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Abstract

The type VI secretion system (T6SS) is a bacterial macromolecular machine widely distrib-
uted in Gram-negative bacteria, which transports effector proteins into eukaryotic host cells
or other bacteria. Membrane complexes and a central tubular structure, which resembles
the tail of contractile bacteriophages, compose the T6SS. One of the proteins forming this
tube is the hemolysin co-regulated protein (Hcp), which acts as virulence factor, as trans-
porter of effectors and as a chaperone. In this study, we present the structure of Hcp from
Acinetobacter baumannii, together with functional and oligomerization studies. The struc-
ture of this protein exhibits a tight 8 barrel formed by two 8 sheets and flanked at one side by
a short a-helix. Six Hcp molecules associate to form a donut-shaped hexamer, as observed
in both the crystal structure and solution. These results emphasize the importance of this
oligomerization state in this family of proteins, despite the low similarity of sequence among
them. The structure presented in this study is the first one for a protein forming part of a func-
tional T6SS from A. baumannii. These results will help us to understand the mechanism and
function of this secretion system in this opportunistic nosocomial pathogen.

Introduction

Pathogenic bacteria use macromolecular protein complexes (1 to 20 molecules), known as se-
cretion systems, in order to transport toxic proteins into the environment or directly into
neighboring target cells. In the last decade, several types of secretion systems have been de-
scribed in Gram-negative bacteria [1, 2]. The most recently discovered is the Type VI Secretion
System (T6SS), initially described in Vibrio cholerae in 2006 [3]. This protein translocation
pathway was originally shown to involve a cluster of around 15 genes. Subsequently, a T6SS
was characterized in Pseudomonas aeruginosa, together with the first structure of a protein
from this complex [4]. In P. aeruginosa the T6SS delivers toxins to other bacteria, showing that
this secretion system is not only used to attack host cells but also, to compete with other
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bacteria in the same niche. Accordingly, it has been proposed that the T6SS may serve to con-
trol the composition of bacterial populations, an important issue in polymicrobial infections
(5, 6].

T6SS gene clusters are normally found in pathogenicity islands and they were not acquired
by lateral genes transfer [7]. Thirteen proteins form the core of a functional T6SS mimicking a
bacteriophage spike anchored to to the bacterial membrane via a transmembrane complex [2,
6, 8]. According to the nomenclature adopted by Shalom et al. [9] the core components are
called Tss (Type six secretion), while accessory subunits are called Tag. Vernacular nomencla-
ture is kept for some subunits such as Hep, VgrG, ClpV, VipA and VipB. Hcp (haemolysin
conjugated protein) and VgrG (valine-glycine repeat protein G), products of the genes tssD
and tssI, are the homologues of the bacteriophage tail gp19 and the tail spike complex (gp27);-
(gp5)3, respectively [1, 2]. Based in this analogy, these proteins are thought to be molecular
markers of a functional T6SS and they may form the needle of this secretion system [8]. While
the full-length structure of VgrG has not been solved yet, the crystal structure of five Hep pro-
teins have been reported: Hepl [4] and Hep3 [10] from P. aeruginosa, EvpC from Edwardsiella
tarda [11], an unpublished hypothetical Hep protein from the T6SS of Yersinia pestis and,
more recently, double mutant of Hepl from enteroaggregative Escherichia coli (EAEC) [12].
Significantly, all of them are composed by a -barrel forming hexameric rings oligomers with a
diameter that can accommodate small folded (< 20 kDa) or unfolded proteins [8]. Small effec-
tors, such as EvpP in E. tarda [13] and Tsel-3 in P. aeruginosa, directly interact with Hcp pro-
teins. In particular, these last three proteins bind to the inner surface of the Hcp hexamer, as
shown by mutational studies and negative-staining electron microscopy. In addition, the in-
creased stability of Tsel-3 effectors in presence of Hcp suggests a role of chaperone for this pro-
tein [14].

