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ABSTRACT

Background. Milk, the first food of mammals, helps to establish a baseline gut
microbiota. In humans, milk and milk products are consumed beyond infancy,
providing comprehensive nutritional value. Non-dairy beverages, produced from
plant, are increasingly popular as alternatives to dairy milk. The nutritive value of
some plant-based products continues to be debated, whilst investigations into impacts
on the microbiome are rare. The aim of this study was to compare the impact of
bovine milk, soy and almond beverages on the rat gut microbiome. We previously
showed soy and milk supplemented rats had similar bone density whereas the almond
supplemented group had compromised bone health. There is an established link
between bone health and the microbiota, leading us to hypothesise that the microbiota
of groups supplemented with soy and milk would be somewhat similar, whilst almond
supplementation would be different.

Methods. Three-week-old male Sprague Dawley rats were randomly assigned to five
groups (n = 10/group) and fed ad libitum for four weeks. Two control groups were
fed either standard diet (AIN-93G food) or AIN-93G amino acids (AA, containing
amino acids equivalent to casein but with no intact protein) and with water provided
ad libitum. Three treatment groups were fed AIN-93G AA and supplemented with either
bovine ultra-heat treatment (UHT) milk or soy or almond UHT beverages as their sole
liquid source. At trial end, DNA was extracted from caecum contents, and microbial
abundance and diversity assessed using high throughput sequencing of the V3 to V4
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variable regions of the 16S ribosomal RNA gene.

Results. Almost all phyla (91%) differed significantly (FDR < 0.05) in relative abun-
dance according to treatment and there were distinct differences seen in community
structure between treatment groups at this level. At family level, forty taxa showed

significantly different relative abundance (FDR < 0.05). Bacteroidetes (Bacteroidaceae)
and Firmicutes populations (Lactobacillaceae, Clostridiaceae and Peptostreptococcaceae)
increased in relative abundance in the AA almond supplemented group. Supplemen-
tation with milk resulted in increased abundance of Actinobacteria (Coriobacteriaceae
and Bifidobacteriaceae) compared with other groups. Soy supplementation increased
abundance of some Firmicutes (Lactobacilliaceae) but not Actinobacteria, as previously
reported by others.

Conclusion. Supplementation with milk or plant-based drinks has broad impacts on
the intestinal microbiome of young rats. Changes induced by cow milk were generally
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in line with previous reports showing increased relative abundance of Bifidobacteriacea,
whilst soy and almond beverage did not. Changes induced by soy and almond drink
supplementation were in taxa commonly associated with carbohydrate utilisation. This
research provides new insight into effects on the microbiome of three commercially
available products marketed for similar uses.

Subjects Biochemistry, Food Science and Technology, Microbiology, Molecular Biology
Keywords Bovine milk, Soy drink, Almond drink, Amino acid diet, Microbiome, Growing rat

INTRODUCTION

Core microbiomes have been identified in several species including rat, mouse and human
(Cullen et al., 2020). The microbiome is influenced by diet and environment (Rothschild
et al., 2018) and is integral for shaping of the host immune system (Hooper, Littman ¢
Macpherson, 2012) and for gut homeostasis (Gill et al., 2006; McFall-Ngai et al., 2013).
Dysregulation can lead to gastrointestinal diseases (Ni et al., 2017; Rigottier-Gois, 2013),
neurologic disorders (Suganya ¢ Koo, 2020), diabetes, obesity (Dabke, Hendrick ¢ Devkota,
2019), rtheumatoid arthritis (Yoo et al., 2020) and dysregulation of bone homeostasis
(Ibanez et al., 2019; Sjogren et al., 2012). Dairy milk is generally considered an excellent
source of nutrition (Martinez-Padilla et al., 2020). It has good digestibility and contains
many nutrients that benefit the microbiome including protein (Bai et al., 2016; Masarwi
et al., 2018), carbohydrates (Estorninos et al., 2021; Kirmiz et al., 2018) and fats (Huang et
al., 2013). Fermented products from mammalian sources such as cheese and yoghurt are
similarly beneficial (Burton et al., 2017; Rettedal et al., 2019). Beyond simple nutrition, the
importance of milk for development of the gut microbiota during infancy, is well described
(reviewed by Laursen, 2021).

