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Abstract: Lidar-based localization doesn’t have high accuracy in open scenarios with few features,
and behaves poorly in robot kidnap recovery. To address this problem, an improved Particle
Filter localization is proposed who could achieve robust robot kidnap detection and pose error
compensation. UAPF adaptively updates the covariance by Jacobian from Ultra-wide Band
information instead of predetermined parameters, and determines whether robot kidnap occurs by a
novel criterion called KNP (Kidnap Probability). Besides, pose fusion of ranging-based localization
and PF-based localization is conducted to decrease the uncertainty. To achieve more accurate
ranging-based localization, linear regression of ranging data adopts values of maximum probability
rather than average distances. Experiments show UAPF can achieve robot kidnap recovery in less
than 2 s and position error is less than 0.1 m in a hall of 40 by 15 m, when the currently prevalent
lidar-based localization costs more than 90 s and converges to wrong position.

Keywords: particle filters; sensor fusion; ultra wideband technology; robot localization; robot
kidnap recovery

1. Introduction

Localization technology is subdivided into outdoor and indoor localization according to
application scenarios. Global Positioning System (GPS)-based outdoor positioning services has almost
matured and is widely used. However, GPS cannot achieve indoor positioning accurately due to severe
occlusion. Moreover, indoor localization will bring inevitable errors to the results due to complex
environmental structure, uncertain conditions, and numerous obstacles [1].

In order to cope with the state estimation of robots, localization based on probabilistic algorithms
is the only effective solution currently known [2]. As the core idea of probabilistic localization, Bayesian
filtering algorithm occupies an important role. In the early days, the best technology for implementing
Bayesian filtering was Kalman Filter (KF), which could achieve efficient state estimation for linear
Gaussian systems, but difficult to depict non-linear systems. Therefore, extended Kalman Filter (EKF)
and unscented Kalman Filter (UKF) were proposed to solve the state estimation in nonlinear systems.
In general, EKF and UKF perform well except systems highly non-Gaussian distributions. On this basis,
PF is applied as a non-parametric filter [2], whose typical implementation is AMCL [3], which performs
well in localization efficiency, stability, and accuracy, but poorly in global localization in scenarios with
few features.

Sensors 2020, 20, 6814; doi:10.3390/s20236814 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-2256-9623
https://orcid.org/0000-0001-6632-0144
https://orcid.org/0000-0003-1928-363X
https://orcid.org/0000-0001-8206-3176
https://orcid.org/0000-0001-5269-4161
http://dx.doi.org/10.3390/s20236814
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/23/6814?type=check_update&version=2


Sensors 2020, 20, 6814 2 of 17

Indoor localization technology can be subdivided into single sensor localization and multi-sensor
localization whose sensors include ultrasonic [4], infrared [5,6], vision [7], lidar, radio frequency
identification (RFID) [8,9], Bluetooth [10], Wi-Fi [11] and so on. In addition, UWB [12,13] has also
become a research hot-spot in recent years. Due to the limitations of a single sensor, multi-sensor
combined localization is generally used in actual applications.

The odometry is a very widely used sensor in wheeled robot localization [11,14]. It has the
characteristics of easy data processing, controllable accuracy, and high universality. However,
because of accumulated errors, localization accuracy exists during long-term operation will gradually
decrease. Thanks to the high ranging accuracy, little influence of light, and easy installation, lidar is
popular in various autonomous robots [15–17]. However, the effective measure distance is limited,
and the matching-based method has the disadvantages of high cost and low efficiency in achieving
global localization. UWB related technology has made remarkable progress since it was approved for
civilian application, which has the advantages of wide-ranging and no accumulated error, but with a
certain drift in the localization process. At present, the accuracy of Sapphire system of Multi-spectral
Solutions is under 10 cm. Salman et al. implemented UWB localization on a mobile robot, CoLORbot,
for localization in indoor unknown scenarios [13].

