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Mathematical modeling of radiotherapy
and its impact on tumor interactions

with the immune system

Abstract

Radiotherapy is a primary therapeutic modality widely utilized with curative intent. Traditionally tumor response was hypothesized
to be due to high levels of cell death induced by irreparable DNA damage. However, the immunomodulatory aspect of radiation is
now widely accepted. As such, interest into the combination of radiotherapy and immunotherapy is increasing, the synergy of which
has the potential to improve tumor regression beyond that observed after either treatment alone. However, questions regarding the
timing (sequential vs concurrent) and dose fractionation (hyper-, standard-, or hypo-fractionation) that result in improved anti-tumor
immune responses, and thus potentially enhanced tumor inhibition, remain. Here we discuss the biological response to radiotherapy
and its immunomodulatory properties before giving an overview of pre-clinical data and clinical trials concerned with answering these
questions. Finally, we review published mathematical models of the impact of radiotherapy on tumor-immune interactions. Ranging
from considering the impact of properties of the tumor microenvironment on the induction of anti-tumor responses, to the impact of
choice of radiation site in the setting of metastatic disease, these models all have an underlying feature in common: the push towards
personalized therapy.
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Introduction [1-7]. Mathematical oncology may hold the key to bridging experimental,

clinical, and data science studies; to test and generate hypotheses and

Mathematical modeling in oncology has a long history, with various
theoretical approaches being used to explore and describe biological
mechanisms as well as tumor growth and treatment response dynamics
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evaluate conceptual models for validity. In radiation oncology specifically,
mathematical modeling has a rich history, likely due in part to the field
of medical physics. Approximately 50% of cancer patients are prescribed
radiotherapy (RT) during their treatment course, either alone as definitive
therapy or in combination with surgery, chemotherapy, targeted therapy,
or immunotherapy. As our understanding of the complexity of tumor
heterogeneity grows, motivation for the tailoring of cancer therapy to
individual patients increases, thus driving the push towards precision
medicine. While the flood of new available genomic data has thus far
affected decisions regarding chemotherapy and certain targeted biological
agents, it has yet to impact radiotherapy: the selection of total dose and
fractionation is currently based empirically on average clinical outcome data,
albeit often from randomized trials.

Historically, the main driver of tumor response to radiotherapy was
thought to be cytotoxic DNA damage, however, the immunomodulatory
effects of radiation can no longer be ignored, leading to research into potential
synergy between radiotherapy and immunotherapies. While the exact
mechanisms and relationships between radiation dose, dose fractionation,
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and immune response have not yet been fully elucidated, ongoing preclinical
studies and clinical trials are investigating the combination of RT with
various types of immunotherapies such as vaccines, adoptive cell transfers,
and checkpoint inhibitors against cytotoxic T-lymphocyte-associated protein
4 (CTLA-4) or programmed cell death protein 1 (PD-1) or the associated
PD-1 ligand (PD-L1) [8-10]. These studies aim to answer important
questions regarding combination treatment schedules, such as optimal #iming
(sequential vs concurrent) and dose fractionation (hyper-, standard-, or hypo-
fractionation) to achieve superior tumor inhibition.

Mathematical oncology is well positioned to assist in these investigations,
cither by elucidating underlying biological mechanisms of radio-
immunotherapy synergy, or by predicting which patients may benefit
most from these combination treatments. Here we review published
pre-clinical data and clinical trials investigating these questions and
discuss the contribution of published mathematical models of tumor
immune interactions focusing on those that explicitly include radiotherapy
simulations.

The biological response to radiotherapy

The administration of total radiation dose as smaller fractionated doses,
often over many weeks, creates a therapeutic window for normal tissue to
recover from radiation injury. The biological effects of fractionated radiation
are often described by the 5 R’s, namely radiosensitivity, repair, reoxygenation,
reassortment, and repopulation [11,12]. Seminal studies in the 1980s showed
that different types of cells exhibit a wide range of inherent radiosensitivity
[13]. Indeed, significant variations in radiosensitivity between cancer types,
and even between tumors of the same type have recently been reported
[14]. Understanding tumor and patient-specific sensitivity to radiation, and
particularly to radiation dose fractionation, may help inform the choice of RT
schedule, to ultimately control the tumor whilst preventing overtreatment of
radiosensitive tumors.