Plant-based beverages continue to grow in popularity as alternatives to mammalian
milk products. The nutritive value and digestibility of protein within plant-based products
can vary significantly depending on the plant source (Day, Cakebread & Loveday, 2022;
Martinez-Padilla et al., 2020) and brand (Vanga & Raghavan, 2018). That said, non-
fermented and fermented soy beverage, like mammalian milk, is reported to have a
comparable beneficial influence on the human gut microbiome (Fujisawa et al., 2017;
Inoguchi et al., 2012). The newer non-dairy beverages, formulated from nuts (almond,
hazelnut) grains (oat, rice) or legumes (pea) have yet to be studied. Almond milk is a
mixture of fragmented almonds in water (~2%) which has been further processed to
improve the suspension and microbial stabilities of the commercial product (Vanga ¢
Raghavan, 2018). Almonds, as a whole or ground nut, have potential prebiotic properties
with some reports showing an increase in Bifidobacteria (Liu et al., 2014; Mandalari et al.,
2008) and another showing an increase in Lachnospiraceae populations (Holscher et al.,
2018). Effects are influenced by processing and amount ingested (Holscher et al., 2018).
To our knowledge, the impact of almond beverages on the microbiome has not been
previously reported.
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The aim of this research was to compare the impact of bovine milk, soy or almond
beverages on the caecal bacterial microbiota in growing rats. We used two rodent feeds
as controls; one contained intact casein protein and the other amino acids equivalent to
casein. These groups were given water as their sole liquid source. The Casein water group
(Casein water) represented healthy growing rats fed a replete diet representing the baseline
control. The AA water group (AA water) represented an incomplete diet, also with water
as their sole liquid. The treatment groups were fed the AA diet but were supplemented
with bovine milk (AA milk), soy beverage (AA soy) or almond beverage (AA almond) as
their sole source of liquid. All beverages were ultra-heat treated (UHT). In an earlier report
from the same study (Cakebread et al., 2019) we demonstrated impact of supplementation
on bone mineralisation, where supplementing the diet with bovine milk and soy beverage
had favourable bone health outcomes. Conversely, almond beverage was not an effective
supplement for bone mineralisation and bone strength outcomes, despite equal calcium
intake to the Casein water group (Cakebread et al., 2019).

The gut microbiota is reported to be a major regulator of bone mass in mice (Sjogren et
al., 2012) and we postulated that the soy and milk supplemented groups may have a more
similar microbiota compared with the almond supplemented group.

Published studies show milk and soy supplements increase relative abundance of
Bifidobacteria (Favier et al., 2002; Fujisawa et al., 2017; Piacentini et al., 2010) but the
impact of commercial almond milk on the microbiome is unknown. This work compares
the impacts of milk, soy and almond beverage supplementation on the caecal microbiome,
as representative of the colonic microbiota (Li et al., 2017).

METHODS

Animal ethics

All animal experiments were performed in accordance with the guidelines of the New
Zealand National Animal Ethics Advisory committee for the use of animals in research,
testing, and teaching. All animal manipulations were approved by the Ruakura Animal
Ethics Committee (AEC#14346), established under the Animal Protection (code of ethical
conduct) Regulations Act, 1987 (New Zealand) as previously described (Cakebread et al.,
2019). Animals were sourced from the Ruakura Small Animal Colony (Hamilton, NZ).
All small animals bred for research are counted and contribute to AgResearch’s overall
animal use statistics, which are publicly available. Animal experiments can be carried out
with either male or female animals (not both), because different genders may respond
differently to treatments. For this study a total of 50 healthy, male Sprague-Dawley rats
were used. At weaning, animals were randomly assigned into groups (3—4 per cage, and to
give similar average group weights) and housed in specific-pathogen-free conditions in a
temperature-controlled room with a 12 h light-dark cycle.

Rodent diets and liquids

Standard AIN-93G rodent food containing casein protein (casein; 20%) and a modified
version of AIN-93G food containing amino acids (AA) equivalent to the casein diet were
purchased from Research Diets Inc., (New Jersey, USA) (Reeves, Nielsen ¢ Fahey, 1993).
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Diets were analysed by commercial testing (as described previously Cakebread et al., 2019)
to confirm similarity of protein nitrogen, fat and mineral content (Table S1).