The Gram-negative bacillus Acinetobacter baumannii is an opportunistic pathogen that has
raised the attention of authorities due to its ability to develop multi-drug resistance and to ac-
quire genetic material from unrelated genera [15, 16]. In addition, A. baumannii can form bio-
films and survive for weeks in dry environments, contributing to endemic infections in
healthcare installations [17]. The number of infections caused by this coccobacillus has in-
creased dramatically in recent years, mainly in inmunocompromised or ventilator-dependent
patients who suffer prolonged hospitalization. Its most frequent clinical manifestations include
soft tissue, urinary tract and blood stream infection, meningitis and pneumonia [18, 19]. Most
scientific research about A. baumannii has focused on its epidemiology and on antibiotic resis-
tance. As result, it is only recently that the mechanisms of virulence employed by this bacillus
have begun to be identified. Among these, a conserved protein glycosylation system plays an
important role in pathogenicity and film formation [20]. Moreover, the OmpA outer mem-
brane protein plays a key role in the interaction with epithelial cells at the early stages of infec-
tion [21], as well as participating in biofilm formation. In addition the A. baumannii Omp38
protein has been localized within the host cell mitochondria, inducing apoptosis of epithelial
cells [22].

As described in 2013, many species within the Acinetobacter genus (including non-
pathogenic ones) have a conserved and functional T6SS that contains homologues of 12 core
T6SS genes, including the hallmarks tssD (Hcp), tssH (ClpV) and tssM. By contrast, the puta-
tive VgrG proteins are encoded by a varying numbers of genes located outside the T6SS loci
[23]. The activity and function of the T6SS in A. baumannii have been recently studied in di-
verse strains. The Hcp protein was found in the culture supernatant of wild type ATCC 19606,
confirming the functionality of the T6SS [24].

The A. baumannii strain M2 produces a functional T6SS and it uses it to diminish E. coli
colony formation in a cell-cell contact and tssB-tssD-dependent manners. This behavior is
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similar to that reported for Serratia marcescens, V. Cholerae and P. aeruginosa, confirming the
key function of the A. baumannii T6SS when competing with other bacteria [25].

In contrast, the T6SS of A. baumannii ATCC 17978 does not seem to be implicated in inter-
bacterial killing. Nevertheless, a mutant of this strain harboring an inactive T6SS retained its
virulence and capacity to form biofilms similar to that of the wild-type bacteria. These results
suggest that the T6SS could fulfill another unidentified role in this coccobacillus [23].

In this study we show that the T6SS is active in six pathogenic strains of A. baumannii. We
also present the structure of Hep from A. baumannii AB0057 at 1.55 A resolution, characteriz-
ing its self-interactions and oligorimezation. This structure resembles those defined previously
for other members of the Hep family, oligomerizing in donut-shaped hexamers with an inner
diameter of 40 A. However, the crystal packing of Hcp from A. baumannii is unique among
these, forming a tube but interacting in both head-to-head and head-to-tail geometry. The
structural information obtained could help us to understand the mechanism and function of
this secretion system in this opportunistic nosocomial pathogen.

Materials and Methods

Functional assay of the T6SS

Single bacterial colony was added to 2 ml Muller-Hinton broth (MHB) and the cultures have
grown for 15-18 h in 37°C rocking water bath (160 rpm). A total 500 pl of the overnight cul-
ture was added to 5 ml of pre-warmed MHB and incubated for 2 h on a shaker bath until tur-
bidity reached a 1 McFarland standard (approximately 2.5x10° CFU ml™"). An aliquot of this
logarithmic-phase growth culture was used to colony counts. Aliquots (0.1 ml) from each sam-
ple were removed before centrifugation, serially diluted, spread on MH plates and incubated at
37°C. Bacterial colonies were counted after 18-24 h. Inoculum was between 2-5 x10® CFU ml™
in all samples. Cells were harvested by centrifugation, from 10 ml bacteria culture, to isolate the
extracellular proteins, and then resuspended in 200 pl of SDS protein sample buffer and heated.
TCA (250 pl) was added to 750 pl of the supernatant and the proteins were precipitated for 10
min on ice, after which they were recovered by centrifugation at 14000 g for 10 min. The pre-
cipitated proteins were washed twice with cold acetone, and then resuspended in 20 ul SDS
protein sample buffer and boiled. Alternatively, the cleared supernatants were concentrated up
to 200 ul by filtration using Amicon Ultra 10,000 MCWO centrifugal filter units (Millipore),
5 ul from this concentrated sample were mixed with 15 pl SDS loading buffer. All the protein
samples were loaded into 15% polyacrylamide gels and transferred to PVDF membranes. The
membranes were probed with polyclonal rabbit anti-Hcp (diluted 1:20,000) and anti-RNAP
antibodies (diluted 1:20,000, E. coli RNA polymerase). Membranes were then incubated with
an anti-rabbit horseradish peroxidase-conjugated secondary antibody (diluted 1:20,000;
Sigma). Membranes were developed using ECL reagent (GE Healthcare) and visualized using a
Fuji LAS 3000 imager.