Radiation causes DNA damage primarily in the form of double strand
breaks [15-17]. Cellular attempts to repair such damage between therapeutic
radiation fractions may lead to cell cycle arrest, recovery, or death, depending
on the degree of DNA damage induced and the cells’ capacity for repair.
Dysregulation of DNA repair mechanisms occurs early on in carcinogenesis
[18] across many cancer types. By comparison, DNA repair processes are
usually intact in normal cells, allowing for repair of radiation induced
damage in normal cells which mediates reduced radiation toxicity in normal
tissue [19]. The extent of DNA damage induced by radiation is strongly
dependent on tissue oxygenation, as radiation energy deposited in the tissue
creates reactive oxygen species that in turn damage DNA [20]. Consequently,
tumor cells in hypoxic conditions often require approximately three times
the radiation dose to exhibit a comparable response to tumor cells in
well oxygenated, normoxic conditions. Notably, the discrepant effects of
equivalent radiation doses in hypoxic versus normoxic conditions can be
quantitatively described by the oxygen enhancement ratio [21]. Several
factors determine oxygen availability in the tumor bed, including the varying
degree of functional vasculature in the tumor. Radiation-induced cell death
may release pressure on obstructed blood vessels in a dense tumor, thereby
increasing blood flow and reoxygenation of the tissue and increased sensitivity
to subsequent radiation fractions.

Furthermore, cells in different cell cycle phases exhibit differential
levels of radiosensitivity and capacity to initiate DNA damage repair
[22]. Killing of radiosensitive cells and re-oxygenation of the tumor
allows for cells to redistribute into cell cycle phases that confer higher
radiosensitivity. Simultaneously, tumors may enter phases of accelerated
repopulation. Historically, the repopulation of tumors after fractionated
doses was attributed to the gradual proliferation of surviving tumor cells
[23,24]. However, factors released by dying malignant cells have recently
been implicated as inducers of rapid re-growth and subsequent repopulation

[25]. Additionally, dying cells may also release damage associated molecular
patterns (DAMPs) which stimulate an immunogenic response, while other
forms of cell death may be immunogenically silent [26]. Furthermore,
tumors that quickly regenerate after radiation have been reported to exhibit
reduced local control under prolonged treatment plans [27]. Thus, the length
of radiotherapy treatment schedules may also play an important role in
treatment response [28], and therein exist as a crucial factor to consider when
making treatment decisions.

The immunomodulatory effects of radiotherapy

Radiation kills cells either directly via induction of double stranded
DNA breaks, or indirectly by generating free radicals from water molecules
within the cell which react with DNA to cause macromolecular damage
[29]. The resulting DNA damage varies in lethality, depending on the
severity and pervasiveness of the induced DNA damage and functionality
of DNA damage repair pathways. However, loss or disruption of DNA
damage repair pathways occurs early in carcinogenesis [18], leaving cancer
cells sensitive to DNA damaging agents. Following irradiation cells may
undergo various forms of cell death, including immunogenic cell death [26].
Critically, the form of death cancer cells undergo significantly impacts their
induction or suppression of immune responses. Apoptotic or other forms of
immunogenically silent cell death hinder activation of anti-tumor immune
responses whereas immunostimulatory forms of cell death, most notably
immunogenic cell death itself, support radiation induced immune activation
[30]. Thus, the capacity for radiation to induce immune activation also hinges
on the propensity for irradiated tumor cells to undergo different forms of cell
death which likely occurs in a tumor type and radiation dose specific manner.

Notably, the context in which DNA is detected significantly impacts
the cellular effects. In the context of pro-inflammatory cues, exposure to
DNA can stimulate immune activation, whereas exposure to DNA under
homeostatic conditions can promote development of immunosuppressive
subsets to avert development of auto-immune responses. Release of additional
DAMPs via immunogenic cell death during irradiation including heat shock
proteins (HSPs), nuclear protein HMGBI, calreticulin and ATP all promote
the development of antitumor immune responses upon DNA exposure
[31-33].