Therefore, there are certain disadvantages when a single sensor acquires information making it
difficult to achieve accurate localization, due to which different kinds of sensors are usually combined
for localization [18]. White introduced the general model of data fusion in 1998 [19], and Hall et al.
introduced the algorithms and strategies of data fusion in detail [20]. At present, the methods
employed to multi-sensor fusion localization generally include Bayesian based methods [3,11] and
neural network methods [21,22]. There are numerous data fusion methods based on the multi-Bayesian
estimation. The Kalman Filter (KF), a kind of Gaussian filter, is a recursive filter for linear systems.
For non-linear systems, there are two types, Extended Kalman Filter (EKF) and Unscented Kalman
Filter (UKF). In general, KF can complete data fusion well, but when it’s hard to find out system models,
there are cases of low real-time performance and reliability. Numerous non-parametric filters are based
on the Monte Carlo Localization proposed by Fox et al, which is a non-parametric filter method based
on Bayesian estimation [23]. Valerio Magnago et al. combined odometry and UWB information with
UKF [14]. Peng Gang et al. added an additional Gaussian-Newton-based scan-match step on the basic
of AMCL, improving the localization accuracy in complex and unstructured environments [24]. In [25],
sensors node’s movement dynamics and the measurements of it’s velocity and the received signal
strength (RSS) of the radio signal from above-ground relay nodes are used to achieve localization,
using corresponding algorithms based on KF for different scenarios. The idea that one supervisor work
as planer and the other supervisor improves the result supports the idea of this article [26]. With the
development of machine learning, neural networks have attracted more attention as a new data fusion
method. J.Wang et al. used BP neural network to estimate the GPS sampling time and performed
subsequent data fusion [27].

In this paper, we focus on achieving robust robot kidnap detection and recovery based on PF
localization, where accurate global proposal distribution, provided by ranging-based localization
in UAPF, is necessary. In this case, adaptive estimation of the probability of robot kidnap is feasible
with the criterion KNP, proposed to measure the probability of robot kidnap. To solve the problem
of false identification of robot kidnap, robot kidnap recovery is triggered only if the uncertainty of
the particle swarm is high enough, due to which the reliability of robot kidnap detection increases.
Besides, for more accurate ranging-based localization, the double-sided two-way (DSTW) is used in
ranging-based localization, in which Jacobin matrix is used to get the position error [2]. UAPF could
make up for the deficiencies of global localization and robot kidnap recovery of PF and achieve accurate
localization in open scenarios with few features. The contributions of this work are as follows:

1. An improved PF-based localization algorithm is proposed, which could achieve robust kidnap
detection and pose error compensation.
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2. A novel criterion named KNP is proposed to indicate the probability of robot kidnap, based on
the inconsistency of two pose distribution.

3. An adaptive covariance matrix ameliorates the reliability of UAPF, which is provided by the
improved proposal distribution with UWB information.

The rest of this paper is outlined as follows. In Section 2, we introduce the theoretical basis
and the detailed system overview. In Section 3, pre-experiments are conducted to decrease ranging
error and improve localization accuracy of UWB, after which experiments are presented to illustrate
improvements of this method proposed in this paper. Finally, we highlight some conclusions.

2. Materials and Methods

UAPF is an improved PF-based localization method with adaptive robot kidnap detection and
efficient kidnap recovery. This method mainly consists of PF-based localization [23], ranging-based
localization and adaptive robot kidnap detection. In PF-based localization, 2D laser-scan is utilized to
weight particles sampled around odometry pose. Adaptive robot kidnap detection focus on measuring
how similar two poses are, and output an error transform matrix and KNP, which is the criterion to
judge whether robot kidnap occurs. Besides, a supplementary adaptive update for particles uncertainty
is conducted in this part, decreasing the error caused by fixed lidar measurement. The framework of
UAPF is shown in Figure 1 and Algorithm 1.

Figure 1. Framewrok of UAPF proposed in this paper.

Algorithm 1 UAPF(xt−1, ri,t, ut, zt).

1: xr,t = Ranging_Based_Localization(ri,t)
2: xp,t = PF_based_Localization(xt−1, ut, zt, Σp)
3: Get KNP according to distributions of xr,t and xp,t
4: if KNP > threshold then
5: xt = Pose_Fusion(xp,t, xr,t, Σr)
6: else
7: if Σp � Σr then
8: Re-localization: xt ∼ N (µr, Σp + Σr)
9: else

10: xt = Pose_Fusion(xp,t, xr,t, Σr)
11: end if
12: end if
13: Update Σp according to KNP and pose difference
14: return xt
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Where xt−1 is the fused pose in time t− 1, ri,t is the distance between the robot and the Anchori,
ut is the movement of the robot, and zt is the observing information from ranging-based localization.
xp,t and xr,t are from PF-based localization and ranging-based localization separately. Similarly, Σp and
Σr are the covariance describing the degree of pose dispersion. The threshold is a constant to determine
whether trigger the re-localization process. According to our empirical data, 0.67 is a good choice to
achieve good results. N (µr, Σp + Σr) is the two-dimensional Gaussian distribution with mean µr and
covariance Σp + Σr). xt is the fused pose used to describe the accuracy of UAPF.