DNA was isolated from all the samples in order to characterize their Hep proteins
by sequencing.

Cloning, expression and purification

Genomic DNA isolated from the A. baumannii strain AB0057 was used to clone the full-length
Hcp. Cloning was directed by the sense primer 5 ' ~-ACAGCTAGCATGAAAGATATATACGTT
GAG containing an internal Nhel restriction site (bold) and the anti-sense primers 5 ' -
ACACTCGAGTTACGCTGCGTAAGAAGCTGT or 5'-ACACTCGAGCGCTGCGTAAGAAGCTG
TATT including an internal Xhol restriction site (bold), with or without the stop codon (under-
lined). The amplified PCR product was digested with Nhel and XhoI (NEB), and ligated into
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the linearized pET21-a plasmid (Novagen) or a modified pET28-a (Novagen) plasmid that in-
cludes a human rhinovirus 3C protease cleavage site (3C-pET28). The recombinant plasmids
were transformed into competent E. coli DH5a cells (Novagen) for DNA production and puri-
fication, and the integrity of both constructs was verified by sequencing. Finally, they were
transformed into Rosetta pLys-S cells (Novagen) to express the protein. After induction with 1
mM IPTG, 11 culture was grown at 30°C for 4 h. The bacterial cells recovered by centrifugation
were disrupted by sonication and ultracentrifuged. The soluble fraction was loaded into a His-
trap column (GE Healthcare) equilibrated with 350 mM NaCl, 20 mM Tris-HCI [pH 7.5], 1
mM BME and 20 mM Imidazol. The protein was subsequently eluted from the column with
buffer containing Imidazol at a concentration of 250 mM. In the case of the Hcp-3C-pET28
construct, the eluted protein was incubated with 3C protease overnight at 4°C and loaded onto
a His-trap column in order to remove the protease, the His-tag and the uncut sample. For both
constructs the Hep solution was finally concentrated and injected onto a Sephacryl 200 16/60
gel filtration column (GE Healthcare) equilibrated with a buffer containing 200 mM NaCl, 20
mM Tris-HCl [pH 7.5], 2 mM DTT and 5% w/v Glycerol. Both Hcp protein-constructs eluted
in a single peak and the pooled peak fractions were concentrated to 20 mg ml™' using Amicon
Ultra 10,000 MCWO centrifugal filter units (Millipore) for crystallization trials. The purified
product was analyzed by SDS-PAGE.

Crystallization, data collection and processing

The first crystallization trials were set up at 4 and 22°C in 96-well sitting-drop plates (Swissci
MRC) using a Cartesian Honeybee System (Genomic Solutions) and the JBS 1 to 8 commercial
kits (Jena Bioscience). The nanodrops were 0.4 pl in size, containing 0.2 pl of the protein solu-
tion at 20 mg ml™ and 0.2 pl of precipitant. They were equilibrated against 50 ul of the reservoir
solution. Initial hit conditions were further optimized in sitting drops prepared by mixing 1 pl
of protein solution and 1 pl of reservoir solution. Large crystals for both constructs were ob-
tained in 2.0 M Ammonium Sulfate and 0.1 M Hepes [pH 7.5] at 4°C. These hexagonal prism
crystals were soaked for 5 min in the reservoir solution supplemented with 1.0 M Na Malonate
as cryoprotectant. For data collection, the crystals were flash-cooled by immersion in liquid Ni-
trogen. Diffraction data were collected at 100 K at beamlines PROXIMA-1 of the SOLEIL Syn-
chrotron (France) and BL13-XALOC of the ALBA Synchrotron (Spain). The crystallographic
data were processed using XDS [26] and Aimless [27]. A summary of the data collection and
processing statistics is given in Table 1.