Cytosolic DNA-sensing via the ¢cGAS-STING pathway among others
and detection of both intra- and extracellular DNA via toll ligand receptors
(TLRs) promotes immune activation in response to radiation induced DNA
damage. Detection of DNA damage within cancer cells occurs via direct
interaction of the cGas protein with cytosolic DNA which has leaked
from the nuclei or mitochondria of damaged cells. There cGas associates
with STING which undergoes activating phosphorylation and induction of
downstream signaling to induce type I interferon production and secretion
of inflammatory cytokines. Furthermore, cytosolic DNA can be sensed by
intracellular TLR receptors, most notably CpG motif recognizing TLR9
which stimulates subsequent activation of the NFKB transcription factors
upon DNA binding. Additional intracellular sensors of cytosolic DNA
include AIM2, which stimulates caspase 1 activation; RIG1 and DAI which
stimulate downstream STING activation and LRRFIP1. Notably, in the
context of transformed cells, activation of each intracellular DNA sensor
hinges on intact expression of pathway members and the sequence specific
motifs present in cytosolic DNA. Overall, exposure of tumor cells to cytosolic
DNA can result in induction of immunogenic cell death via STING-
pathways induced NLRP3 activation, AIM2 induced caspase activation,
and TLR-mediated induction of mitochondrial pore formation. Collectively
induction of tumor cell death in response to cytosolic DNA stimulates
production of immunostimulatory cytokines and release of additional
DAMPs [34,35].

Similarly, tumor infiltrating immune cells can react to radiation induced
release of DNA via several mechanisms. Immune cells may also react to
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the release of tumor DNA into the extracellular environment or respond to
DNA from phagocytosed/endocytosed tumor debris [36]. In immune cells,
exposure to DNA triggers cell type specific responses. Exposure of immature
dendritic cells to DNA promotes dendritic cell maturation, secretion of
immunostimulatory cytokines and expression of costimulatory markers.
Exposure of B cells or macrophages to DNA can provoke upregulation of
antigen presenting functions and secretion of stimulatory cytokines [37].
Exposure of T cells to tumor DNA can also promote development of anti-
tumor effector functions including production of type I interferon; however,
prolonged exposure to DNA can activate cell death pathways in T cells [38].

In terms of stimulating tumor specific T cell responses, exposure to
DNA directs maturation of antigen presenting cells and promotes uptake of
antigen containing tumor debris material released from dying tumor cells
following irradiation. Importantly, presentation of tumor antigens alongside
costimulatory markers occurs after DNA-induced maturation of antigen
presenting cells. Additionally, DNA exposed antigen presenting cells secrete
chemotactic factors which promote T cell infiltration into the tumor which
further amplifies the anti-tumor potential of radiation induced DNA release
(39].

Multiple pre-clinical studies have shown that radiation affects this process,
with some reporting immune stimulation, while others have observed
immune suppression. For instance, although radiation has been shown to
increase dendritic cell maturation [40], it may also impair the antigen
presentation ability of mature dendritic cells [41]. Increases in MHCI
expression levels on cancer cells following radiation have also been reported
[42], leading to an increase in the recognition of tumor cells by activated
CD8+ T-cells, although radiation has been shown to be detrimental to
vasculature in the tumor bed, thereby inhibiting the trafficking of immune
cells [43]. Furthermore, the radiation-induced increase in programmed
death-ligand 1 (PD-L1) expression may strengthen the immune-suppressive
capacity of tumor cells [44]. A thorough review of the contradictory
immunological consequences of radiation can be found elsewhere [45,46]. In
the face of so much evidence, a sixth R’of radiobiology, that of immunological
response has been postulated [47].

The radiation-induced immune response can act both locally at the
site of irradiation, and systemically, mediating regression of distant tumors
[48]. Previously thought to be a rare event, with only 46 cases reported
during the 1969-2014 period [49], the abscopal effect has become more
common, especially in pre-clinical and clinical trials of radio-immunotherapy
combinations [50]. However, the exact relationships between radio-
immunotherapy schedules and the induction of the abscopal effect remain
to be elucidated. Below we briefly discuss pre-clinical and clinical studies
investigating these matters.

Investigating the timing of radiation with
concurrent immunotherapy

Dovedi et al. showed survival in a murine colon carcinoma model was
significantly higher in mice receiving anti-PD-L1 concurrently with 2 Gy x
5 radiation as opposed to sequentially [51]. Investigating this result, the
authors observed a transient but significant increase in PD-1 expression on
both CD4+ T-cells and CD8+ T-cells, which was present 24 hours after
the last dose of radiation but not 7 days after. This suggests the existence
of an optimal timing for administration of this immunotherapy when in
combination with radiation. However, PD-1 failure may interfere with
subsequent radiation responses [52]. Young et al. investigated a similar timing
schedule in the same murine model as Dovedi et al., but in combination
with either an anti-CTLA-4 antibody or an anti-OX40 antibody [53].
OX40 (CD134) is a co-stimulatory molecule transiently expressed on T
cells following activation. The antibody binds to and activates the OX40
receptor, inducing the proliferation of T cells [54]. Although the overall
survival of mice treated with the radiotherapy and anti-CTLA-4 antibody