2.1. PF-Based Localization

Original PF-based localization is improved in this paper, whose main idea is to choose particles
with high weight sampled around the pose calculated according to odometry information, as shown
in Algorithm 2, which is obtained by substituting last fused pose, the increment of robot movement,
environment observations and corrected particles covariance into PF.

At every moment, we get current pose with differential odometry model (line 2), after which
particles are sampled following N (µp, Σp) (line 5). In this step, the use of Σp, corrected in (21) gives
a more reasonable proposal distribution, which could adaptively adjust the size of particle swarms
according to last pose error, and improve the rationality and reliability of PF-based localization.
For every particle, the measurement model is applied in line 6 to weigh the importance according to
the matching degree to the current local environment. Candidate particle swarm X t covers particles’
poses and corresponding weights. In the update stage, re-sample is conducted, where particles with
high weights are much more possible to be sampled than ones with low weights. Finally, xp,t is got
and input into pose fusion method (line 10 in Algorithm 1).

Algorithm 2 Improved PF-based Localization (xt−1,ut,zt,Σp).

1: Xt , X t = φ

2: xodom = Motion_model(ut, xt−1)
3: Set m as the number of particles should be sampled
4: for i = 0 to m do
5: xi

t = Sample_model(xodom, Σp)
6: wi

t = Scanmach_model(zt, xi
t, map)

7: Xt += < xi
t, wi

t >
8: end for
9: for i = 0 to m do

10: Draw xi
t from χt with probability ∝ wi

t
11: Xt += xi

t
12: end for
13: xp,t = Mean (Xt)
14: return xp,t

Where Xt is the set to store the pose and covariance of particles of whom X t is the candidate
particle swarm. The two are set to the empty set, φ. Pose of every particles, xi

t, is sampled around xodom,
calculated according to robot movement and last robot pose, and wi

t is the corresponding weight.

2.2. Ranging-Based Localization

DSTW ranging method is used in the ranging-based localization method. The schematic diagram
is shown in Figure 2. Two axes respectively indicate the time axis of device A and device B.
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Figure 2. The data packet is sent 3 times in DSTW.

The predicted value of flight time T̂prop can be expressed as

T̂prop =
Tround1 × Tround2 − Treply1 × Treply2

Tround1 + Tround2 + Treply1 + Treply2
(1)

and

Tround1 = TA
2 − TA

1 (2)

Tround2 = TB
3 − TB

2 (3)

Treply1 = TB
2 − TB

1 (4)

Treply2 = TA
3 − TA

2 (5)

where Tround refers to the time from sending a packet to receiving it, and Treply refers to the time of
data processing for a single device. In this way, the error of flight time can be expressed as

Terror = T̂prop ×
(

1− eA + eB
2

)
(6)

where eA and eB refer to the ratio of actual frequency to the rated value of devices A and B. DSTW can
solve the problem of time synchronization in some degree, improving the ranging accuracy, which is
returned in millimeters.

Having got ranges between some anchor and the tag, triangulation is used to calculate the robot
position, (x, y, z), shown in Figure 3 and Equation (7).

(x0 − x)2 + (y0 − y)2 + (z0 − z)2 = ρ2
0

(x1 − x)2 + (y1 − y)2 + (z1 − z)2 = ρ2
1

(x2 − x)2 + (y2 − y)2 + (z2 − z)2 = ρ2
2

(7)

Figure 3. The model to find robot position. Given the positions of anchors and the distances between
the some anchor to the robot, the position of robot could be calculated.
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To cut down the cost of computation, Anchor0 is set as the original point, with Anchor1 set on the
x-axis and Anchor2 set on the y-axis, and all three anchors are at the same height zh. In Equation (8),
ρi expresses measured distance between the tag and Anchori, and (xi, yi, zi) refer to the position of
Anchori.  x =

ρ2
0−ρ2

1+x2
1

2x1

y =
ρ2

0−ρ2
2−x2+(x2−x)2+y2

2
2y2

(8)

Equation (8) finally shows the position of the robot in UWB coordinate system. However,
the positioning accuracy cannot be estimated directly, so the detection-correction link is added,
for which the error of position (dx, dy, dz) is converted from the distance error using Jacobian.

