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Summary
Background Perfluoroalkyl substances PFOS and PFOA are persistent and bioaccumulative exogenous chemicals in
the human body with a range of suspected negative health effects. It is hypothesised that exposure during prenatal
and early postnatal life might have particularly detrimental effects on intrauterine and childhood growth. In a Dan-
ish longitudinal mother-child cohort we investigate effect of PFOS and PFOA in pregnancy and infancy on intrauter-
ine and childhood growth and anthropometry.

Methods COPSAC2010 is an ongoing population based mother-child cohort of 738 pregnant women and their children
followed from 24 week gestation with longitudinal deep clinical phenotyping until age 10 years. In this observational
cohort sub study plasma PFOS and PFOA concentrations were semi-quantified by untargeted metabolomics in the moth-
ers at week 24 and 1 week postpartum and in the children at ages 6 and 18 months and calibrated using a targeted pipe-
line. We examined associations to intrauterine and childhood growth and anthropometry, including interactions with
child sex. Untargeted and targeted blood metabolomics profiles were integrated to investigate underlying mechanisms.

Findings Pregnancy plasma PFOA concentrations were associated with lower birth size �0.19 [�0.33; �0.05] BMI
z-score per 1-ng/mL and increased childhood height (z-scored) at age 6: 0.18 [0.05; 0.31], but there was no associa-
tion between childs’ own infancy plasma PFOA concentration and height. Pregnancy plasma PFOS concentrations
were also associated with lower birth BMI (�0.04 [�0.08; �0.01]), but in childhood pregnancy plasma PFOS con-
centration interacted with child sex on BMI and fat percentage at 6 years with negative associations in girls and
Abbreviations: BMI, body mass index; COPSAC, Copenhagen Prospective Studies on Asthma in Childhood; DXA, dual-energy x-ray

absorptiometry; FDR, false discovery rate; FLG, filaggrin, HbA1c, hemoglobin A1c; HDL, high density lipoprotein; LacCer, lactoceramides;

LDL, low density lipoprotein; PFOA, perfluorooctanoic acid; PFOS, perfluorooctane sulfonic acid; PCA, principal component analysis;

UPLC-MS/MS, Ultra Performance Liquid Chromatography/Mass Spectrometry; UPLC-TQD-MS/MS, Ultra Performance Liquid Chro-

matography Triple Quadrupole Detection/Mass Spectrometry; PFAS, Per- and polyfluoroalkyl substances (including PFOS and PFOA);

CMPF, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (biomarker for fish intake)
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positive in boys. The effect of maternal plasma PFOS concentration on lower girl BMI was borderline mediated
through increasing child plasma lactosyl-ceramide levels (p-mediation=0.08). Similarly the effect of maternal
plasma PFOS concentration on higher boy fat percentage was borderline mediated through increasing child plasma
lactosyl-ceramide levels (p-mediation=0.07). Infancy concentrations of plasma PFOS associated with lower height in
childhood, �0.06 z-score at age 6 [�0.19; �0.03].

Interpretation Higher PFOS and PFOA plasma concentrations during pregnancy had detrimental effects on fetal
growth. The effects on childhood growth were not similar as PFOA increased child height, opposite of PFOS in mul-
tipollutant models suggesting a differing fetal programming effect. Sex specific growth effects were borderline medi-
ated through an altered lactosyl-ceramide metabolism, proposing a possible mechanism of PFOS that has long-
lasting health consequences in this observational study.

Funding All funding received by COPSAC are listed on www.copsac.com. The Lundbeck Foundation (Grant no R16-
A1694); The Novo Nordic Foundation (Grant nos NNF20OC0061029, NNF170C0025014, NNF180C0031764) The
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Capital Region Research Foundation have provided core support to the COPSAC research center. Effort from JALS
is supported by R01HL123915, R01HL141826, and R01HL155742 from NIH/NHLBI. CEW was supported by the
Swedish Heart Lung Foundation (HLF 20180290, HLF 20200693). BC has received funding for this project from
the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No. 946228). The funding agencies did not have any role in design and conduct of the
study; collection, management, and interpretation of the data; or preparation, review, or approval of the manuscript.
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Research in context

Evidence before this study

Perfluoroalkyl substances are persistent and bioaccu-
mulative exogenous chemicals in the human body
with a range of suspected negative health effects. It
is hypothesised that exposure during prenatal and
early postnatal life might have particularly detrimen-
tal growth effects. We did a systematic search using
keywords: Perfluorooctane sulfonate (PFOS); perfluor-
ooctanoic acid (PFOA); child; mother; longitudinal;
BMI; growth; Denmark. Previous studies primarily
linked pregnancy exposure to increased risk of child
obesity.