combination was improved compared to those treated with monotherapies,
all mice treated with the inhibitor prior to irradiation had complete tumor
clearance. However, the same results were not seen in mice treated with
combinations of radiotherapy and the anti-OX40 agonist antibody; in fact,
administration of this immunotherapy a day affer radiation resulted in the
highest overall survival. Similar experiments using a MMTV-PyMT model
did not yield the same results, indicating that the optimal timing of the
combination therapy may also be cancer type and immunotherapy type
specific.

The KEYNOTE 001 trial (NCT01295827), which investigated the PD-
1 targeted antibody pembrolizumab for treatment of non-small cell lung
cancer (NSCLC), found that patients who received radiotherapy prior to
the trial demonstrated higher overall and progression free survival compared
to patients who had not received any radiation [55]. In addition, NSCLC
patients in the PACIFIC trial (NCT02125461) treated with chemoradiation
(CRT) and the PD-L1 inhibitor durvalumab, showed a higher progression
free survival when receiving the immunotherapy within 14 days following
CRT, compared to patients with longer wait times until durvalumab
[56]. Recruitment for NCT02239900 which investigates concurrent vs
sequential administration of the anti-CTLA-4 antibody ipilimumab and
stereotactic body radiation therapy (SBRT) for both liver and lung cancers
has recently been completed, although results are still pending. A similar trial,
NCT03223155, is focused on the sequencing of ipilimumab, nivolumab and
SBRT for NSCLC with estimated completion in December 2022.

Investigating radiation dose fractionations for
immune activation

Dewan et al. investigated the immunological consequences of radio-
immunotherapy in a bi-lateral murine mammary adenocarcinoma model
[57]. Mice were randomized into cohorts receiving either no treatment to
the primary tumor or 20 Gy x 1,8 Gy X 3,0r6 Gy X 5 on consecutive
days with or without an anti-CTLA-4 antibody at various times following
radiation. The primary tumors of mice receiving radiation alone exhibited
comparable responses regardless of dosing schedule. However, combination
therapy resulted in improved primary tumor inhibition, with complete
regression of the primary tumor observed in mice treated with either the
8 Gy x 30r6 Gy x 5 dose schedules. In addition, complete regression of
2 of 5 non-irradiated secondary tumors was reported in mice treated with the
8 Gy x 3 combination therapy, indicative of systemic anti-tumor immunity
and radiation-induced immune-mediated abscopal responses. In contrast, the
6 Gy x 5 combination exhibited superior responses in a murine colon
carcinoma model, lending further support to the notion that optimal dose
fractionations may be tumor type specific.

Vanpouille-Box et al. completed a similar investigation using radiotherapy
doses of 8 Gy, 30 Gy or 8 Gy x 3 and an anti-CTLA-4 antibody [58].
Delayed growth of the irradiated primary tumor was observed, but only the
8 Gy x 3 combination treatment regimen resulted in complete regression of
primary tumors (6 out of 7 tumors). Although significant growth inhibition
of the unirradiated secondary tumors was observed in mice that received this
combination therapy, tumor volumes at the abscopal site were comparable
between all other cohorts.

Immunostimulatory properties effects have also been reported following
low dose radiation. In a preclinical study of pancreatic cancer, Klug et al.
observed higher levels of infiltration by tumor specific T cells following
radiation with 0.5 Gy compared to more clinically standard doses of 1 Gy,
2 Gy or 6 Gy. The authors compared infiltration levels of host derived CD8+
T cells following priming of the tumor with either 0.5 Gy, 1 Gy, 2 Gy or 6 Gy
prior to transfer of tumor specific CD8+ T cells. Priming with 1 Gy resulted
in the highest levels of infiltration of host derived CD8+ T cells, although
all treatment groups had significantly higher levels of infiltration than the
control group [59].
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Multiple clinical trials have investigated optimal radiotherapy dose
fractionation schemes to be used in combination with immunotherapies.
For instance, NCT 02659540 investigated the combination of ipilimumab,
nivolumab and RT in the setting of stage IV melanoma. Here radiation
was administered in either 3 Gy x 10 or 9 Gy X 3 fractions. A limited
number of patients completed this trial, only 4 and 2 of the 10 enrolled
patients enrolled in each cohort respectively, yet the results suggest that
treatment with the lower fractionation exhibits a higher number of partial
responses and a lower number of progressive disease occurrences compared
to the hypofractionated regimen [60]. NCT02888743 is investigating the
combination of monoclonal antibodies that inhibit CTLA-4 and the PD-
L1:PD-1 interaction and radiotherapy in high or low dose fractions, focusing
on colorectal cancer and non-small cell lung cancer, with an expected
completion date of December 2021. A similar trial, NCT03085719, is
actively recruiting head and neck squamous cell carcinoma patients to
investigate the combination of anti-PD-1 immunotherapy and three high-
dose RT fractions, with or without two additional low-dose fractions. Started
in 2015, NCT 02406183 looked at ipilimumab-SBRT combination for the
treatment of metastatic melanoma. Here, radiotherapy was administered in
either 8 Gy x 3,10 Gy x 3, 0or 12 Gy x 3 dose fractionation schemes,
no results have yet been posted.