A range of UHT, unsweetened, unflavoured plant-based beverages were purchased from
a local supermarket. Bovine UHT milk was used as the reference point to match the most
comparable soy and almond plant-based drinks based on protein content and total calories
for the feeding trial. Composition (protein, fat, total solids, energy, minerals) of the liquid
supplements chosen for use in the trial were confirmed by commercial testing as described
previously (Cakebread et al., 2019) (Table 52). Milk and beverages from the same batches
were used during the trial. Beverage cartons were chilled to 4 °C before opening and open
cartons stored at the same temperature (4 °C). Cartons were mixed well prior to aliquoting
liquids into feeding bottles.

Animal husbandry

Weanling male rats (3 weeks of age) were randomly assigned to five groups (n = 10/group)
with similar weight distribution. The sample size of 10 per group was based on a nutritional
experiment comparing goat and bovine milk, where the standard deviation of the main
variable (bone mineral content) was 0.025. Power was at 80% and significance level (5%)
to detect a difference of 0.033 (Hodgkinson et al., 2018). Two control groups were fed ad
libitum either standard AIN-93G and water (Casein water) or modified AIN 93-G AA food
and water (AA water). Three experimental groups were fed ad libitum AIN-93G AA food
and either UHT bovine milk (AA milk), UHT soy beverage (AA soy) or UHT almond
beverage (AA almond), as their sole liquid. Liquids were replaced daily, and food intake
measured and replenished as required. Food and liquid intakes were recorded and used
to calculate kcal intake over the duration of the trial (Table S3). Animals remained on
their allocated food and liquid diets for four weeks. Rats were weighed twice per week to
monitor health. Conditions for exclusion were established a prioi and included observation
of general wellbeing (using the general health score for rodents) and <10% bodyweight
loss over two consecutive weighings. No unexpected events occurred, and all animals were
included in the analysis.

Sample collection

Caecum samples were collected from rats following euthanasia (CO, asphyxiation and
cervical dislocation) at the age of seven weeks. Caecum contents were removed, and
immediately snap frozen and then stored at —80 °C until further processing.

DNA extraction and sequencing

Bacterial DNA was extracted from each caecum using NucleoSpin®) Soil kits (Machery-
Nagel, ThermoFisher Scientific, Auckland, NZ) according to the manufacturer’s
instructions. Microbiota profiling was assessed using barcode paired end 2 x 250 bp
sequencing of bacterial 16S rRNA gene PCR products (Illumina MiSeq sequencing, Massey
Genome Service, Massey University, Palmerston North, NZ) targeting the V3 and V4
hyper-variable region (primers listed in Fig. S1). Prior to sequencing, samples were QC
checked using Invitrogen Quant-iT dsDNA HS Assay and quantified using a Qubit®
Fluorometer.
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Sequences were processed following a modified form of the pipeline described in
(Camarinha-Silva et al., 2012). The reads produced by the sequencing instrument were
paired using the program FLASH2 (Magoc ¢ Salzberg, 2011). Paired reads were then
quality trimmed using Trimmomatic (Bolger, Lohse ¢» Usadel, 2014). The trimmed reads
were reformatted as fasta, and the read headers were modified to include the sample name.
All reads were compiled in a single file, and the Mothur (Schloss et al., 2009)program suite
was used to remove reads with homopolymers longer than 10 nt, and to collapse the
reads into unique representatives. The collapsed reads were clustered with the program
Swarm (Mahe et al., 2014). The clustered reads were filtered based on their abundance,
keeping representatives that were (a) present in one sample with a relative abundance
>0.1%, (b) present in >2% of the samples with a relative abundance >0.01% or (c)
present in 5% of the samples at any abundance level. The selected representatives were
annotated using the QIIME program with the Silva database for bacteria, and RIM-DB
for archaea. The annotated tables were then used for downstream statistical analysis.

A Ruby program implementing the abundance filter is available in the AgResearch
Gitea website (https:/github.com/ruy-jauregui/microbiomics). Raw reads have been
deposited at the ncbi under the bioproject number PRNJA782341. Samples are listed

at https:/www.ncbi.nlm.nih.govkratlinkname=bioproject_sra_all&from_uid=782341.