Added value of this study

In a longitudinal mother-child cohort we detected
plasma PFOS and PFOA in all samples (>600) of
both mothers and offspring. Maternal plasma PFOA
and PFOS concentrations were associated with
reduced intrauterine growth. Maternal plasma PFOA
concentrations associated to taller children. Maternal
plasma PFOS concentrations interacted with child
sex on 6 years BMI which was lower in girls and
increased in boys, these effects were borderline
mediated through an altered child lactosyl-ceramide
metabolism.
Implications of all the available evidence

Our data showed opposing effect of maternal plasma
PFOS and PFOA concentrations on child height. Mater-
nal plasma PFOS concentration interacted with child
sex, and we found a possible mechanism through an
altered child lactosyl-ceramide metabolism which inter-
acted with child sex.
Introduction
Environmental exposure to a broader range and higher
levels of xenobiotics, i.e., chemicals found in an organ-
ism that are extrinsic to the normal metabolism has
increased in recent generations.1 Populations are
increasingly exposed to xenobiotics from the food we
eat, the water we drink, the clothes we wear and the
utensils we use.2

Among xenobiotics, persistent and bioaccumulative
chemicals such as perfluoroalkyl substances that
include perfluorooctane sulfonate (PFOS) and perfluor-
ooctanoic acid (PFOA) have created particular concern
with regard to early life development.3,4 Typical routes
of exposure are through drinking water, diet, consumer
products and these compounds may affect human
development already in fetal life, since they have the
www.thelancet.com Vol 83 Month , 2022

http://www.copsac.com
http://creativecommons.org/licenses/by/4.0/


Articles
ability to pass the placental barrier, and can be found in
amniotic fluid and umbilical cord blood of the
newborn.5,6 PFOS and PFOA have potential endocrine-
disruptive abilities, and are suspected to influence fetal
programming of the metabolism.7,8

Previous studies have primarily linked maternal
plasma concentrations of both PFOS and PFOA to off-
spring obesity traits.8,9 Some studies have shown differ-
ing effect of maternal plasma PFOS and PFOA
concentrations linking pregnancy plasma PFOS concen-
trations to lower growth and PFOA to higher adiposity
traits,10 especially when applying multipollutant mod-
els, since PFAS are highly correlated but may show dif-
ferent growth effect in the child.

This study aims to investigate the population based
COPSAC2010 birth cohort for the longitudinal effect of
repetitive measures of plasma concentrations of both
PFOS and PFOA during pregnancy and infancy on
intrauterine and childhood growth and anthropometry
during the first 10 years of life. Underlying mechanisms
were investigated by integrating untargeted and targeted
blood metabolomics profiles.
Methods
This study is part of the ongoing longitudinal unse-
lected mother-child cohort, the Copenhagen Prospective
Studies of Asthma in Childhood 2010 (COPSAC-2010).
Pregnant women from Zealand, Denmark recruited
from the monthly surveillance of reimbursement to
general practitioners for the standard pregnancy visit
were invited to participate in the study with main focus
on development of asthma during 2008�2010. A total
of 738 women were enrolled at pregnancy week 24. The
pregnant women and their children, including five twin
pairs, attended 14 scheduled clinical visits plus acute
care visits in the first 10 years of life.
Untargeted metabolomics profiles
Untargeted ultra-performance liquid chromatography tan-
dem mass spectrometry (UPLC-MS/MS) plasma metabo-
lomics profiling of the pregnant mothers at 24 week and
1 week postpartum and of the children at age 6 months,
18 months and 6 years was performed using untargeted
plasma metabolomic profiling including relative abundan-
ces of PFOS and PFOA from the HD4 platform Metabo-
lon, Inc. (NC, USA) as described previously.11
Calibration of semi-quantitative PFOS and PFOA
A selection of 48 samples representing the range of untar-
geted PFAS concentrations in the study were absolute
quantified for PFOS and PFOA using a targeted method
for perfluoroalkyl acids modified fromGlynn et al.12

Briefly, an aliquot of 0.2 mL of plasma was placed in
a 15 mL conical polypropylene centrifuge tube and
www.thelancet.com Vol 83 Month , 2022
spiked at a concentration of 1 ng/ml with 13 labeled
internal standards (MPFAC-C-ES, Wellington Laborato-
ries, Wellington Laboratories). The plasma was
extracted by protein precipitation with 4 mL of acetoni-
trile (ACN), followed by sonication at room temperature
for 10 min and centrifugation at 2000 rpm for 5 min.
The supernatant was transferred to a new 15 mL poly-
propylene tube and concentrated with nitrogen gas at
30 °C to a volume of 0.2 mL. The extract was then
diluted to 1 mL to a 50:50 methanol:water solvent com-
position before undergoing dispersive clean-up. For the
clean-up, the extract was transferred to a 1.5 mL tube
containing 0.025 g of bulk graphitized carbon (Supel-
clean ENVI-Carb, Sigma Aldrich), that had been acidi-
fied with 50 µL of glacial acetic acid and vortexed for
10 s. The sample was then centrifuged for 10 min at
14,000 rpm and the top 0.5 mL was filtered with
0.2 mm nylon centrifuge filters (Thermo ScientificTM

750 mL Nonsterile Micro-Centrifugal Filters). An aliquot
of 0.2 ml of the filtered extract was transferred to a glass
auto-sampler vial for analysis.