More in-depth discussions of clinical trials investigating the combination
of radiotherapy and immunotherapies can be found elsewhere [8-10].
While these clinical studies provide invaluable insights into selected
protocols, to exhaustively evaluate every possible radiation dose and dose
fractionation with different sequencing and timing of the various immuno-
therapeutics remains infeasible [61]. Integrating mathematical modeling into
experimental and clinical research may help analyze the complex, non-linear
multifactorial treatment responses [62-64].

The purpose of mathematical oncology

Interest into mathematical oncology has increased with the growing
realization that the translation of iz vitro and in vive results into clinic is
hindered by crucial differences between humans and animal models [64,65].
The burgeoning field of mathematical oncology may be uniquely positioned
to help bridge the scales from pre-clinical to clinical studies. The type of data
at hand and the scale of the system under consideration both inform the type
of mathematical model to be developed [66].

Modeling of the temporal evolution of data on the population level is
best done using deterministic modelling methods such as ordinary differential
equations, or partial differential equations if also accounting for spatial
evolution. However, when the available data is of higher granularity and
the system is instead focused on interactions between or movement of
discrete individuals (or cells), agent-based models (ABMs) are better suited.
Individuals within these models follow predetermined sets of rules giving
rise to emergent behavior, which may vary with each simulation due to the
inherent stochasticity of this model type. Thus, a high number of simulations
is required to ensure consistency of model outcomes [67]. Conversely, the
behavior of deterministic systems is fully determined by initial conditions
and the parameter set used.

The extent to which the underlying biological mechanisms are reflected
in a mathematical model may inform its use. For instance, mechanistic
models, which include in-depth quantitative descriptions of a system’s
underlying biological processes, can be used in hypothesis generation to
further knowledge [68]. Alternatively, descriptive models, which may include
little to no biological mechanism explicitly, can be used in predictive settings
[7,69-71]. For predictive modeling, it is paramount to integrate the model
with experimental and clinical data [62-64]. Successful studies calibrate
mathematical models with relevant data, validate the model on independent
data sets, and test the prediction accuracy on known outcomes before making
predictions about novel treatment protocols [72-76]. Most challenging for

such interdisciplinary modeling is to match available data with the right
modeling approaches to test specific scientific hypotheses. Often, further
abstractions and simplifications have to be made to accommodate and balance
lack of data, biological uncertainty, and mathematical modeling complexity.
These can most successfully be overcome by a close dialog of interdisciplinary
collaborations.

Mathematical models that faithfully include a myriad of tumor-associated
cell populations, their interactions, associated biological processes, and
underlying mechanisms in the tumor-immune microenvironment under
radiotherapy and/or immunotherapies would be incredibly complex (see
Fig. 1). However, assumptions regarding the cellular populations can simplify
the system sans treatment to a six-compartment model: Cancer cells (C),
dying cancer cells (D), tumor associated antigen (A), antigen presenting
cells (P), effector immune cells such as CD8+ T cells (E), and regulatory
immune cells denoted by (R). A general formulation of such a mathematical
model is presented below, where C, D, A, P, E and R denote the
temporal evolution of the respective population. While this formulation
may be a relatively faithful representation of the population level of the
underlying biological system, the complexity requires large amounts of data
for calibration, and limits the possible mathematical analysis and utility of
the model [77]. Development of mathematical models must be done with
the trade-offs between complexity and simplicity in mind.
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In this system however, additional simplifying assumptions can be made,
resulting in a so-called predator-prey or Lotka-Volterra type mathematical
model [78,79]. This model describes the proliferation of cancer cells, influx
and recruitment of tumor specific effector immune cells, and the interactions
between these two populations. A general example of the structure of such a
model can be seen below. The oscillatory behavior of this system is dependent
on parameter values and recapitulates the immunoediting phase of the three
E’s as postulated by Dunn et al. [80] (Fig. 2).

