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Abstract

The cholesterol content of membranes plays an important role in organizing membranes for

signal transduction and protein trafficking as well as in modulating the biophysical properties

of membranes. While the properties of model or isolated membranes have been extensively

studied, there has been little evaluation of internal membranes in living cells. Here, we use a

Nile Red based probe, NR12S, and ratiometric live cell imaging, to analyze the membrane

order of the plasma membrane and endocytic recycling compartment. We find that after a

brief incubation to allow endocytosis, NR12S is distributed between the plasma membrane

and the endocytic recycling compartment. The NR12S reports that the endocytic recycling

compartment is more highly ordered than the plasma membrane. We also find that the

plasma membrane and the endocytic recycling compartment are differentially affected by

altering cellular cholesterol levels. The membrane order of the plasma membrane, but not

the endocytic recycling compartment, is altered significantly when cellular cholesterol con-

tent is increased or decreased by 20%. These results demonstrate that changes in cellular

cholesterol differentially alter membrane order within different organelles.

Introduction

The structure and function of cellular membranes is largely dictated by their lipid composi-

tion, including the amount of cholesterol [1]. Cholesterol is heterogeneously distributed

among cellular organelles but is highly enriched in the plasma membrane (PM) and endocytic

recycling compartment (ERC) [2]. In membranes, cholesterol interacts with the acyl chains

and headgroups of surrounding lipids resulting in an increase in local membrane rigidity or

order, and cholesterol depletion results in a decrease in local membrane order [3]. Cellular

membranes are composed of hundreds of different lipids that vary in head group, acyl chain

length and saturation level [4]. Additionally, lipids are non-randomly distributed in mem-

branes and vary between the leaflets of the bilayer [5].

In recent years, there has been a growing interest in examining the membrane order of bio-

logical membranes in living cells [6]. Environmentally-sensitive probes, such as Laurdan [7],

have been used to report local fluidity. However, due to the rapid redistribution of Laurdan

among membranes, its application to studies of endosomal membranes has been limited [8].
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Recently the Nile Red based probe, NR12S, has been developed and used to report the

membrane order of the PM in living cells [9]. NR12S has a Nile Red-like moiety that is

anchored in membranes by a long alkyl chain with a zwitterionic headgroup and does not

flip across the bilayer [9]. NR12S allows for accurate measurements of membrane order [9],

probably due to effects of water permeation on the spectroscopic properties of the fluorophore.

In contrast to the PM, little is known about the biophysical properties of most intracellular

membranes, including the ERC, which is part of the recycling itinerary for membrane proteins

such as the transferrin receptor [10]. We have shown that fluorescent lipid analogs that, like

NR12S, do not flip in the bilayer rapidly can be delivered to the ERC within a few minutes by

nonselective endocytosis [11–13] (Fig 1A). In this study, we utilized the NR12S probe and

ratiometric live cell imaging to monitor the membrane order of the PM and ERC, and we

found that the ERC is more highly ordered than the PM. The membrane order of the PM

appears to be altered to a greater extent than the ERC by changes in the cellular cholesterol

content. These results indicate that cellular organelles differentially regulate their membrane

order in response to alterations in cellular cholesterol levels.

Materials and methods

Materials

Alexa labeling kits were purchased from ThermoFisher. Human Transferrin (Tf) was pur-

chased from Sigma. All tissue culture supplies were purchased from Invitrogen. All other

chemicals were from Sigma. The medium used are as follows: Medium 2 (150mM NaCl, 5mM

KCl, 1mM CaCl2, 1mM MgCl2 and 20mM HEPES, pH 7.4); M2glucose (Medium 2 containing

2mg/mL glucose).

Fig 1. NR12S distributes between the PM and ERC. (A) Receptor-mediated endocytic pathway in non-

polarized mammalian cells. Transferrin and its receptor are shown as an example. EE, early endosome; SE,

sorting endosome; ERC, endocytic recycling compartment; LE, late endosome. (B) Representative maximum

projection images of NR12S labeling in U2OS-SRA cells. The ERC is labeled with Alexa405-Tf. Scale bar is

10 μm.

https://doi.org/10.1371/journal.pone.0188041.g001
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Cell culture

U2OS-SRA is a modified human osteosarcoma cell line that expresses the scavenger receptor

A (SRA) [14]. U2OS-SRA cells were grown at 37˚C in a 5% CO2 humidified incubator and in

McCoys 5A medium supplemented with 10% fetal bovine serum, 1mg/mL geneticin as a selec-

tion for SRA, 100 units/mL penicillin, 100ug/mL streptomycin. Cells for confocal microscopy

were plated on 35-mm plastic dishes, the bottoms of which were replaced with poly-D-lysine-

coated coverslips. Cells were plated at 50–60% confluence for all experiments.