Structure determination and refinement

The structure of Hep was solved through Molecular Replacement using a poly-Ala model of
Hcpl (PDB entry 1Y12 [4]) as the search probe. Translation-Libration-Screw (TLS) refinement
was performed with the Phenix software suite [28] and TLS groups were defined using the
TLMSD web server [29]. Manual building and water molecules placement was carried out with
Coot [30]. Details of the model refinement are given in Table 1. The stereochemical validation
of the final model and the analysis of protein-protein interactions were performed using the
Molprobity [31] and PISA [32] web servers, respectively. Amino acid conservation was ana-
lyzed using the ConSurf server (http://consurf.tau.ac.il) and the electrostatic properties were
studied using the APBS package [33]. Structural figures were drawn using Pymol [34].

Analytical Ultracentrifugation

In order to avoid undesirable effects of the His-tag in the oligomerization studies, we have used
the tag-free Hcp sample. The protein solutions at 0.016, 0.2, 1, 2.5, 8 and 20 mg ml* were
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Table 1. Data collection and refinement statistics.

Wavelength (A) 0.980110

Oscillation range (°) 0.2

No. of images 1000

Space group P 6

Unit cell (A) a=Db=287.00; c =128.81

Resolution range (A)
Total No. of reflections
Unique reflections

48.96-1.55 (1.60-1.55)

867266 (32649)
79939 (7835)

Multiplicity 10.8 (8.3)
Completeness (%) 99.80 (98.06)
Rpim 0.026 (0.171)
Mean I/sigma(l) 20.8 (1.8)
Mn(l) half-set correlation CC(1/2) 1.00 (0.70)
Wilson B-factor 20.62
Molecules per asymmetric unit 3

Solvent content (%) 52

R-factor
R-free
Number of atoms

0.1681 (0.2520)
0.1977 (0.2744)
4522

macromolecules 3989

ligands 20

water 513
Protein residues 497
R.m.s.d. (bonds) 0.006
R.m.s.d. (angles) 1.09
Ramachandran favored (%) 97
Ramachandran outliers (%) 0
Clashscore 5.21
Average B-factor 25.30
Macromolecules 23.70
Solvent 36.50
PDB code 4W64

Data collection and refinement statistics for the Hep structure. Statistics for the highest-resolution shell are

shown in parentheses

doi:10.1371/journal.pone.0129691.t001

prepared in a buffer containing 20 mM Tris-HCI, [pH 7.5], 200 mM NaCl, 0.2 mM DTT and
2% glycerol. Sedimentation velocity profiles were measured at 20°C on an Optima KL-I (Beck-
man) ultracentrifuge, with a Beckman An-50 Ti rotor and standard double-sector Epon-
charcoal center pieces (1.2 cm optical path length). Sample and reference solutions were loaded
and sedimented at 185,460 x g, registering successive entries every minute. Rayleigh interfero-
metric detection was used to monitor the evolution of the concentration gradient in function
of time and radial position, and the data were analyzed using the SedFit software (Version
12.52)[35]. Sedimentation equilibrium experiments were performed at 20°C on an Optima
XL-A (Beckman) ultracentrifuge equipped with UV-visible absorbance optics using an An-50
Ti rotor. Short-column (85 pl) sedimentation equilibrium runs were carried out at 5,150 and
8050 x g using absorbance scans at 250 and 290 nm. The weight-average buoyant molecular
mass was calculated using the Hetero-Analysis program (Version 1.1.44)[36], and the
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molecular mass was determined using a value of 0.7300 cm’ g™ for the partial specific volume
and 1.01150 g cm™ for the density.

Electron microscopy

The tag-free Hcp sample was diluted to 0.02 mg ml™ in a solution of 20 mM Tris-HCIl [pH
7.5], 200 mM NaCl and 2 mM DTT, and stained with 1% uranyl formate. Electron micro-
graphs were recorded on a JEOL 1230 electron microscope operated at 100 kV. Images were
collected using a 4k x 4k CMOS detector under the control of the EM-Tools software (TVIPs).
The final magnification of each micrograph was 68222.5x. 4800 Individual particles were man-
ually selected using the package Boxer implemented in EMAN 1.9. 2D reference-free classifica-
tion was achieved using the EMAN 1.9 and Xmipp [37, 38].

Results
Acinetobacter baumannii strain AB0O057 has a functional T6SS

Analysis of the genome of the A. baumannii strain AB0057, isolated from a bloodstream infec-
tion, allows identifying the presence of genes encoding a T6SS. To determine whether the T6SS
is active in vitro, we assessed the presence of Hcp in culture supernatants using a polyclonal an-
tiserum generated against a recombinant, purified and crystallized tag-free Hcp protein from
A. baumannii AB0057.