proliferation  jmmune—mediated death — death

. —~ —_——— —~ =

C= FC) - gCE  -nuC
influx & recruitment exhaustion death

. —_—— —_——

E= kE,C) —m(C E)—dE

Thus, assumptions regarding the importance of subpopulations and their
contributions yield models of varying simplicity for the same biological
system. The Akaike Information Criterion (AIC) [81,82] is one of several
measures that report on a model’s ability to balance data fitting and
complexity, relative to others fitted to the same dataset. Comparison of
AIC values can be used in model selection, and hypothesis generation.
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Fig. 1. The tumor immune microenvironment (TIME), and the effects of radiation and immunotherapy thereon. A) The tumor immune microenvironment,
consisting of various cell types including cancer and immune subpopulations, some of which are shown. Interactions within the TIME include the uptake and
processing of tumor associated antigen (TAA) by professional antigen presentation cells (APC) such as dendritic cells; the influx of TAA specific activated T
cells, the recognition and lysis of cancer cells. Additionally, activated T cells can be regulated and suppressed by T-reg cells or tumor cells via the PD-1:PD-L1
axis or CTLA-4, and macrophages can phagocytose cancer cells. B-C) Interactions within the TIME can be generalized as occurring between six compartments:
cancer cells, doomed cancer cells, TAA, APCs, effector immune cells, and regulatory immune cells. Black arrows denote these interactions, with inhibitory
interactions shown as blocked arrows, and stimulatory interactions indicated by sharp arrows. Administration of (B) radiotherapy and (C) immunotherapy
affect these interactions in different ways, detailed reviews of which can be found elsewhere [45,151]. Figures created with BioRender (www.biorender.com).
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Fig. 2. The dynamics of a predator-prey type model of cancer-effector immune interactions. A) Model schematic. Cancer cells (C) proliferate, (curved returning
arrow), and die (outgoing arrow). Effector cells (E) are recruited (incoming arrow) and die (outgoing arrow). The interactions between cancer cells and effector

immune cells are inhibitory, denoted by the blunt arrow. Inhibition of cancer cells by effector cells recruits more immune cells (curved, returning arrow). B)
The phase-plane of the model in (A). The red trajectory illustrates how the two populations change with regards to each other. Starting from the bottom
left, the cancer cells increase in number while effector cells are recruited. Once the inhibitory effect exerted by effector cells is larger than the replacement of

cancer cells, the trajectory moves towards the vertical axis. At this point the effector population is unsustainable by the cancer cell population and experiences a
rapid decline, and the trajectory moves towards the horizontal axis. These oscillations continue indefinitely. C) Two solutions of the model in (A). Top panel,
this model can recapitulate the three E’s of immunoediting postulated by Dunn et al. [80]: elimination (¢1), equilibrium (¢2) and escape (£3). Bottom panel,

solutions showing the explicit oscillatory behavior described in (B).

This is the approach Yamamoto et al. followed in their investigation of
the impact of the immune system on transient increases in prostate specific
antigen (PSA) levels in prostate cancer patients undergoing interstitial
brachytherapy [83]. Comparison of AIC values of two models, one with and
one without an immune compartment, suggests the immune compartment
is a necessary inclusion to explain the PSA bounces. The authors go on
to confirm, at least mathematically, that patients who experience this PSA
bounce have significantly higher mean densities of CD8+ T cells and
CD3+ T cells pre-treatment, although further validation of this hypothesis is
required.

Several mathematical models that predict response to radiation have
been developed, but the most widely used is the linear quadratic (LQ)
model. The underlying assumptions can be summarized as: radiation-induced
cellular death is due to sufficient levels of irreparable double strand DNA
breaks created directly by ionizing radiation, or through interactions between
non-lethal (single-strand) DNA breaks [84]. The LQ model, SF(d) =
exp(—ad — Bd?), predicts the surviving fraction of a population following
a radiation dose of 4 Gy, where @ Gy~' denotes the cellular responses
due mainly to ‘single-hit’ damage, and S Gy‘z denotes ‘multi-hit’” damage
from independent radiation events [85]. Estimates for these radiosensitivity
parameters of various cancer types have been reported [14] and are useful
in the calculation of the biological effective dose (BED) [86,87]. BED can
be used to compare dose fractionation schemes, and to identify alternative
fractionation regimens [88].