Analysis was performed by ultra-high pressure liquid
chromatography (HPLC, Ultimate 3000) coupled to a
HRMS Q Exactive Orbitrap HF-X (ThermoFisher Scien-
tific, Waltham, MA, USA) with electrospray ionization
(ESI). The mass spectrometer was operated in negative
ESI mode and alternated between a full MS scan (90 to
1000 m/z, 120,000 resolution FWHM at 200 m/z) and
four MS2 data-independent acquisition (DIA) scans
(30,000 resolution) with variable m/z precursor win-
dows. A 10 mL sample volume was injected onto an
ACQUITY UPLC BEH C18 analytical column (130A

�
,

1.7 mm, 2.1 mm £ 100 mm, Waters) equipped with a
ACQUITY BEH C18 1.7 µM VANGUARD Pre-Column
at 40°C. Upstream of the injector, one ACQUITY
UPLC BEH C18 analytical column (130A

�
, 1.7 mm,

3 mm£ 30 mm, Waters) was in place to separate instru-
mental background PFOS and PFOA from the analytes
in the sample. A binary gradient elution was used,
including (A) 2 mM ammonium acetate, and (B) 100%
methanol at 0.35 mL/min.

The raw data were extracted and the peak area of the
molecular ions of the analytes were integrated using
Xcalibur software (Thermo Scientific, version 4.1).
Quantification was performed using an external sol-
vent-based calibration curve with the internal standard
method.

When extrapolating the semi-quantitative measures
to absolute values, several child plasma PFOA concen-
tration were extrapolated to negative values. For this rea-
son child plasma PFOA concentrations were offset by
0.8 in all analyses where log transform was used.

Pregnancy plasma concentrations of PFOS and
PFOA was calculated as the mean values of the two
maternal measurements (pregnancy week 24 and 1
week postpartum) and early life exposure as the mean
values of the child age 6 and 18 months measurements.
3
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Targeted sphingolipids
A total of 10 different lactosyl-ceramide species (LacCers)
were quantified or pseudo-quantified by Ultra Performance
Liquid Chromatography Triple Quadrupole Detection/
Mass Spectrometry (Waters Xexo TQ-S) in plasma samples
at age 6 years as described previously.13
Intrauterine and childhood growth and anthropometry
endpoints
Fetal growth was estimated from ultrasound scans at preg-
nancy week 20 (Hadlock estimated weight) and anthropo-
metric measurements at 1 week postpartum. In addition,
gestational age, birth weight, BMI and Skjerven percentile
(birth weight adjusted for gestational age and sex).14

Childhood growth was assessed measuring weight
and height and calculating BMI at all clinical study vis-
its. Age at adiposity rebound was estimated from
repeated growth measurements.15,16 Weight, height and
BMI are z-scored to WHO reference population.17

Body composition was determined by Dual-energy X-
ray Absorptiometry (DXA) scans,18 and cholesterol, low-
density lipoprotein cholesterol (LDL-C), high-density lipo-
protein cholesterol (HDL-C) and triglyceride were mea-
sured in venous non-fasting serum samples at age 6 years.

Bioelectric impedance assessment was performed at
age 10. Fat free mass index (FFMI) calculated as Fat
Free mass(kg)/heightsquared(m2), and Fat Mass Index
(FMI) as Fat Mass(kg)/heightsquared(m2).19
Covariates
Detection of PFOS and PFOA in drinking water, social
circumstances, race, urban/rural living, family income,
fish oil intervention, maternal: pre-pregnancy BMI, edu-
cation, smoking, semi quantified maternal CMPF from
the metabolome (a biomarker for fish intake) and mater-
nal filaggrin mutation status (FLG) were selected to be
analysed as relevant environmental sources/modifiers
of maternal concentrations. Social circumstances were
defined from principal component 1 of a principal com-
ponent analysis (PCA) of variables mothers age, educa-
tion, and household income explaining 56% of the
variation. These variables were obtained during per-
sonal interviews in pregnancy or around the child’s 2
year birthday for social circumstances.

We identified the geographical coordinates of the
addresses of the cohort at birth. Based on the coordi-
nates we inferred both the urban/rural axis from satel-
lite images as described earlier20 as well as the drinking
water exposure to PFOS and PFOA, for households
which had water access from a public supply with
a PFOS or PFOA measurement from the national
monitoring programme, utilizing a spatial model of
Danish water supply systems21 (see details in online
supplement).
Statistics
Determinants and growth effects of PFOS and PFOA
exposure were investigated individually. Changes over
time were investigated with geometric means at differ-
ent time points. Correlations between measurements at
different time points were investigated with Spearman
correlation coefficients.

Geometric mean of maternal concentrations were
plotted against parity and log-linear associations
between maternal concentrations and parity were calcu-
lated for inference. Child concentrations were log-linear
associated with duration of breastfeeding (limited to
maximum 18 months) and investigated for interaction
with maternal concentrations in tertiles.

Environmental determinants of maternal concentra-
tions (log—transformed) were investigated in log-linear
regression models adjusted for parity.