Statistical analysis

Body weights were compared by treatment using ANOVA in Genstat (Genstat for Windows
17th edition; VSN International) and with trial day 0 weight as a covariate. Means were
compared using Fisher’s unprotected least significant difference test and P values < 0.05
were considered significant.

Statistical analyses of microbiota were performed using R 4.0.3 (R Core Team, 2020).
Cage was included as a random effect. Differences between relative abundances of individual
taxa among the different treatments were assessed for significance using permutation
analysis of variance as implemented in the ImPerm package in R (Wheeler & Torchiano,
2016). Taxa with an FDR <0.05 were considered significantly different.

RESULTS

Treatment groups

Differences between group kcal intakes were highly correlated with group weight (R?
range 0.87-0.99), as previously reported (Cakebread et al., 2019). Briefly, at the start of
the trial, group average weights of weanling rats were not significantly different (47.5 g:
range 34.2-61.6 g). At the end of the trial group average weights of animals in Casein
water and AA milk groups were similar (291 g and 297 g, respectively). Both groups were
significantly heavier than animals in AA water and AA almond groups (251.2 gand 215.2 g,
respectively). Animals in the AA almond group were significantly lighter than all other
groups. In contrast, the average weight of AA soy group was significantly higher than all
other groups (326 g). Weights, intake, and calculated estimates of macronutrients are listed
in Table S3.
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Comparison of overall community structure: phyla

[llumina sequencing returned a total of 10,329,465 sequences for the caecal microbiome
of the fifty rats across the five supplement groups, with a minimum library size of 78,645,
mean of 206,589, and maximum of 427,702 reads.

The main phyla observed in the rat caecal microbiota were Firmicutes, Bacteroidetes,
Actinobacteria, and Proteobacteria, representing over 97% of the total population, which
is in line with the reported literature (Li et al., 2017).

Almost all phyla (91% of sequence reads) differed significantly (FDR <0.05) in relative
abundance according to treatment and there were distinct differences seen in community
structure between treatment groups at this level (Table 54). Of note was the striking increase
in relative abundance of Actinobacteria in the AA milk group (21%) compared to all other
groups (range 1.3-2.2%). Firmicutes and Bacteroidetes were the most prevalent phyla
across all groups (relative abundance range 52%—-67% and 20-28%, respectively). The AA
milk group had significantly lower relative abundance of Firmicutes (52% compared to
the other groups (range 61-67%)) and Bacteroidetes (20%, compared to all other groups
(range 25-28%, Table 54)). Proteobacteria were more abundant in the AA soy group (9%)
compared to the other groups (range 5-6%). An increased abundance of Acidobacteria
was observed for the AA almond group (0.69%) compared to AA soy (0.11%), AA water
(0.24%) and Casein water (0.08%), but it was present in low amounts and not detected in
the AA milk group.

Comparison of overall community structure: family
At the family level, forty taxa showed significantly different relative abundance (FDR < 0.05,
Fig. 1). The most different, based on highest proportions, are shown in Table S5.

Of the phylum Actinobacteria, Coriobacteriaceae (0.24% Casein water, 1.6% AA water,
14.9% AA milk, 1.1% AA soy and 1.7% AA almond) and Bifidobacteriaceae (0.4% Casein
water, 0.1% AA water, 6.0% AA milk, 0.05% AA soy and 0.4% AA almond) were notably
greater in relative abundance for the milk supplemented group (Fig. 2, Table S5).

Bacteriodales Porphyromonadaceae (Fig. 3) and Bacteriodales S24-7 group (Fig. 1,
Table S5) had a significantly lower relative abundance in the AA milk group (1.29% and
3.47%, respectively) compared to all other groups (range 2.75-3.42% Porphyromonadaceae
and 6.26-9.79% Bacteriodales S24-7 group, Fig. 3). Conversely, there was an increase in
abundance of Bacteriodaceae, in AA milk (11.86%) and AA almond (11.97%) compared to
AA soy (6.01%; Fig. 3).