Radiobiological response models have been used in more complex models
of tumors undergoing treatment with radiotherapy, such as the seminal work
by Leder et al. [73]. Here the authors used an approach that iteratively
integrates theoretical and experimental methods to develop a mathematical
model with which to predict optimal radiotherapy schedules for platelet
derived growth factor (PDGF) driven glioblastoma. In this interdisciplinary
study, the mathematical model was calibrated with experimental data and
used to identify two optimal treatment schedules. The response predicted for

these schedules showed improved response over standard, hyper- and hypo-
fractionated regimens with equal total dose. These model predictions were
subsequently verified in a glioma murine model.

Proliferating cells are more radiosensitive than quiescent cells [89], and
thus the proportions in which these cells appear in a tumor may influence
response to radiation. This is the basis of Prokopirou et al.’s proliferation
saturation index (PSI), which originally used a logistic-type growth model to
implicitly link the proliferative fraction of the tumor to radiation sensitivity
and response [90]. It has since been shown to be descriptive of tumor
data for various growth models [91] and different cancer types including
non-small cell lung cancer [92] and head and neck cancers (HNC) [93].
PSI can specifically be used to compare predicted outcomes for various
treatment schedules with different BEDs, using only two data points,
making it useful for identifying patients who may benefit from alternative
radiation schedules. The PSI model is currently being validated in the
ongoing clinical trial NCT03656133, using patient-specific PSI to select
between a hyperfractionated regimen of 1.2 Gy doses twice daily or the
standard 2 Gy daily fractionation for oropharyngeal cancer patients. In
a recent variation of the PSI model, Zahid et al. simulated the effect of
radiation not by linear-quadratic cell survival but by modulation of the
tumor microenvironment to prospectively predict patient-specific responses
to radiation in head and neck cancer with high accuracy [74]. Of note,
the PSI model assumes that the proportion of cells that proliferate decrease
as the tumor approaches its carrying capacity, which in turn decreases the
overall tumor response to radiation. Routine radiological imaging cannot
give sufficient resolution into intra-tumoral composition to validate such
assumption. An alternative explanation for growth saturation could be a
balance of rapid proliferation and high cell death rates. In such scenario, the
tumor would remain radiosensitive even at dormancy. Different mathematical
models have explored these alternatives and discuss future data collection
suggestions to better decipher the intra-tumoral dynamics during different
tumor growth and dormancy phases [94-96].
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A different application of mathematical modeling in radiation oncology
was demonstrated in the development of the radiation sensitivity index (RSI),
a linear regression model that relates the expression of ten genes to the
radiosensitivity of a cell line, specifically for single doses of 2 Gy [97]. First
proposed in 2009, this model has been validated for multiple disease sites,
including head and neck, rectal, and esophageal cancers [97], breast cancer
[98], and glioblastoma [99]. Building on this work, Scott et al. developed a
genome-based model for adjusting radiotherapy dose (GARD) [100]. This
model links patient specific RSI values and the LQ model to radiation
dose fractionation schedules to evaluate dose-fractionation schemes. This
model may enable personalization of treatment schedules according to patient
radiosensitivity or inform clinicians as to which patients would benefit from
receiving treatments other than radiation. GARD has been retrospectively
validated using lung, breast, and pancreas cancer cohorts [100,101].

Treatment types or plans that aim to protect surrounding normal tissue are
also on the rise, such as temporally feathered radiotherapy (TFRT). Recently
proposed by Alfonso et al. [102], this strategy consists of specific daily
treatment plans that result in the sequential administration of high and low
doses to each organ at risk (OAR). The underlying logistic-type model for the
recovery of normal tissue from sublethal damage takes OAR-specific recovery
rates into account and can easily be made patient-specific. The first stage I/IIa
trial, NCT03768856, using TFRT was recently completed for head and neck
cancer [103]. Further clinical investigation and implementation has recently
been rendered more clinically accessible by the publication of a step-by-step
technical paper on TFRT utilization [104].