Associations between PFOS and PFOA plasma con-
centrations and growth outcomes were investigated in
linear models using continuous non-transformed levels.
Twins are excluded from all growth outcomes. All esti-
mates are given as effect per 1-ng/mL. In figures all out-
comes are internally z-scored for visual inspection. In
tables all outcomes are on their original scale. All esti-
mates of maternal concentrations are adjusted for par-
ity, race, maternal social circumstances, maternal pre-
pregnancy BMI, maternal height, maternal biomarker
for fish intake, pregnancy fish oil supplementation
RCT,11 birth address urbanicity, and child concentra-
tions additionally adjusted for breastfeeding duration.
In multipollutant models the results are further
adjusted for the concentration of the other PFAS. Twins
are excluded from all growth related outcomes. Sex
interactions were investigated as interaction term
between child sex and PFAS concentration. No multiple
test corrections were performed for the growth
outcomes.

Association between geometric mean of maternal
plasma PFOS and PFOA concentration and untargeted
metabolic profiles in the child measured at 6 months,
18 months and 6 years separately were investigated by
linear regression. The metabolite levels were log—trans-
formed prior to analysis. The linear models were
adjusted for parity, race, maternal social circumstances,
maternal pre-pregnancy BMI, maternal height, mater-
nal biomarker for fish intake, pregnancy fish oil supple-
mentation, birth address urbanicity, and breastfeeding
duration. Multiple comparisons for metabolites were
corrected for FDR using the Benjamini�Hochberg
method.22 The relationship between maternal plasma
PFOS concentration and child targeted plasma LacCers
at 6 years of age was assessed with the same statistical
approach.

For associations between maternal concentrations
and child outcomes we sought mediation by the first
component of all the correlated LacCers in a principal
component analyses. Mediation analyses were done
www.thelancet.com Vol 83 Month , 2022



N Prevalence (%)
mean (SD)
median [IQR]

Maternal age (mean (SD)) 700 32.28 (4.36)

Maternal BMI (mean (SD)) 700 24.55 (4.39)

Maternal smoking (%) 700 25 (3.6%)

Maternal FLG riska (%) 682 31 (4.5%)

Fish intake biomarker cmpf

scaled (median [IQR])

686 �0.23 [�0.70, 0.45]

Maternal education (%) 700

High 205 (29.3%)

Intermediate 444 (63.4%)

Low 51 (7.3%)

Family income, DKR (%) 700

<400k 60 (8.6%)

400�600k 131 (18.7%)

600�800k 245 (35.0%)

800k-1 million 136 (19.4%)

>1 million 128 (18.3%)

Parity (%) 700

1st 323 (46.1%)

2nd 267 (38.1%)

3rd+ 110 (15.7%)

Drinking water >LoDb (%) 520 78 (16%) / 3 (0.5%)

Land cover (%) 686

Rural 188 (27.4%)

Intermediate 191 (27.8%)

Urban 307 (44.8%)

Race, european descent (%) 700 670 (95.7%)

Fishoil intervention group (%) 698 347 (49.7%)

Breastfeed duration, weeks

(median [IQR])

692 33.57 [21.57, 46.00]

Table 1: Cohort baseline demographics.
a Maternal filaggrin risk is based on SNPs: rs138726443; rs150597413;

rs61816761.
b Prevalence of drinking water detection is reported for each com-

pound, PFOA first.
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using the “mediation” package from R where a set of
linear regression models were fitted and then the esti-
mates of “mediation effects” were computed from the
fitted models.23

Inclusion criteria was available data. Participants
with missing data on either exposure (Table 1), out-
comes or covariates (N=21) were excluded from analysis.
No data are imputed. Sample size is based on feasibility
and availability for all analyses. All analyses were done
using R statistical software.
Ethics
The clinical investigations of the children and collection
of biobank materials have been approved by the local
Committee on Health Research Ethics (H-B-2008-093)
and the Danish Data Protection Agency, ensuring that
all personal data are handled according to GDPR
www.thelancet.com Vol 83 Month , 2022
standards and Danish law. All participating parents/
caregivers have provided verbal and written informed
consent for the participation of their children and use of
the biobank samples for metabolomics research, genet-
ics and other measurements in the project. Participants
can withdraw that consent at any time and without any
further explanation.
Role of funders
All funding received by COPSAC are listed on www.cop
sac.com. The Lundbeck Foundation (Grant no R16-
A1694); The Novo Nordic Foundation (Grant nos
NNF20OC0061029, NNF170C0025014, NNF180
C0031764) The Ministry of Health (Grant no 903516);
Danish Council for Strategic Research (Grant no 0603-
00280B) and The Capital Region Research Foundation
have provided core support to the COPSAC research
center. Effort from JALS is supported by R01HL123915,
R01HL141826, and R01HL155742 from NIH/NHLBI.
CEW was supported by the Swedish Heart Lung Foun-
dation (HLF 20180290, HLF 20200693). BC has
received funding for this project from the European
Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme
(grant agreement No. 946228). The funding agencies
did not have any role in design and conduct of the study;
collection, management, and interpretation of the data;
or preparation, review, or approval of the manuscript.
Results
The COPSAC2010 cohort of 738 pregnant women (5
twin pairs) were recruited in 2009�2011. 43 children
were excluded before birth, baseline demographics of
the 700 children are presented in Table 1.