As a real-time ranging-based positioning technology, positioning with UWB has no
cumulative error, but the covariance varies greatly among different hardware. Therefore, the distance
errors between the robot and anchors are used to derive the coordinate error to achieve accurate
position estimation.

The distance between the robot and a certain anchor ρ̂i can be expressed as

ρ̂i =

√
(xi − x)2 + (yi − y)2 + (zi − z)2 (9)

Assuming that the robot coordinates (x, y, z) are known, the ranging error of UWB is easily
obtained as

∆ρi = ρi −
√
(xi − x)2 + (yi − y)2 + (zi − z)2 (10)

To obtain the coordinate error
(

dx dy dz
)T

, Equation (10) is derived.

dρi =
(xi − x) dx + (yi − y) dy + (zi − z) dz√

(xi − x)2 + (yi − y)2 + (zi − z)2
(11)

By introduceing Equation (9) into Equation (11). We obtain Equation (12).

dρi =
(xi − x) dx + (yi − y) dy + (zi − z) dz

ρi
(12)

Therefore, by converting Equation (12) into a matrix representation, a differential matrix from the
coordinate error to the distance error can be obtained. Equation (14) are used to get Σr, which is used
in Algorithms 1 and 3. dρ0

dρ1

dρ2

 =


x0−x

ρ0

y0−y
ρ0

z0−z
ρ0

x1−x
ρ1

y1−y
ρ1

z1−z
ρ1

x2−x
ρ2

y2−y
ρ2

z2−z
ρ2


 dx

dy
dz

 = Ttran

 dx
dy
dz

 (13)

 dx
dy
dz

 = T−1
tran

 dρ0

dρ1

dρ2

 (14)

2.3. Robot Kidnap Detection and Recovery

To address the problem of global localization and robot kidnap detection in traditional PF-based
localization methods [23], we propose a novel criterion, KNP, which is measured according to the
distribution of particles, Xt, and the pose of ranging-based localization, xt, where t represents values
at the time t.



Sensors 2020, 20, 6814 7 of 17

In update phase (the green rectangle in Figure 1), a match-based measurement method
is conducted. We assume both PF-based poses, xp, and ranging-based poses, xr, follow 2D
Gaussian distribution.

xp ∼ N (µp, Σp) (15)

xr ∼ N (µr, Σr) (16)

where µp means the center pose of PF-based localization and µr means the center pose of ranging-based
localization. And the variance Σp and Σr presents how large sizes of particle swarms are. Moreover,
Σr is assumed to be only related to the distance between anchors and the robot because the ranging
results are corrected in the range of 3 m to 20 m, and the system is used in unobstructed scenarios
for UWB, without Non-Line-of-Sight, NLOS.

Σ
′
r =

Σr

αn (17)

where α refers to attenuation coefficients, and n is the number that ranging distance over 20 m.
Moreover, to measure the possibility of robot kidnapping, a novel criterion called KNP

is introduced into UAPF, expressing the difference between two kinds of localization methods.
In Equation (18), expectations and covariance matrices are substituted to get the Wasserstein distance
between two localization methods.

S = W2(xp, xr) =
∥∥µp − µr

∥∥2
+ tr

[
Σp + Σ

′
r − 2

(
Σ1/2

p Σ
′
rΣ1/2

p

)1/2
]

(18)

Then, in Equation (19), KNP is to measure the possibility of robot kidnapping, as shown in line
5 of Algorithm 1 and Equation (21). Generally, the smaller KNP is, the more possible robot kidnap
occurs, and it could maintain a relative score of 0.8 with normal operating conditions.

KNP = λ(p1S4 + p2S3 + p3S2 + p4S1 + p5) (19)

2.4. Particles Update for Pose Tracking

In traditional PF-based localization [3], pose error is measured by the variance of particles swarm,
but sensor noise of odometry and lidar is regarded as fixed parameters, which ruins the accuracy of
localization to some degree.