Cholesterol modulation

U2OS-SRA cells were grown for 24 hours in cholesterol depletion medium (McCoys 5A

medium similar to the growth medium but with 5% lipoprotein-deficient serum in place

of fetal bovine serum, supplemented with 10 μM mevastatin). To overload cholesterol,

U2OS-SRA cells were grown for 24 hours in metabolic overloading medium (McCoys 5A

medium growth medium supplemented with 50 μg/mL acetylated-LDL and 30 μg Sandoz

58035).

Free cholesterol measurement by GC/MS

Cellular lipids were extracted twice with hexane/2-propanol (3:2). During the first extraction,

β-sitosterol was added as an internal standard for quantification. Dried lipids were resus-

pended in hexane and separated on a Varian Factor Four capillary column, using a Varian 400

GC/MS/MS system (14). The protein concentration after solubilization with 0.5 M NaOH was

determined by the BCA protein assay.

Fluorescence labeling

Human transferrin (Sigma) was iron-loaded and purified by Sephacryl S-300 (Pharmacia LKB)

gel-filtration chromatography and conjugated to Alexa405 according to the manufacturer’s

instruction. To label cells with transferrin, cells were incubated with 20 μg/mL Alexa405–trans-

ferrin for 15 min at 37˚C in M2glucose medium. NR12S was freshly prepared in M2glucose

medium and then added to the cells at a final concentration of 0.3 μM. Cells were incubated for

7 min at 37˚C in the dark. Following labeling, cells were washed and imaged in M2glcuose

medium.

Fluorescence microscopy

Cells were imaged on a Zeiss LSM 880, AxioObserver microscope equipped with a Plan-Apoc-

hromat 63× Oil 1.4 NA differential interference contrast (DIC) M27 objective in a humidified

chamber at 37˚C. Z-stacks were obtained using a step size of 0.31 μm. NR12S was excited

using 514 nm laser and images corresponding to the green (520–580 nm) and red (585–650

nm) were recorded simultaneously using emission filters.

NR12S image analysis

NR12S intensity in the plasma membrane and endocytic recycling compartment were mea-

sured in individual planes. Image planes were selected such that the plasma membrane or

endocytic recycling compartment was the primary source of NR12S fluorescence. For the

plasma membrane, peripheral regions of the cell were analyzed to exclude the endocytic recy-

cling compartment fluorescence that was visible in the plasma membrane sections. All data

were analyzed with MetaMorph image analysis software (Molecular Devices, Downingtown,

PA).
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Results and discussion

NR12S labels the PM and ERC

The fluorescence emission of NR12S is sensitive to the membrane environment. In more

ordered membranes, NR12S fluorescence emission is blue shifted, while in disordered mem-

branes the fluorescence emission spectra is red shifted (9). These alterations in the emission

properties of NR12S allow for ratiometric green/red imaging to determine relative membrane

order in cells. In this study, we modulated cholesterol levels using metabolic methods by grow-

ing human osteosarcoma cells (U2OS) stably expressing the scavenger receptor A (U20S-SRA

cells) [14] in either lipoprotein deficient serum with the HMG-CoA reductase inhibitor mevas-

tatin, or in medium supplemented with acetylated low density lipoprotein, which binds to

SRA, and an acyl-CoA:cholesterol acyltransferase inhibitor, Sandoz 58–035 (see details in

Materials and Methods). A previous study used cyclodextrin treatment to reduce cholesterol

levels, but did not report the extent of cholesterol reduction (9).

To determine the cellular distribution of NR12S, we labeled the outer leaflet of the PM of

living U2OS-SRA cells with 0.3 μM NR12S as described by Kucherak et al.[9]. After brief incu-

bations, NR12S, like other fluorescent lipid analogs that do not flip spontaneously in the

bilayer [11–13], is delivered to the ERC by endocytic processes, where it co-localizes with

endocytosed transferrin (Fig 1). As the PM and ERC are highly enriched in cholesterol [2], we

sought to analyze how the membrane order of these compartments changes following modula-

tion of cellular cholesterol levels.

Monitoring membrane order in living cells

To modulate cellular cholesterol levels, we cultured U2OS-SRA cells under cholesterol deple-

tion and cholesterol overloading conditions. Overnight cholesterol depletion resulted in a

~20% decrease in cellular cholesterol levels, while overloading increased cholesterol by ~20%

(Fig 2). Using NR12S, we monitored changes in the membrane order of the PM and ERC fol-

lowing cholesterol modulation. Under all conditions, NR12S was distributed between the PM

and ERC in U2OS-SRA cells (Fig 3A).