At pregnancy week 24 and 1 week postpartum, a total
of 727 and 684 women respectively, had a valid mea-
surement of both PFOS and PFOA plasma concentra-
tions. In the children at age 6 and 18 months, 602 and
606 had a valid measurement, respectively. Both PFOS
and PFOA were consistent within individuals with cor-
relation coefficients of R=0.9 for both compounds in
the two maternal measurements and similarly in the
two measurements in the children with R=0.6 (PFOS)
and R=0.7 (PFOA). Therefore, we used the average of
the two maternal measurements as surrogate for the
exposure of PFOS and PFOA during pregnancy, and
correspondingly, we used an average of the child meas-
urements at 6 and 18 months as surrogate for early life
exposure.

Among the 675 women, who had two samples mea-
sured for PFOS and PFOA at pregnancy week 24 and 1
week postpartum, the pregnancy plasma concentrations
of PFOS and PFOA was median [IQR] 6.24 ng/mL
[4.96�7.73] and 1.08 ng/mL [0.78�1.47], respectively.
Among the 533 children, who had two samples
5

http://www.copsac.com
http://www.copsac.com


N Median [IQR] N botha Median [IQR]

Perfluorooctanesulfonate (PFOS) ng/mL

Maternal w 24 gestation 727 7.37 [6.01�9.09] 675 6.24 [4.96�7.73]

Maternal wk 1 postpartum 684 5.02 [3.91�6.39]

Child 6 mth 602 4.95 [3.71�6.61] 533 5.29 [4.05�6.94]

Child 18 mth 606 5.29 [4.00�7.31]

Perfluorooctanoate (PFOA) ng/mL

Maternal w 24 gestation 727 1.22 [0.86�1.68] 675 1.08 [0.78�1.47]

Maternal wk 1 postpartum 684 0.95 [0.70�1.28]

Child 6 mth 602 2.43 [1.10�4.06] 533 2.33 [1.40�3.56]

Child 18 mth 606 2.13 [1.34�3.06]

Table 2: Maternal and child levels of PFOS and PFOA.
a In analyses we use the mean of maternal (and child) measurements. Only persons with two measurements are included in the “N both”.
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measured for at age 6 or 18 months, the early life
plasma concentrations of PFOS and PFOA was
5.29 ng/mL [4.05�6.94] and 2.33 ng/mL [1.40�3.56],
respectively (Table 2).

The correlation between PFOS and PFOA concentra-
tions was 0.52 in the pregnancy measurements and
0.63 in child measurements.
Mother-child transfer
The plasma PFOS concentrations were lower in the infant
compared to maternal concentrations, while the opposite
was the case for PFOA (Table 2). Both PFOS and PFOA
were reduced in the mother with increasing parity: geo-
metric means, nulliparous 6.85 ng/mL [6.72�6.98] and
1.40 ng/mL [1.37�1.43], primiparous 5.98 ng/mL
[5.86�6.10] and 0.91 ng/mL [0.88�0.93], and multipa-
rous 5.29 ng/mL [5.15�5.44] and 0.77 ng/mL
[0.74�0.79], (linear effect of parity �0.13 [�0.17; �0.10]
and �0.33 [�0.37; �0.29] both p<0.0001) for PFOS and
PFOA (Figure E1), but r—squared for parity were lower
for PFOS (7%) than PFOA (27%).

Infant plasma concentrations of both PFOS and
PFOA were strongly associated with the number of days
breastfed, and this relationship interacted statistically
significant with maternal plasma concentrations of the
compound in question (interaction between maternal
plasma concentration and breastfeeding duration on
child plasma concentration p<0.001) and exhibited
zero order transfer kinetics (Figure E2).

Variation in the child plasma concentrations
explained by maternal plasma concentration and breast-
feeding showed r—squared 0.64 and 0.55 for PFOS
and PFOA, respectively.
Environmental determinants of maternal plasma
concentrations
Among 675 birth addresses, 539 (80%) received drinking
water from waterworks with samples analyzed for PFOS
and 500 (74%) analyzed for PFOA. PFOS and PFOA were
measured above detection limit of 0.001 µg/L in 0.5% and
16% of birth addresses, respectively. There was no associa-
tion between maternal concentrations of either PFOS or
PFOA during pregnancy and presence in drinking water
samples (online Table E1).

Both maternal compounds were negatively associ-
ated with rural-urban scale, i.e. lower concentrations in
women living in more urban environments. Other than
this, race, maternal BMI, maternal education, and fish
intake (CMPF) showed associations to maternal plasma
concentrations (online Table E1).
PFOS and PFOA exposure, intrauterine and childhood
growth outcomes
In all growth analyses twins are excluded and only chil-
dren with all available data are included, see Figure 1 for
overview of participants in all analyses. PFOA exposure
during pregnancy was associated with a per 1-ng/mL
�0.19 BMI z-score [95%CI: �0.33; �0.05] p=0.01,
PFOS with a per 1-ng/mL �0.04 BMI z-score [95% CI:
�0.08; �0.01] p=0.01 in confounder adjusted analyses.
There were no differences in the Hadlock estimated
fetal weight at pregnancy week 20, indicating late preg-
nancy as the vulnerable window of effect. (Table 3).
When applying multipollutant models the associations
diminished (online Table E2)

Table 4 shows results on childhood growth out-
comes from both maternal and infancy exposure.
Increasing maternal, but not infancy, plasma PFOA
concentrations associated with increasing child
height: pr 1-ng/mL 0.21 higher z-score height at
10 years [95%CI: 0.07�0.36], especially in multipol-
lutant models (0.31 [0.15; 0.47]) adjusting for concur-
rent concentrations of plasma PFOS (online Table
E3). For PFOS there were no associations with child
height for maternal concentrations, but infancy con-
centrations associated with lower height later in
childhood.