In general, when the robot moves from xt−1 to xt, with the odometry movement u and the map m,
we can obtain the probability distribution of the robot pose. The combined localization of lidar and
odometry is robust in most cases. However, lidar can only reduce the accumulated error of the
odometry, rather than eliminates it. Therefore, UWB is introduced to eliminate the accumulative error
of the system. Therefore, the probability distribution of xt can be expressed as (20).

p (xt|xt−1, u, m, z) = ηp (z|xt, m) p (xt|xt−1, u) = η ∏
j

p
(
zj|xt, m

)
p (xt|xt−1, u)

= η (zuwb|xt) p (zlidar|xt, m) p (xt|xt−1, u) (20)

where η is the normalization constant, p(xt|xt−1, u) expresses the odometry pose calculated by
robot motion, p (zlidar|xt, m) expresses lidar likelihood domain model and p(zuwb|xt) is measured
by ranging-based localization sub-process.
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KNP could adaptively measure localization accuracy to some degree, but not enough for real-time
pose tracking. Therefore, the euclidean distance between the results of two localization methods is
taken into account to update Σp.

Σp ← Σp +


∆x2

KNP
∆y2

KNP
0(4,4)

 (21)

where Σp represents the covariance of PF-based localization. ∆x2 and ∆y2 are pose differences between
the two localization methods. In (21), only position error is to update because of the low reliability of
the yaw in ranging-based localization.

2.5. Pose Fusion

As mentioned above, the UWB position has large uncertainty, which is manifested as positioning
results jumping around the real value. Therefore, the fusion of PF-based poses and UWB poses is
conducted, to improve the accuracy, as shown in Algorithm 3.

Firstly, fusion starts with UWB pose as initial pose, for solving global localization. In every time t,
PF-based localization is regarded as predictive pose, x̂t. In update stage, the result of ranging-based
localization, xr,t and Σr is used. Due to the high frequency (20Hz) of ranging-based localization, we use
sliding window for the average pose value, especially for θr.

Algorithm 3 Pose Fusion (xp,t,xr,t,Σr).

1: if t-1 = 0 then
2: Initialize x̂t with xr,t
3: else
4: Predict: x̂t = xp,t + δp
5: Update: xt = Fusion_Method (x̂t, xr,t, Σr)
6: end if
7: return xt

Where δp is the noise compensation which obeys Gaussian distribution. θr is the yaw of the
ranging-based localization pose.

3. Experiments and Results

3.1. Experimental Scenario and Platform

Figure 4a shows the experimental scenario of this paper. The robot platform used in the experiment
is shown in Figure 4b.

Figure 4. (a) The top half of the scenario is a hall of 40 by 15 m. The three triangles are poses of anchors.
(b)The robot platform is equipped with odometry, lidar, and UWB.
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3.2. Ranging Experiments

Experiments on the ranging results of UWB are done, whose purpose is to decrease the ranging
error caused by the hardware.

Let the true value of the distance between the tag and the anchor be xtrue and the measured value
be xm. 1500 ranging experiments were performed at 10 different xtrue in total. Table 1 shows the results
of ranging experiments, got by (1), and Figure 5 shows the probability distribution of various distances,
which are approximately Gaussian distributions.

Table 1. Results of the ranging experiment.

xtrue (m) Average of xm (m) Error (m) Standard Deviation (m) The Most Probable Value (m)

0.70 0.8007 0.1007 0.0078 0.80045
1.00 1.1204 0.1204 0.0085 1.1205
1.50 1.6548 0.1548 0.0112 1.6544
2.00 2.0394 0.0394 0.0109 2.0403
3.00 3.0471 0.0471 0.0055 3.0468
5.00 5.0254 0.0254 0.0117 5.0266
7.00 6.9843 0.0157 0.0082 6.9856
10.00 9.9938 0.0062 0.0087 9.9961
15.00 15.2645 0.2645 0.0562 15.2606
20.00 20.0607 0.0607 0.0147 20.0580
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Figure 5. The probability of ranging measurements is shown, when distances are (a) 0.7 m, (b) 1 m,
(c) 1.5 m, (d) 2 m, (e) 3 m, (f) 5 m, (g) 7 m, (h) 10 m, (i) 15 m, (j) 20 m. At every experiment, the probability
distribution is approximately Gaussian distribution, but there is a deviation between the maximum
probability value and the true value, shown in Table 1.