Treatments impacted many taxonomic families in phylum Firmicutes (Fig. 4). For
example, one taxon, Clostridiaceae group 1 had higher relative abundance in the AA water
group (7.3%) compared the Casein water group (3.7%) suggesting an effect of the base
diet. A reduction in abundance was observed in the AA almond group (5.16%) compared
to AA water (7.3%) suggesting an effect from the supplement. A further reduction in
abundance of Clostridiaceae group 1 abundance were observed in rats fed AA milk and
AA soy diets (1.63% and 0.15%, respectively). The AA milk and AA soy groups also had
a lower relative abundance of Peptostreptococcaceae (12.37% and 12.36%, respectively)
compared to AA almond (17.3%), and also AA water and Casein water groups (19.78%
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Figure 1 Changes to bacterial family communities. Changes to bacterial communities with different lig-
uid supplements. The relative abundance (family) present in caecal contents collected from individual rats
(n = 50) are shown. Two control groups received water with either casein diet (Casein water) or amino
acid diet (AA water). Treatment groups received AA diet with either bovine milk (AA milk), soy beverage
(AA soy), or almond beverage (AA almond). Diets and treatments were supplied over 4 weeks from wean-
ing to 7 weeks old. The colours represent different families as indicated in the figure legend.

Full-size & DOI: 10.7717/peerj.13415/fig-1

and 24.21%, respectively). Lactobacillaceae, had higher abundance in the AA soy (16.8%)
and AA almond (15.63%) supplemented groups compared to the other groups (Casein
water 7.19%, AA water 7.89% and AA milk 9.06%). Lachnospiraceae had higher abundance
in the AA milk (14.4%) compared to all other groups supplements (Casein water 12%, AA
water 12.4%, AA soy 10.9% and AA almond 11.0%).

Proteobacteria family member Enterobacteriaceae (Fig. 5) were significantly higher in
relative abundance for the AA soy supplemented group (4.6%) compared to all other
groups (Casein water 0.1%, AA water 0.98%, AA milk 1.0%, and AA almond 2.0%).
Desulphovibrionaceae had lower abundance in groups given the supplements (AA milk
2.75%, AA soy 2.62% and AA almond 2.44%) compared to controls (Casein water 3.96%
and AA water 4.51%) suggesting a supplement treatment effect.

DISCUSSION

This study, the first to our knowledge, compares effects of commercial soy and almond
plant-based beverages and bovine milk supplementation on the caecal microbiota in
a growing rat model. Our main finding was the significant increase in Actinobacteria
(Bifidobacteriaceae and Coriobacteriaceae) and Firmicutes (Lachnospiraceae) in the UHT
milk fed group relative to the other groups. This was not observed for soy beverages as
previously reported in human studies (Fujisawa et al., 2017; Piacentini et al., 2010). No
previous studies were found for almond beverage.

Human studies of whole or processed almonds have shown increases in relative
abundance of Actinobacteria (e.g., Bifidobacterium spp. and Lactobaccillus spp) and
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Figure 2 Relative abundance (%) of Actinobacteria for the five groups. Two control groups received
water with either casein diet (Casein water) or amino acid diet (AA water). Treatment groups received AA
diet with either bovine milk (AA milk), soy beverage (AA soy), or almond beverage (AA almond). Differ-
ences between individual taxa among the different treatments were assessed for significance using permu-
tation analysis of variance. Dissimilar letters denote significant differences (P < 0.05). Midline shows me-
dian, the upper and lower limits of the box showing the third and first quartile (i.e., 75th and 25th per-
centile), respectively and the whiskers represent 1.5 times the interquartile range. Open circles represent
outliers (i.e., >1.5 x IQR). n =10 per group.

Full-size Gal DOIL: 10.7717/peerj.13415/fig-2

Firmicutes (e.g., Lachnospira (genus) (Holscher et al., 2018; Liu et al., 2014). It has been
suggested that dietary fibre and polyphenols could be associated with microbiota effects
(Liu et al., 2014) but levels of these were unknown for this study. The amount of almond
found in the almond beverage is much less compared to that given in the human studies
(Holscher et al., 2018; Liu et al., 2014; Vanga ¢ Raghavan, 2018) and suggests this would
reduce the likelihood of seeing an effect.