There were no strong associations to obesity related out-
comes, but pregnancy plasma PFOS concentrations inter-
acted with child sex on 6 years BMI and fat percentage,
www.thelancet.com Vol 83 Month , 2022



Figure 1. Overview of participants in analyses.
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where girls had lower BMI and fat percentage and boys
higher (sex stratified results in online Table E4).

There were no associations with blood HbA1c, HDL,
LDL, cholesterol or triglycerides at age 6 (data not
shown).
PFOS and PFOA exposure, plasma metabolomics
profiles and LacCers
Untargeted plasma metabolomics from the children at
age 18 months and 6 years identified a total of 1305
metabolites. Of these, maternal plasma PFOS concen-
tration was positively associated with 2 LacCer sphingo-
lipids: LacCer(d18:1/24:1) and LacCer(d18:1/16:0)
(FDR<0.05) as shown in Figure 2. Maternal plasma
PFOA concentration was not associated with child
plasma metabolites at any age. Associations were
adjusted for breastfeeding, parity, race, social
N PF

Hadlock w 20. (ultrasound scan) 646

Fetal growth. (birth minus ultrasound scan) 646 �0

BMI at birth, z-score 653 �0

Gestational age at birth, days 653 �0

Weight at birth, z-score 653 �0

Birth weight % for sex and gestational age 653 �1

Table 3: PFOS and PFOA exposure in pregnancy and estimates for perin
represent the effect per 1-ng/mL change in the concentration. Estimate
(biomarker for fish intake), maternal BMI, maternal height, maternal so

www.thelancet.com Vol 83 Month , 2022
circumstances, fish oil interventions, fish intake bio-
marker, maternal BMI and urbanicity.

Because the untargeted explorative metabolomics
approach revealed alterations in a specific group of
metabolites, i.e. LacCers, we performed targeted quanti-
fication of plasma LacCer concentrations acquired at the
age of 6 years. This showed that in addition to LacCer
(d18:1/24:1) and LacCer(d18:1/16:0), maternal plasma
PFOS concentration was also associated with 7 other
LacCer species (online Table E5).

LacCers at age 6 years with statistical significant
association to maternal plasma PFOS concentration
were combined in a principal component analysis with
PC1 explaining 69% of the variation. This component
was found to borderline mediate of the negative effect
of maternal plasma PFOS concentration on girl BMI at
age 6 years (10% effect mediated, p=0.08), and border-
line mediate the effect on boy fat percentage (11% effect
OS PFOA

0.65 [�1.39; 2.70] 0.53 2.23 [�6.68; 11.14] 0.62

.10 [�0.20; 0.00] 0.06 �0.36 [�0.80; 0.07] 0.10

.04 [�0.08; �0.01] 0.01 �0.19 [�0.33; �0.05] 0.01

.23 [�0.57; 0.10] 0.17 �0.62 [�2.08; 0.84] 0.41

.04 [�0.07; �0.01] 0.02 �0.14 [�0.28; 0.01] 0.06

.07 [�1.96; �0.19] 0.02 �4.28 [�8.17; �0.39] 0.03

atal growth measures. All beta estimates (95%CI), p-value
s are adjusted for parity, ethnicity, fish oil intervention, CMPF
cial circumstances and urban-rural gradient.
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Pregnancy Infancy