Due to the geometric relationship and the influence of terrain, the distance between the robot
and a certain anchor is mostly in the range of 3 m–20 m. Therefore, we can find the relationship
between xtrue and xm, shown in (22). Table 2 shows the results and Figure 6 shows fitting results
from the distance between 3 m to 20 m. Figure 7 shows the probability distribution of this group of
ranging values

xtrue = 1.0172 xm − 0.0745 (22)

where xm is the measured value between the tag and Anchori and xtrue is the corresponding
true distances.

2 4 6 8 10 12 14 16 18 20

Ture distance / (m)
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16
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20

R
an

g
in

g
 d
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a 

/ 
(m

)

Real distribution

Corrected Data

Figure 6. Fitting results from the distance between 3 m to 20 m. Corrected measurements show better
linearity and are closer to the true value.

Table 2. Results of experiments after correction

xtrue (m) Average of xm (m) Error (m) Standard Deviation (m) The Most Probable Value (m)

3.00 3.0023 0.0023 0.0082 3.0025
5.00 4.9993 0.0007 0.0121 4.9989
7.00 6.9979 0.0021 0.0074 6.9978
10.00 10.0313 0.0313 0.0108 10.0291
15.00 15.0668 0.0668 0.0158 15.061
20.00 20.0051 0.0051 0.0071 20.0039
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Figure 7. The probability of corrected ranging measurements is shown when distances are (a) 3 m,
(b) 5 m, (c) 7 m, (d) 10 m, (e) 15 m, (f) 20 m. At every experiment, the probability distribution
is approximately Gaussian distribution, and there is a smaller deviation between the maximum
probability value and the true value, shown in Table 2.

Figure 8 shows the comparison results of two experiments. In the vicinity of general working
range (3 m–20 m) of the robot, corrected ranging results is more accurate, especially when xtrue is 15 m
(from 0.25 m to about 0.05 m).
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Figure 8. Comparison shows linear regression improves the accuracy of ranging, with error limited
in 0.05 m.

3.3. Global Localization

Global positioning accuracy is measured to figure out whether the correction of ranging useful,
in which Probability Density Estimation (PDE) is conducted. Figure 9 shows the probability distribution
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of ranging-based poses. Most of the measurement points are near the true coordinates. Figure 10
shows that the deviation of ranging-based localization is within 0.2 m in both X and Y directions.

(a) (b)

(c) (d)

Figure 9. The probability distributions of poses is shown when UAPF conducts global localization
in four positions, (a) (xtrue, ytrue) = (−0.6,0), (xtrue, ytrue) = (b) (−22,3), (xtrue, ytrue) = (c) (−21.7,5),
(d) (xtrue, ytrue) = (−18,3.7), which obey Gaussian distributions and is consistent with some
theoretical hypotheses.

Figure 10. The stability in both X and Y directions. Average errors are both within 0.05 m and the
standard deviation (SD) is less than 0.01 m.

For PF-based global localization, better performance generally comes with more particles and
bigger covariance. However, in large scenarios, this relation becomes more blurred because of few
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features for scan matching. Besides, more particles mean more consumption cost. Table 3 shows the
time required for UAPF to achieve global localization when the number of particles is less than 1000.
In the course of 10 experiments, the average time is 2.1 s, compared to more than 90 s with AMCL
shown in Table 4, where false convergence occurs with the number of particles almost 10,000 (shown in
Figure 11f).

Table 3. Time to achieve global localization of UAPF.

Experiment number 1 2 3 4 5 6 7 8 9 10

Convergence time (s) 2 2 1 2 1 6 2 2 2 1

Table 4. Time to achieve global localization of AMCL.

Experiment number 1 2 3 4 5 6 7 8 9 10

Convergence time (s) 117 83 74 72 83 66 102 97 132 85

(a) (b) (c)

(d) (e) (f)

Figure 11. Comparison of global localization between AMCL and UAPF. (a) The initial pose of UAPF.
(b) Global localization with UAPF. (c) Result of global localization using UAPF. (d) The initial pose of
AMCL. (e) Global localization with AMCL. (f) Result of global localization using AMCL.