Bacteroides and Firmicutes have a well-documented ability to utilise carbohydrates
(El Kaoutari et al., 2013). The estimated carbohydrate intake for each group is shown in
Table S3 and indicates a lower intake for the AA almond group over the course of the study.
Alterations in the type and quantity of polysaccharides consumed can result in changes
in the microbiota community composition and function (Sonnenburg et al., 2010). We
saw an influence of almond supplementation on Bacteroidaceae (Phylum Bacteroidetes),
despite lower carbohydrate intake. Bacteroidetes members share a common ancestor (Pace,
1997) and have gene-encoded carbohydrate active enzymes that can switch readily between
different energy sources in the gut, depending on availability (Flint et al., 2012). Aside from
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Figure 3 Relative abundance (%) of Bacteriodetes in the five groups. Two control groups received wa-
ter with either casein diet (Casein water) or amino acid diet (AA water). Treatment groups received AA
diet with either bovine milk (AA milk), soy beverage (AA soy), or almond beverage (AA almond). Differ-
ences between individual taxa among the different treatments were assessed for significance using permu-
tation analysis of variance. Dissimilar letters denote significant differences (P < 0.05). Midline shows me-
dian, the upper and lower limits of the box showing the third and first quartile (i.e., 75th and 25th per-
centile), respectively and the whiskers represent 1.5 times the interquartile range. Open circles represent
outliers (i.e., >1.5 x IQR) n =10 per group.

Full-size el DOI: 10.7717/peerj.13415/fig-3

amount ingested, the type of carbohydrate may have influenced the bacterial populations,
since the predominant carbohydrate in soy and almond supplements are non-starch
polysaccharides (NSP) and sugars (Choct et al., 2010)whereas for milk it is lactose (Roy et
al., 2020).

Metabolites produced by microbial populations and cross-feeding has the potential to
affect bacterial community assembly and stability characteristics (Rios-Covian et al., 2013).
For example, members of the genus Bifidobacterium have a superior ability to sequester
oligosaccharides found in milk and soy (Ma et al., 2017; Sela ¢ Mills, 2010) and can
successfully compete with members of the genus Bacteroides. Furthermore, we observed
variations in Firmicutes populations for the almond supplemented group showing increased
abundance of Lactobacillaceae, Clostridiaceae_1 and Peptostreptococcaceae. Firmicutes are
known to play a key role in nutrition and metabolism of the host through short chain
fatty acid (SCFA) synthesis (Stojanov, Berlec ¢ Strukelj, 2020) that may contribute to the
pathophysiology of obesity (Riva et al., 2017) although this is still under debate (Magne
et al., 2020). However, in this study AA almond and AA water groups were significantly
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Figure 4 Relative abundance (%) of Firmicutes in the five groups. Two control groups received water
with either casein diet (Casein water) or amino acid diet (AA water). Treatment groups received AA diet
with either bovine milk (AA milk), soy beverage (AA soy), or almond beverage (AA almond). Differences
between individual taxa among the different treatments were assessed for significance using permutation
analysis of variance. Dissimilar letters denote significant differences (P < 0.05). Midline shows median, the
upper and lower limits of the box showing the third and first quartile (i.e., 75th and 25th percentile), re-
spectively and the whiskers represent 1.5 times the interquartile range. Open circles represent outliers (i.e.,

>1.5 x IQR) n =10 per group.
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Figure 5 Relative abundance (%) of Proteobacteria in the five groups. Two control groups received wa-
ter with either casein diet (Casein water) or amino acid diet (AA water). Treatment groups received AA
diet with either bovine milk (AA milk), soy beverage (AA soy), or almond beverage (AA almond). Differ-
ences between individual taxa among the different treatments were assessed for significance using permu-
tation analysis of variance. Dissimilar letters denote significant differences (P < 0.05). Midline shows me-
dian, the upper and lower limits of the box showing the third and first quartile (i.e., 75th and 25th per-
centile), respectively and the whiskers represent 1.5 times the interquartile range. Open circles represent
outliers (i.e., >1.5 x IQR). n =10 per group.

Full-size & DOI: 10.7717/peerj.13415/fig-5

lighter than other groups reflecting the reduced calorie intake (Table 53) (Cakebread et al.,
2019).