PFOS

Adiposity rebound 0.01 [�0.04; 0.05] 0.81 0.02 [�0.03; 0.08] 0.41

DXA fat %, 6 yr 0.01 [�0.02; 0.05] 0.41 * 0.01 [�0.03; 0.05] 0.70

BMI z-score 6 yrs �0.02 [�0.04; 0.01] 0.22 * �0.03 [�0.06; 0.01] 0.10

BMI z-score 8 yrs �0.01 [�0.04; 0.02] 0.58 �0.01 [�0.05; 0.02] 0.48

BMI z-score 10 yrs �0.02 [�0.05; 0.02] 0.38 �0.02 [�0.06; 0.02] 0.33

Height z-score 6 yrs �0.01 [�0.04; 0.02] 0.35 �0.06 [�0.10; �0.03] <0.01

Height z-score 8 yrs �0.02 [�0.05; 0.01] 0.25 �0.06 [�0.10; �0.03] <0.01

Height z-score 10 yrs �0.02 [�0.05; 0.01] 0.27 �0.05 [�0.09; �0.01] <0.01

BCA 10 yr FFMI �0.04 [�0.08; 0.00] 0.05 �0.04 [�0.09; 0.01] 0.09

BCA 10 yr FMI 0.00 [�0.05; 0.05] 0.97 0.01 [�0.05; 0.07] 0.72

PFOA

Adiposity rebound �0.19 [�0.40; 0.02] 0.08 0.01 [�0.07; 0.09] 0.82

DXA fat %, 6 yr 0.13 [�0.02; 0.29] 0.09 0.01 [�0.05; 0.07] 0.67

BMI z-score 6 yrs �0.03 [�0.15; 0.09] 0.67 �0.03 [�0.08; 0.02] 0.23

BMI z-score 8 yrs 0.04 [�0.10; 0.18] 0.55 0.00 [�0.06; 0.05] 0.89

BMI z-score 10 yrs 0.11 [�0.05; 0.27] 0.18 �0.01 [�0.07; 0.05] 0.79

Height z-score 6 yrs 0.18 [0.05; 0.31] <0.01 �0.03 [�0.08; 0.02] 0.29

Height z-score 8 yrs 0.18 [0.05; 0.31] <0.01 �0.03 [�0.08; 0.02] 0.28

Height z-score 10 yrs 0.21 [0.07; 0.36] <0.01 �0.01 [�0.07; 0.04] 0.67

BCA 10 yr FFMI 0.00 [�0.17; 0.2] 0.96 �0.01 [�0.08; 0.06] 0.86

BCA 10 yr FMI 0.18 [�0.03; 0.39] 0.09 0.01 [�0.07; 0.09] 0.75

Table 4: Child growth and obesity outcomes by maternal and infancy exposure to PFOS and PFOA. All beta estimates (95% CI) p-value
represent the effect per 1-ng/mL change in the respective compound. All estimates are adjusted for parity, ethnicity, fish oil intervention,
CMPF (biomarker for fish intake), maternal BMI, maternal height, maternal social circumstances and urban�rural gradient. Effects of
infancy exposure is further adjusted for breastfeeding duration. Pregnancy exposure is shown as the mean of pregnancy week 24 and 1
week postpartum levels and infancy exposure as the mean of 6 and 18 month levels. Stars indicate statistical significant interaction
between child sex and PFOS/PFOA.
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mediated, p=0.07) Independently, the LacCers were
associated with a later adiposity rebound, i.e. similar
direction as the lower child BMI at age 6 years.
Discussion
Concentrations of both PFOS and PFOA measured in
this study were detectable in plasma of every pregnant
mother and their offspring in our Danish cohort of 738
pregnant women and their children born around 2010,
highlighting the ubiquitous nature of these persistent
bioaccumulative compounds. This is despite that the
use of PFOS has been subject to strict regulations since
2009, and PFOA since 2020 in the EU REACH regula-
tion of chemicals.24 Our longitudinal exposure data
showed a strong mother to child transfer of PFOS and
PFOA via placenta and breastfeeding, which was depen-
dent on maternal concentrations and parity, as shown
previously.25,26 We found a detrimental effect on late
fetal growth for both compounds. In childhood, preg-
nancy plasma PFOA concentrations associated with
taller children, and infancy plasma PFOS concentra-
tions associated with lower height. Pregnancy plasma
PFOS concentrations interacted with child sex on child-
hood BMI and fat percentage at age 6 years, where girls
had lower BMI and boys higher by increasing maternal
concentrations. The adverse effect of pregnancy PFOS
exposure on child BMI was mediated through changes
in the child’s metabolome with increased LacCers.
Caveats and limitations
It is a main strength of this study that it is part of the
ongoing single-center COPSAC2010 mother-child
cohort study and uses meticulously collected and vali-
dated clinical data. All baseline data was collected at sev-
eral time points and manually compared for
consistency. All data was double-checked and locked,
which minimized the risk of incorrect registration in
the database. The families are followed by trained staff
using predefined standard operating procedures. All
clinical staff and physicians in this study have pediatric
training, ensuring high quality of data collection, valida-
tion and homogenous diagnostic procedures. The
cohort has low attrition and many confounding varia-
bles were collected prospectively. Still the risk of resid-
ual confounding can never be ruled out.

It is a limitation that only PFOS and PFOA were
assessed. A recent report showed higher transplacental
transfer of other PFAS compounds, i.e. chlorinated
www.thelancet.com Vol 83 Month , 2022



Figure 2. Metabolomics volcano plot showing associations between maternal PFOS and PFOA concentrations and offspring metab-
olome at age 6 months, 18 months and 6 years. Coefficient estimates for each metabolite are shown in the x-axis while negative log
transformed p-values of the metabolites are plotted in the y-axis. Estimates are adjusted for breastfeeding, parity, race, social circum-
stances, fish oil interventions, fish intake biomarker (CMPF), maternal pre-pregnancy BMI, and urbanicity. The metabolites with posi-
tive coefficient estimates indicate positive association with maternal PFOS and PFOA concentrations.
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polyfluorinated ether sulfonates, Cl-PFESAs for PFOS
and perfluorobutanoic acid, PFBA for PFOA, highlight-
ing the need to investigate additional compounds.27

Furthermore, it is a limitation that the compounds were
assessed through the semi-quantitative untargeted
metabolomics profile, but we calibrated these values by
analysing a selected panel of samples using a targeted
pipeline.
Interpretation
We showed a statistical significant association with the
urbanicity scale previously associated with the infant
microbiome and later development of asthma,20 where
rural mothers had higher concentrations of PFOS and
PFOA. Others have reported differences by geographic
location, but not urbanicity.28 Also fish intake associates
with maternal concentrations as shown previously.29 In
general, the environmental factors we studied did not
explain much of the variation in PFOS and PFOA expo-
sure between mothers, and we were unable to establish
any link between presence in drinking water and mater-
nal concentrations.