In order to test the functionality of this secretion system in other pathogenic A. baumannii
strains we also studied other 5 clinical strains isolated at the Hospital Clinico San Carlos (Ma-
drid, Spain). These clinical isolates were recovered from clinical specimens of patients being
treated in different Hospital areas over an extended period of time (more than one year) to
avoid duplication. The isolates, all of which had different antimicrobial susceptibility, were spe-
cifically selected from dissimilar biological sources: sputum, urine, skin lesion, joint fluid and
diabetic foot wound. The strains were identified by matrix-assisted laser desorption ionization-
time of flight (MALDI-TOE). Species identification was confirmed by amplification of blapx,.
5; gene and partial rpoB gene sequence. The Hcp sequences from the clinical isolates are identi-
cal to the one from the AB0057 strain. The Hcp protein was detected in all the supernatants
studied, its secretion being less pronounced in the strain isolated from urine (Fig 1). Variations
in the secretion of Hcp have been observed previously among other A. baumannii strains with
some cultures showing strong secretion and others where the secretion is completely repressed
in the tested conditions [23].

Overall structure

Both constructs encoding the Hcp protein, with or without the His-tag, were crystallized in the
same space group (P6). Despite the efforts to improve them, the crystals of tag-free Hep were
of poor quality and a complete X-ray diffraction data set could not be collected for this sample.
Conversely, the C-terminal tagged Hcp crystals diffracted up to 1.55 A, the highest resolution
as yet reported for a molecule of this type. The unit cell dimensions were a =b = 87 A and
c=1288A.

The Hep structure revealed a tight B-barrel domain (12 A diameter) formed by two B-sheets
that are comprised of 4 and 5 strands each (Fig 2A). The hydrophobic core of the barrel is
formed by the residues: Val6, 29, 86 and 109; Phe8, 62, 90 and 128; Leul02, 106 and 130; Ile4,
88 and 104; Met60 and Trp32 (Fig 2B). The barrel is flanked by a 10-residue a-helix (from
Ser70 to Gly80) and a loop, formed by the residues His34 to Asp59, that protrudes more than
25 A from the core.
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AB00S57 1 2

AB00S57 1 2

— anti-Hcp

anti-RNAP

Hcp RNAP

anti-Hcp

Fig 1. Inmunoblot analysis of Hcp secretion by nosocomial A. baumannii strains. Supernatant (top panel) and whole cell (bottom panel) samples
prepared from A. baumannii ABO057 and other clinical isolates from diverse origins (1 from joint fluid, 2 from diabetic foot wound, 3 from skin lesion, 4 from
urine and 5 from sputum) were probed with anti-Hcp and anti-RNAP polymerase as lysis control.

doi:10.1371/journal.pone.0129691.g001

There are three molecules (0.1 A RMSD between their Co. atoms) in the asymmetric unit
that are packed in a down-up-up fashion, with a distance of 30 A between chains A and B
(head to head arrangement), 20 A between chains B and C (head to tail) and less than 10 A be-
tween chains C and a symmetry related chain A from the next unit cell (tail to tail). Chains A
and B from the same asymmetric unit do not interact directly but rather, chain A interacts with
a symmetry related chain B at the end of the extended loop, involving residues Thr43 to Val47.
Accordingly, Thr43 is hydrogen bonded with Val47 and Ser45 forms two similar bonds with
the same residue from the other chain. Thus, the area of the interface is only 578 A* and it is
not significant for complex formation according to the PISA web server. Similarly, the residues
from the N terminus of chain B interact with residues from the extended loop of a symmetry
related chain C. The surface area of this contact is 358 A2, which is not relevant for complex
formation. Chain C interacts with chain A through their respective N terminal regions and fur-
thermore, two hydrogen bonds are formed between residues Asp96 and Arg98 from chain C
and Arg98 and Asp96 from chain A, respectively. Accordingly, the contact surface area is 400
A% and in agreement to PISA, it may be a crystal-packing artifact. In all the 3 chains the C-ter-
mini is exposed to the solvent, while the N terminal residues participate in inter-molecule in-
teractions. The 5 extra residues (Gly-Pro-His-Met-Ala) that remain after His-tag cleavage
might affect the crystal packing in the tag-free Hcp crystals and then the quality of
their diffraction.
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Fig 2. Overall structure of the Hcp from A. baumannii. (A) Cartoon representation of the Hep structure whereby eight B-strands form a tight B-barrel, with
one a-helix at one side, and an extended loop protruding more than 25 A between strands 2 and 3. (B) Stick representation of the side-chain of hydrophobic
residues forming the core of the B-barrel. (C) The Hcp hexameric ring. Cartoon representation of one hexamer generated by the 6-fold crystallographic
symmetry. The a-helix of each monomer is placed almost parallel to the crystallographic axis. The diameter of the internal ring is 40 A, while the external one
is 80 A. (D) Hexameric Hep rings showing both, head-to-head (red-green) and head-to-tail (green-blue) packing.

