of UTI-
causing E. coli isolates harboring MBLs in Pakistan using 
phenotypic method. Variations in the results seem to arise 
from differences in the phenotypic test methods, quality of 
materials used, and dissimilarity in geographical area.

The results of PCR assay revealed a frequency of 20.7%, 
37.9%, and 72.4% for blaDHA-1, blaACC , and blaCMY-2 AmpC 
β-lactamases-producing isolates, respectively. In conformity 
with our results, findings by Helmy et al. [42] from Egypt 
and Drinkovic et al. [43] from New Zealand represented 
the blaCMY-2 (89% [n = 90/101]) as the predominant type 
of AmpC in UTI-inducing E. coli isolates. The extensive 
dissemination of blaCMY-2 among E. coli isolates could be 
linked to unique transposon-like element ISEcp1, which is 
thought to play a role in the transmission of blaCMY-2 from 
the Citrobacter freundii chromosome to other Enterobac-
teriaceae [42]. In another study conducted in Egypt, the 
prevalence rate of 50% was reported for blaDHA AmpC in 
UTI-causing E. coli, while other AmpC genes were not 
detected [45]. In a study from Nepal, two AmpC genes 
blaCIT and blaDHA were detected in 30.6% and 31.3% of 
clinical E. coli isolates, respectively [46]. Another experi-
ment by Shayan and Bokaeian [47], showed a prevalence 
of 5.0% and 0.0% for blaCMY-2 and blaFOX genes, respec-
tively. They did not investigate the remaining AmpC genes. 
In a recent study from Iran, no blaMOX and blaECC genes 
were found in uropathogenic E. coli isolates, while, blaCIT, 
blaFOX, blaDHA, and blaEBC were detected in 73.6%, 10.5%, 
10.5%, and 15.8% of E. coli isolates, respectively [48]. 
Currently, the clinical microbiology laboratories do not 
have a reliable method of detecting and confirming AmpC 
β-lactamases. For this reason, the molecular characteriza-
tion of β-lactamases, in particular the AmpC family, is of 
crucial importance in in terms of molecular epidemiology 
and genetic contributing factors [48].

This study revealed the high prevalence rate of MBL 
genes in 24 carbapenem-resistant isolates, as all of them har-
bored at least one MBL gene. In the current study, the blaIMP 
(72%) was the most prevalent MBL gene followed by blaVIM 
(28%) and blaNDM (4%). The emergence of MBL-producing 
UTI-inducing E. coli isolates could be considered a serious 
threat to health communities because this pathogen is resist-
ant to numerous antibiotics. In a study by Naeem et al. [49], 
the NDM-positive rate was 38.5% (n = 10/26) among E. coli 
strains isolated from urine samples that was higher than the 
current result. In another study from Sudan [50], the blaVIM 
(16.7%) was the most prevalent MBL gene in clinical E. coli 
isolates followed by blaIMP (8.3%) and blaNDM (2.8%).There 
is a paucity of data regarding the blaVIM and blaIMP harbor-
ing UTI-causing E. coli in Iran. In a recent study from south-
west Iran, each of blaIMP-1 and blaIMP-2 genes were detected 
in 8.3% of uropathogeneic E. coli isolates, while the blaNDM 
was detected in 75.0% of isolates. Also, the blaVIM-1 and 
blaVIM-2 were not detected [51]. In another study by Deldar 
Abad Paskeh et al. [52] from Iran, a lower occurrence rates 
of blaIMP (8.7%) and blaVIM (9.8%) genes were reported 
in UTI-causing E. coli compared to the current study. In a 
recent study from Taiwan, an increasing rate of NDM-pos-
itive E. coli isolates has been reported in clinical samples. 
They reported a prevalence rates of 39.1%, 30.4%, 21.7%, 
and 8.7% for NDM, IMP-8, KPC-2, and VIM-1, respectively 
[53]. NDM is a member of the amber class B β-lactamases, 
which can hydrolyze virtually all β-lactams except mono-
bactam [53]. In China and its neighboring countries, IncX3 
plasmids are the most common types of plasmids carrying 
blaNDM in Enterobacteriaceae [54], while in a recent study 
from Iran, blaNDM–1 gene was located on both conjugative 
plasmids: IncFII ∼86-kb to ∼140-kb and IncA/C [55]. There 
are various classes of chromosomal and plasmidic MBLs 
including Sao Paulo metallo-β-lactamase (SPM), German 
imipenemase (GIM), and Adelaide imipenemase (AIM) that 
were not screened in this study and could pave the way for 
further epidemiological research in the future [56].

The present research showed that 38.3% of the isolates 
harbored both MBL and AmpC genes simultaneously. In 
this regard, co-occurrence of β-lactamase genes has been 
reported in several investigations [45, 57], which was in 
harmony with the results of this study. In recent years, the 
occurrence of different β-lactamases in various Gram-neg-
ative bacteria has been reported in various studies [58–61]. 
Due to the financial and traffic constraints caused by the 
COVID-19 virus pandemic, the current study has the fol-
lowing limitations: the lack of MBLs and AmpC genes 
sequencing, the lack of antibiogram results for some newer 
and reserved antibiotics including ceftazidime/avibactam, 
imipenem/relebactam, ceftolozane/tazobactam, colistin, and 
tigecycline, and lack of evaluation of other bacteria contrib-
uted to UTI in HD patients. Also, due to the non-shareable 
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privacy of those patients referred to Army hospitals, we did 
not have any clinical data of individuals to evaluate the cor-
relation of infections by MDR E. coli in HD patients with 
other important predisposing conditions to detect if any sig-
nificant trends exist in the prevalence of such MDR strains 
among different susceptible groups.

Conclusion

This survey portrayed the high resistance rates of UTI-
causing E. coli isolates harboring AmpC and MBLs in HD 
patients against AMP, SXT, and TGCs. In light of this infor-
mation, it is recommended to choose treatments based on the 
antibiogram results, in order to hinder the further spread of 
MDR isolates. Moreover, the higher efficacy of FOS, PTZ 
and NF against UTI-inducing E. coli isolates, compared to 
other antibiotics, made them suitable options for empirical 
therapy. The emergence of MBL and AmpC co-producing 
E. coli isolates calls for an urgent surveillance program for 
timely diagnosis and screening of these genes in our health-
care systems. In future, such program can be of great help in 
preventing the spread of antibiotic resistance in our country, 
Iran. Another suggestion is to evaluate the other infections 
and their etiological pathogens such as septicemia in HD 
patients to prepare a suitable epidemiological data bank in 
this regard in Iran.
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