Levels of PFOS and PFOA in this Danish cohort are
lower than reported US levels by around 30�50% com-
pared to NHANES 2007-8. The concentrations reported
from the US were 10.7 ng/mL (9.72�11.8) for PFOS
and 3.56 ng/mL (3.38�3.74) for PFOA.30 Child levels
were also lower than a Norwegian cohort of 3 year
olds,31 but comparable to other European pregnancy
cohorts from Denmark and Spain.8,32 Levels are in gen-
eral lower for maternal but similar for child samples
(5 years vs our 18 months) in a same age Faroese
cohort.9 Infant PFOA concentrations were statistically
significant higher than maternal concentrations as
opposed to PFOS, where offspring concentrations were
statistically significant lower than maternal concentra-
tions. This indicates a compound specific placental
transfer for some PFAS species, where PFOA transfers
three times higher than PFOS as demonstrated in other
studies.27,33 The higher child concentrations of PFOA
could also be caused by an unknown acute exposure in
this region or lower accuracy of the analytical method to
measure PFOA as compared to PFOS. We also showed
that PFOS and PFOA in the child increased with dura-
tion of breastfeeding in agreement with previous
studies,31,34 and that child’s PFOS and PFOA levels
were inversely related with the number of older sib-
lings.35 This was mirrored in the mothers load of PFOS
and PFOA, which was reduced with parity and also in
agreement with previous research.36 We found that
transfer of PFOS and PFOA from mother to child
resulted in high infant levels, particularly in breastfed
infants who thereby act as “a sink” for the mother’s
exposure passing these xenobiotics on for generations.37

Associations between pregnancy PFOS and PFOA
exposure and offspring birth weight have been
examined in multiple studies, showing mostly effect on
female infants with lower birth weight and lower gesta-
tional age by higher prenatal PFOS and PFOA
exposure.38�41 Importantly, our study showed that the
hampering of fetal growth by PFOS and PFOA exposure
was most prominent later in pregnancy, and there were
no differences in Hadlock estimated fetal weight in
pregnancy week 20.

Several previous studies have found positive associa-
tions between maternal PFAS exposure and increased
early childhood BMI measures,8,32,42�45 which is inter-
esting since our data did not replicate these findings,
instead we showed statistically significant associations
to higher height for age and sex by increasing maternal
plasma PFOA concentrations, which is opposite of a
large NHANES study.46 The PFOA—height associa-
tions did not replicate in childrens own concentrations
of plasma PFOA in infancy indicating importance of
exposure timing. For PFOS we found decreased height
more than BMI, however, only statistically significant
for infancy plasma PFOS exposure. For the association
between increasing maternal plasma PFOS exposure in
pregnancy and lower girl BMI at age 6 years, but higher
boy fat percentage, we found support for a possible bio-
chemical mechanism as maternal plasma PFOS was
associated with alterations in the child metabolome
through increasing LacCers, which in turn showed
some mediation of the sex specific effects on growth
from maternal plasma PFOS. In line with this, previous
studies have shown association between PFOA and
PFOS levels and sphingomyelins47,48 but to our knowl-
edge this has not been shown for LacCers. LacCers have
previously been associated with inflammation and oxi-
dative stress,49 which could hamper intrauterine and
childhood growth and act as a possible mechanism
behind our findings. We did not replicate previous find-
ings of perturbations in amino acid and glycerophos-
pholipid metabolism associated with prenatal PFAS.50

In a recent American study with follow-up into adult-
hood, PFOS was associated with lower BMI throughout
childhood, whilst PFOA was associated with lower BMI
in early childhood, but earlier adiposity rebound and
later growth.44,51 The latter is in line with our data. Ear-
lier adiposity rebound appears to be associated with later
obesity.15

Conclusively, our longitudinal mother-child cohort
data on PFOS and PFOA exposure in pregnancy and
early childhood showed strong transfer from mother to
child with compound specific transfer so PFOA concen-
trations were higher in children than mothers, transfer
via breastfeeding was dependent on maternal concentra-
tions. Increasing pregnancy plasma PFOS and PFOA
exposure was associated with reduced fetal growth, oppos-
ing effects on child height and sex—interacting effects on
child BMI and fat percentage by PFOS, potentially acting
through an altered LacCer metabolism that has been
associated with inflammation and oxidative stress.
www.thelancet.com Vol 83 Month , 2022
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