doi:10.1371/journal.pone.0129691.9g002

Using the 6-fold crystallographic symmetry, one hexameric ring can be generated from each
Hcp chain (Fig 2C) interacting between them in both, head-to-head and head-to tail behavior
(Fig 2D). The average contact area between intra-ring molecules is 1325 A%, with 19 inter-
chain hydrogen bonds. Among all the interfaces analyzed by the PISA web server in this struc-
ture, this is the only one that appears to play an essential role in complex formation. The inner
diameter of this donut-shaped hexamer is 40 A and the outer one is 80 A. The 10-residue a--
helix of each monomer is almost parallel to the crystallographic axis and it serves as a contact
surface for the neighboring molecule. This helix interacts with residues Ser112 to Thr117 of 6
from the same chain, and with residues Val152 to Trp156 of a -sheet (88) from the symmetry
related molecule. Pro71 faces Vall52 and the aromatic ring of Tyr139, whereas Glu75 forms a
hydrogen bond with the N atom of the Lys155 main chain. The side chain of Trp74 projects
into the hydrophobic cavity formed by Leu66, Pro71 and Pro116 from the same chain, and by
Trp32, Ile 36, Leul02 and Trp137 from the flanking chain. In addition, Trp74 interacts through
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a hydrogen bond with Glul26 from the same chain. The extended loop from the neighboring
chain acts as a cap for the helix, interacting with their first residues. Moreover, hydrogen bonds
are established between the O atom of the main chain of Gly80 and Cys77 with Lys40 and
GIn38, respectively. Furthermore, Ser78 forms a hydrogen bond with the N§ atom of His57and
the main chain of Ser78 stacks against the side chain of Val55. The region from Ser112 to
Glul20 (B6) interacts with residues Asn30 to GIn38 (B2) of the neighboring molecule. Accord-
ingly, the six molecules form a continuous 24 -strands surface and this B-barrel represents the
inner surface of the ring. The Arg37 side chain points to the central axis of the hexagon, pro-
jecting from the barrel flat surface. A net of hydrogen bonds, involving Asn35, Ser58 and
Thr115 from the next chain, maintains the particular position of Arg37 (Fig 3A).

The inner surface of the ring presents a slight negative charge, whereas on the external sur-
face, regions with strong negative (around Glu7) or positive charges (around Lys154 and
Lys24) can be detected. Both edges of the ring behave distinctly and while the side where the
extended loop is exposed has repeated weak positive and negative charges, the opposite side ex-
hibits cavities with strong negative charge. These latter regions are located around Glul7-As-
p65-Asp67 at the N terminal region of the o-helix (Fig 3B).

In order to study the conservation of these residues, we aligned different Hcp sequences
using BLAST and we plotted the degree of conservation in the Hcp ring structure using Con-
surf. The conservation among the surface residues is not uniformly distributed. The external
side of the ring is characterized by a medium degree of conservation, while residues in the
inner surface are poorly conserved. The highest degree of conservation was evident at the edge
of the ring where the extended loop is exposed. However, a non-uniform pattern was observed
on the other edge, with a thin circle of well-conserved residues surrounded by two regions of
poorly conserved ones. The residues are also conserved in the intra-ring contact surface be-
tween monomers, showing higher conservation at the top and bottom of the o-helix, and at the
residues that interact with the helix from the neighboring molecule (Fig 4). Interestingly, the
residues interacting with Trp74, as well as this residue itself, are not conserved among the se-
quences analyzed, and none of the known structures have similar interactions in the middle of
the helix.