To analyze the green/red ratio of NR12S fluorescence in the PM and ERC, we collected a

confocal stack of cells labeled with NR12S using a single excitation wavelength, and the

Fig 2. Metabolic modulation of cellular cholesterol levels. GC/MS measurement of free cholesterol levels

in control, cholesterol depleted and overloaded U2OS-SRA cells. Cellular lipids were extracted and analyzed

by GC/MS. Data represent averages (± SE) of three independent experiments normalized to control value. **
p < 0.01.

https://doi.org/10.1371/journal.pone.0188041.g002
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Fig 3. (A) Representative maximum projection images of NR12S labeling in control, cholesterol depleted,

and cholesterol overloaded U2OS cells. Scale bar is 10 μm. (B) Representative planes used in the analysis of

NR12S fluorescence intensity in the PM, ERC and Cell contact regions. Areas of cell contact points used in

analysis are boxed. Scale bar is 10 μm. (C) Analysis of NR12S green/red ratio of the ERC and plasma

membrane. NR12S green/red ratio was normalized to control PM. Data represent averages (± SE) of four

independent experiments of at least 15 cells per experiment; NS, non-significant; *** p < 0.001 compared to

control PM.

https://doi.org/10.1371/journal.pone.0188041.g003
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emission for the green (ordered) and red (disordered) was collected simultaneously using

emission filters (see details in Materials and Methods). The green/red ratio of NR12S for the

PM and ERC as well as cell-cell contact points was determined using single planes where the

fluorescence from the ERC, the PM, and PM at contact regions could be isolated from one

another (Fig 3B). Because we are measuring fluorescence ratio values, variations in intensity

due to the amount of dye do not affect the measurement. Comparing the NR12S green/red

ratio of the ERC to the PM in control cells shows that the ERC has a green/red ratio about 40%

higher than the PM (Fig 3C). This indicates that the ERC membrane is more ordered than the

PM.

Analysis of the cholesterol depleted or overloaded U2OS-SRA cells shows that there was an

alteration to the membrane order of the PM (Fig 3C). In the PM, NR12S green and red signal

showed that following cholesterol depletion, NR12S PM emission was red shifted with a ~20%

decrease in the NR12S green/red ratio, compared to control U2OS-SRA cells. This shift is con-

sistent with a decrease in cellular cholesterol content and a reduction in membrane order [9].

Additionally, cholesterol overloading resulted in an increase in membrane order and a blue

shift of NR12S. Consistent with these observations, measurements of cell-cell contact points

from cholesterol depleted or overloaded cells demonstrated a similar shift in membrane order

as the bulk plasma membrane measurement. We note that under our culture conditions (50–

60% confluency), every cell we used for measurements was touching at least one other cells.

We did not observe any dependence of the green/red ratio in the contact regions on the extent

of cell-cell contact.

In the ERC, there was a small decrease in the green/red ratio when cholesterol was depleted

(Fig 3C), but this difference did not reach statistical significance based on four experiments.

The green/red ratio in the ERC was virtually unchanged upon cholesterol overloading. These

data indicate that effects of alterations in cholesterol have a smaller effect on membrane order

in the ERC than in the PM.

Cellular organelles are composed of complex mixtures of lipids that modulate their biophysi-

cal properties [1]. Unfortunately, the membrane composition of the ERC has not been well doc-

umented owing to difficulties of organelle purification. The abundance of cholesterol in the

ERC [2] would be consistent with the membranes being highly ordered. Previous work has

shown that GPI-anchored proteins are retained longer in the ERC compared to either the trans-

ferrin receptor or fluorescent lipid analogs [11], indicating that the ERC is highly ordered [15].

The retention of GPI-anchored proteins in the ERC was abolished when cellular cholesterol

levels were reduced by ~ 50%. In the current study, when cholesterol levels are altered by

~20%, we observe that the membrane order of the PM, but not the ERC, is altered by modula-

tion of cellular cholesterol levels. This indicates that the membrane properties of the PM are

more influenced by changes in cholesterol than those of the ERC. Interestingly, it was shown

recently that the effect of cholesterol on ordered lipid domain formation is dependent upon

the phospholipid composition of the membranes [16, 17]. The retention of cholesterol and

increased membrane order of the ERC implies that lipids may be differentially distributed

between the PM and ERC. Enrichment of specific lipids, including cholesterol, in these organ-

elles likely defines their unique biophysical properties.
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