The relative abundance of Bifidobacteriaceae and Coriobacteriaceae was over fifteen times
and eight-times higher, respectively, in the AA milk group compared to other groups. An
abundance of Bifidobacterium has been demonstrated in breast-fed human infants, which
is attributed to the presence of glycans (including carbohydrates, sugars, monosaccharides,
oligosaccharides and polysaccharides) which are readily utilised by the bacteria. The
lactose found in milk can be utilised by these bacteria (Gonzalez-Rodriguez et al., 2013) and
could be a major contributing factor in the observed increased abundance. Furthermore,
prebiotics derived from lactose (e.g., galacto-oligosacharide and fructo-oligosaccharide)
have been shown to have positive effects on calcium absorption although the mechanisms
are not well defined (reviewed by Macfarlane, Macfarlane & Cummings, 2006). Other
glycans in milk occur as free oligosaccharides (Marcobal ¢ Sonnenburg, 2012; Robinson,
2019)or as glycoconjugates (Kirmiz et al., 2018) that can also act as prebiotics to stimulate
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the growth of anaerobes of the genera Lactobacillus and Bifidobacterium (Albrecht et al.,
2014; Underwood et al., 2015). The benefits of adding bovine milk oligosaccharides to infant
formula has been demonstrated (Estorninos et al., 2021).

Oligosaccharides, specifically raffinose and stachyose, are also found in soybeans,
and can be used by Lactobacilliaceae as an energy source (Chen et al., 2021). This could
explain the increased abundance shown in the current study in the AA soy group. Another
study supports this, and showed oral doses of a soy oligosaccharide extract increased
Bifidobacterium abundance in adult men (Hayakawa et al., 2009). However, in our study
we saw no such increase in the soy treatment group (Table S5). The soy supplemented
group had higher relative abundance of the Proteobacteria (Enterobacteriaceae) which
has been observed previously (An et al., 2014), and has been associated with obesity and
dysbiosis in human populations (Mendez-Salazar et al., 2018; Shin, Whon ¢ Bae, 2015) and
we noted the soy group had the highest weights (Table S3) (Cakebread et al., 2019). The
increased abundance of Proteobacteria in the soy group in our study was driven mostly by
an increase in abundance of Enterobacteriaceae, whilst Desulfovibrionaceae were reduced in
all the supplemented groups (milk, soy, and almond) compared to the Casein water and
AA water groups.

Milk supplementation resulted in increased Actinobacteria (Bifidobacteriaceae and
Coriobacteriaceae), with lower abundance of Bacteroidetes and Firmicutes, previously
associated with a balanced gut homeostasis (reviewed in Binda et al., 2018). The almond
beverage had most effect on Bacteroidetes and Firmicutes populations, whilst soy affected
Proteobacteria families.

Many soy and milk studies have been performed (mostly using powders or concentrates),
but none have not compared liquid UHT milk, soy and almond beverages. For example,
Anetal. (2014) fed milk casein and soy protein (both at 20%) as a solid feed in a rat
model, whilst Butteiger et al. delivered milk protein isolate, soy protein isolate and soy
concentrate (22%) (Butteiger et al., 2016) in a solid diet and in a golden Syrian Hamster
model. Published studies investigating effects of almonds have inconsistent experimental
design with variations in age of cohort, dose and formulation (Holscher et al., 2018; Liu et
al., 2014). Our study used UHT liquid products as an ad libitum supplement in a growing rat
model, which is novel, and makes direct comparisons between earlier studies challenging.

We note that the bone density results from our study suggests milk and soy
supplementation are equally beneficial for (bone) health (Cakebread et al., 2019) whereas
the microbiota data suggests the three supplements develop distinct microbiota profiles.
It is challenging to relate these findings to a ‘health conclusion’ since we describe only
the bacterial community profile using amplicons of the 16S gene. A more comprehensive
analysis including metabolic profiling and functional analysis is possible, but this is
dependent on the availability of whole genome sequencing data which remains for the
moment a future prospect in this project.

CONCLUSION

The composition of the gut microbiota is determined by dietary input and by the metabolic
outputs of the resident microbiota. This is the first study looking at three commercially
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available beverages, marketed as comparable. We demonstrate clear differences in
microbiota populations for these three products and provide new insight into effects

of almond beverage which has not previously been reported. We are only beginning to
look beyond nutrition to investigate the magnitude of impact the gut microbiome has
on its host. To design efficacious plant-based foods with consistent biological effects,
and which are comparable or better than the originals, further studies are needed. These
studies should involve a ‘system approach’ to understand and model the complexity of the
biological system that is human nutrition and health.
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