Oligomerization

With the purpose of analyze the oligomerization state of Hcp in solution we performed sedimen-
tation velocity experiments at different concentrations: 0.016, 0.2, 1, 2.5, 8 and 20 mg ml". The ¢
(s) profile of the protein in these velocity analyses produced a single predominant peak at all the
tested concentrations. The corresponding sedimentation coefficient for this peak was in the range
of 5.0 to 5.6 £ 0.1 S. Moreover, sedimentation equilibrium experiments were carried out at two dif-
ferent concentrations and the experimental data fitted to a molecular mass of 114 + 1 or

117.0 + 0.5 KDa for Hep concentrations of 1.0 or 2.5 mg ml ™, respectively, which correspond to
the molecular weigth of six Hcp molecules (molecular weight of 18.8 KDa). At a lower concentra-
tion (0.02 mg ml") we analyzed the Hcp sample by negative-staining electron microscopy. The
predominant geometry reflects a ring oligomer with dimensions (diameter: 60 A) similar to those
found in the crystallographic structure. Larger assemblies were not detected (Fig 5).

Discussion

The Hcp proteins are considered to be molecular markers of a functional T6SS and they have
been extensively used to evaluate the activity of this machinery in Gram-negative bacteria. We
have demonstrated that Hcp is secreted to the culture medium by six different nosocomial
strains of A. baumannii. Besides the diversity in their origin, the Hcp protein is identical in all
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Fig 3. Key residues in the surface of the hexameric ring. (A) A hydrogen bond network stabilizes the
position of Arg37, pointing to the central axis of the Hcp ring. Note the continuous 3-sheet surface formed
between neighboring chains (colored grey and cyan). (B) Electrostatic charge at the surface of the Hep ring
showing, in one of the edges, cavities with strong negative charge.

doi:10.1371/journal.pone.0129691.g003
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Fig 4. Conservation of residues in the Hcp surface. Degree of conservation of Hep residues, the darkest
colour representing the highest degree of conservation. Residues are moderately conserved in the external
surface (A) and weakly in the internal (B), and they produce a circle of strong conservation at both edges of

the ring (C and D). Strong conservation is also observed in the intra-ring interfaces (E and F).

doi:10.1371/journal.pone.0129691.g004

these samples. The sequence is conserved among other A. baumannii strains, as confirmed
with a BLAST search. Despite a few nucleotide substitutions there is no differences in the
amino-acid sequences between the 25 different strains analyzed by this search. In particular,
we have confirmed that the T6SS is functional in AB0057, a clinical multiresistant strain.
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Fig 5. Electron microscopy of Hcp hexamers. (A) Electron micrograph of Hep stained with 1% uranyl formate. (B) Single particles and (C) Reference-free
2D averages.

doi:10.1371/journal.pone.0129691.g005

In order to gain a better understanding of the function and characteristics of this protein
isolated from the A. baumannii AB0057 strain, we determined its X-ray structure. The overall
structure of Hep is formed by two B-sheets forming a tight B-barrel, flanked by a short o-helix
and an extended loop, resembling other previously published structures of homologues pro-
teins. Five Hcp structures have been determined by X-ray crystallography to date: Hepl (PDB
code 1Y12)[4] and Hcp3 (PDB code 3HE1)[10] from P. aeruginosa; EvpC (PDB code 3EAA)
[11] from E. tarda; the unpublished Hcp of Y. pestis (PDB code 3V4H); and more recently,
Hcp from enteroaggregative E. coli (EAEC) (PDB code 4HKH)[12]. The sequence identity and
similarity of Hep from A. baumannii are 31 and 55% with Hep1; 20 and 45% with Hep3; 30
and 48% with EvpC; 26 and 56% with Hcp from Y. pestis and 20 and 47% with Hcp from
EAEC. Despite the low sequence similarity among them, the structure of these proteins is al-
most identical (Fig 6): a Cow superposition with Hep gives an RMSD value of 1.45 A for Hepl,
2.82 A for Hep3, 1.53 A for EvpC, 1.22 A for Hcp from Y. pestis and 2.16 A for Hcp from
EAEC. The Hcp-family fold is conserved. The main differences among these structures are
seen in the length of loops connecting the strands, where Hcp shares more similarities with
Hepl, EvpC and the Hcp proteins from Y. pestis and EAEC than with Hcp3. This last protein
has an insertion of 14 residues in the N terminus and it has been shown to belong to a different
subgroup than Hcpl. This divergence was associated to certain specificity of Hep proteins in P.
aeruginosa, with different paralogues performing particular secretory functions. The stronger
similarity in structure and sequence between Hcp and Hep1 suggests that Hep should acts in
A. baumanni in a similar way to Hepl in P. aeruginosa.