3.4. Robot Kidnap Recovery

Intuitively, it’s easy to achieve recovery from robot kidnapping if the particles swarm has more
particles and bigger covariance, which could cost more. Therefore, in this subsection, the number of
particles is from 500 to 1000 for UAPF, and from 5000 to 10,000 for AMCL. To simulate a robot kidnap,
we move the robot without data of odometry. Figure 12b,c express the situation where no kidnap
recovery is performed because KNP is higher than the threshold. Figure 12c shows that when the
robot moves, PF-based localization can’t achieve robot kidnap detection in real time, making KNP and
the uncertainty of PF-based localization increase. Then, in Figure 12d, UAPF achieves a robot kidnap
recovery. The odometry is enabled in Figure 12e, when the PF-based localization works normally but
there is still some inconsistency between two pose distribution. Figure 12f shows the results of the
kidnap recovery. When the odometry, lidar, and UWB work simultaneously, an accurate localization
can be achieved.
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(a) (b) (c)

(d) (e) (f)

Figure 12. How UAPF achieves robot kidnap recovery. (a) Initial pose. (b) Rotating without odometry
information. (c) Moving without odometry information. (d) First pose recovery. (e) The odometry is
activated. (f) Second pose recovery is triggered, particles swarm is converged to true pose.

3.5. Pose Tracking

Figure 13 shows the trajectories of single ranging-based localization, Adaptive Mento Carlo
Localization and UAPF. The trajectory of individual ranging-based localization is more unstable while
the trajectory of UAPF is closer to AMCL (as compared). The two red rectangles show that when a
huge bias (about 0.2 m) of ranging-based localization exists, UAPF has the analogous performance
to AMCL.

Figure 13. Trajectories of ranging-based localization, UAPF and AMCL. In general, the three have
similar performance in accuracy. The two red rectangles show that UAPF could correct the instability
of ranging-based localization.

4. Discussion

In this paper, we presented an indoor localization method for open scenarios with few features.
Ranging-based localization provided the initial pose for first global localization, and then pose fusion
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was conducted as the basis of normal pose tracking. Moreover, we used PF-based localization to
overcome noise from sensors. A novel criterion called KNP was introduced into UAPF to evaluate
the possibility of robot kidnapping and the stability of localization together with the covariance of
particles swarm. Experiments in a real-world situation indicated UAPF could achieve robot kidnap
recovery in less than 2 s and position error is less than 0.1 m in a hall of 600 m2.

In section 3, we compared our method with AMCL, because it’s state of the art PF-based indoor
localization method using lidar and odometry. Tables 1 and 2 indicated that the regression function (22)
was suitable for experimental scenario and Figure 8 showed intuitively how linear regression improves
the accuracy of ranging.

Tables 3 and 4 expressed time to achieve global localization with UAPF and AMCL separately.
Table 5 compared the accuracy and time used to conduct the recovery from robot kidnapping.
As mentioned above, the number of particles used in UAPF was from 500 to 1000 and in AMCL
was from 5000 to 10,000. In this situation, UAPF could still conduct global localization in less than 3 s
on average, much less than AMCL, illustrating the efficiency of UAPF. Figure 11c,f showed results
of global localization. Figure 12a–f expressed the process of robot kidnap recovery. Trajectories of
different localization methods were shown in Figure 13, illustrating UAPF could achieve analogous
performance to AMCL, much stable than single ranging-based localization method, which restricted
further improvement of accuracy.

Table 5. Performance of robot kidnap recovery with UAPF and AMCL

Localization Methods Time (s) Max Error (m) Number of Particles Processor

AMCL 90 2.00 5000–10,000 i3 CPU
UAPF 3 0.15 500–1000 i3 CPU

In the future, the instability of ranging-based localization will be improved, and more sensors
such as RGBD will be added to UAPF and make it a universal localization method. Vision-based
localization will play an essential role when the robot is in an NLOS environment, lack of ranging
information transferred by UWB.

5. Conclusions

In this paper, a UWB aided Particle Filter Localization method is designed to solve the problem
of robot kidnap recovery and global localization in open scenarios with few features. Integrating
odometry, lidar and UWB, UAPF achieves adaptive pose error compensation, as well as robust
robot kidnap detection and recovery. Besides, for reliable pose tracking, pose fusion is utilized to
combine PF-based localization and ranging-based localization, returning a relatively accurate pose.
The probability of robot kidnap is estimated according to KNP and the uncertainty of particle swarms,
and pose recovery is triggered based on the latest ranging-based pose, eliminating accumulated errors
of UAPF. To improve localization accuracy, a revised ranging model based on statistical analysis is
summarized from extensive experiments. The results show UAPF can achieve robot kidnap recovery
in less than 2 s and position error is less than 0.1 m in a hall of 600 m2, much more efficient than the
currently prevalent lidar-based localization.
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