The 6-fold symmetry established involves three Hcp molecules forming three hexameric
rings. The inner diameter of this donut-shape hexamer is 40 A and the outer one is 80 A. These
values were confirmed by electron microscopy, and they are similar to those described for
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Fig 6. Structural superposition and sequence alignment of Hcp with other known Hep structures. (A) Stereo view of Ca superposition of the
structures: Hep from A. baumannii (grey), Hcp1 (PDB entry 1Y12 in red), Hcp3 (PDB entry 3HE1 in green), EvpC (PDB entry 3EAA in blue), Hep from Yersinia
pestis (PDB entry 3V4H in cyan) and Hep from EAEC (PDB entry 4HKH in orange). The tight B-barrel motif, the a-helix and the protruding loop are conserved
in all six of these structures. (B) Sequence alignment showing the weak sequence identity among these proteins.

doi:10.1371/journal.pone.0129691.9g006

Hepl, Hep3, EvpC and EAEC Hcp. The high degree of conservation among the residues in-
volved in the hexamer formation emphasizes the importance of this ring in the protein s bio-
logical activity. The conservation of residues at the outer face of the ring suggests that Hcp is
likely to interact with other proteins during the formation or activity of T6SS, as proposed for
Hcp1[4]. Interestingly the degree of conservation is lower at the inner face, on the basis of
which we propose that the effectors transported through this ring, if any, may be specific to A.
baumannii. In particular, the side chain of Arg37 may play a key role in this process. The gua-
nidium group of this poorly conserved residue points to the center of the hole, while a network
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of other characteristic residues-none of them highly conserved- maintains this particular ge-
ometry. Interestingly, residue Ser31, a residue required for the secretion of the effector Tse2
[14], occupies a close position in Hepl from P. aeruginosa.

The most remarkable difference between the known Hcp structures is the crystal packing.
Hcpl forms a continuous nanotube with the rings interacting in a head-to-tail mode [4]. EvpC
[11] and the Hcp from Y. pestis also form nanotubes, although their hexameric rings interact in
a head-to-head mode. In the same manner, Hep3 form dimers of hexamers but this latter struc-
ture does not adopt the form of a nanotube and dodecamers are isolated in the crystal [10]. Fi-
nally, two hexamers of Hcp from EAEC interact through each face in a head-to-head fashion
but with a shift in frame of 0.5 hexamer. This uncommon packing might be induced by the two
mutations incorporated in order to solve this structure [12]. Although the A. baumannii Hcp
protein forms a nanotube, its packing is unique among these structures, as the 3 chains interact
both head-to-tail and head-to-head within the same crystal.

The presence of only one peak in the size exclusion column (data not shown) and in sedi-
mentation velocity experiments confirm that only one oligomeric state of Hcp exists in the con-
ditions tested, and according to the sedimentation equilibrium the weight corresponds to that
of a Hep hexamer. Indeed, a hexameric ring is also the aggregation state observed in electron
microscopy experiments. All these data suggest that the predominant oligomeric state of Hep
in solution is as a hexamer and hence the model of inter-ring interactions for this structure
would be the result of the crystal packing in this particular condition. Similar to the observed
by analytical ultracentrifugation and electron microscopy in other Hcp proteins there is no evi-
dence of nanotube formation in Hep from A. baumannii. Only Hepl associates in solution
forming nanotubes; but this larger assembly appears exclusively after the mutation of residues,
establishing disulfide bonds between adjacent rings [39]. However, the formation of Hcp nano-
tubes cannot be excluded in physiological conditions or in the presence of other T6SS proteins,
as shown in vivo in EAEC where the proper assembly of the Hcp tube is controlled by other
T6SS components. It was also observed in this organism that Hcp hexamers assemble in a
head-to-tail behavior [40]. In A. baumanni a high degree of conservation is observed in both
edges of the Hcp ring, and the surface charges complement each other between one edge and
the opposite one, supporting the hypothesis of larger assemblies. More extensive functional
studies are necessary to determine the importance of these conserved motifs and the oligomeri-
zation of Hep from A. baumannii in vivo.
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