Mathematical models of tumor immune dynamics

Mathematical models of tumor-immune interactions have a long history,
and range in complexity. Some focus on the effect of anti-tumor effector
immune cells such as CD8+ T cells, natural killer cells, or classically activated
macrophages. These models generally have the dynamics of ecological
predator-prey systems, with the immune system preying on tumor cells.
Other models may include separate compartments for naive T-cells [105],
immunosuppressive cell types [106] and cytokines [107]. Reviews of these
models can be found elsewhere [108—111]. Many of the models we discuss
here are based on pioneering work done by Kuznetsov et al., wherein a model
of the interaction between cytotoxic lymphocytes and cancer cells is proposed
[112,113]. The mathematical model is a good fit to growth data of a murine
B-cell lymphoma (BCL;) model [114], and can predict the observed regrowth
in the murine model to which it was calibrated [115]. The steady states of
this model are descriptive of tumor immunoediting phases [80,116], namely
tumor dormancy due to a tumor-immune equilibrium and tumor escape
despite a strong anti-tumor immune response.

Trafficking of activated T cells between metastatic sites after local therapy

Poleszczuk et al. modeled the activation and movement of activated
effector T cells within and between distinct metastases [117] following
an unspecified local therapy. The growth dynamics of individual sites
are governed by logistic growth with immune predation, as in Kuznetsov
et al.’s tumor regrowth model [113]. Here, the immune compartment is
extended to include the probability that T cells that are activated at one
anatomical site arrive at a tumor in a different location after extravasation
out of the circulatory system, dependent on the blood flow fraction to
the different organs and tissues. Analysis of a virtual cohort of 40 patients
with combinations of lung, breast, liver, and kidney metastases suggests that
the strength of the immune response following local therapy is a complex
combination of the different tumor volumes and their respective locations.
Thus, decisions of which metastases to target with local therapies to induce
systemic immune responses may be highly patient-specific.

Systemic consequences of local radiotherapy

Walker et al. extended Poleszczuk et al.’s model to explicitly consider the
cytotoxic and immune activating effects of radiotherapy [118], by including
a subpopulation of lethally damaged tumor cells that contribute to immune
recruitment. The net effect of radiation on immune cells is also included.
The model is fit to data from a BCL; murine model [114], and used to
investigate the systemic immune effects after local radiotherapy. Analysis
of model simulations suggest that the order in which metastases emerge,
the corresponding growth rates, as well as which site is focally irradiated
combine to yield systemic pro- or anti-tumor immune response. These
relationships and the underlying mechanisms, whilst intriguing, remain as
of yet experimentally unvalidated.

Considering instead the relationship between radiation-induced immune
responses, dose sizes and inter-fraction time, Serre et al. proposed the concept
of an immunologically effective dose (IED). This metric can be used for
comparing radiation dose fractionation schedules to identify those expected
to result in higher systemic immune responses [119]. As with most conceptual
models, experimental and clinical validation will be necessary before IED can
be translated into clinical practice.

Treatment schedules to protect the induced immune response

Sung et al. investigated the relationships between both the radiation
schedule length and inter-fraction time, and the recovery period of the
immune system of hepatocellular carcinoma patients treated with radiation
[120]. This model considers primary tumor cells, radiotherapy-inactivated
tumor cells releasing a tumor-specific antigen, metastatic cells, and circulatory
lymphocytes (CL). The tumor is assumed to follow exponential growth, and
interaction with lymphocytes occurs along the periphery. Radiation effects on
the tumor are modelled using the LQ model, but the higher radiosensitivity
of lymphocytes motivates a modification by omitting the quadratic term.
Thus, in this model the surviving fraction of lymphocytes after a dose 4 Gy is
given by SF7.(D;) = e**PL where Dy denotes the dose per fraction delivered
to a given volume of circulating lymphocytes. The model, calibrated to
longitudinal CL data of 17 hepatocellular carcinoma patients, is used to
simulate various radiotherapy schedules. Comparisons of the recovery time
of CLs reveals that immune recovery time is shortest after treatments with
fewer total fractions. However, when treated with a fixed number of fractions,
schedules with shorter inter-fraction breaks are ideal for immune recovery. It is
conceivable that inter-fraction times are further dependent on several patient-
specific factors, including the tumor growth and repopulation rates as well as
the radiosensitivity, trafficking and extravasation of cytotoxic immune effector
cells, and the immunological composition of the tumor microenvironment.

Possible predictive biomarkers for response to radio-immunotherapy

Byun et al. investigated the relationship between the ratio of PD-1 and
PD-L1 expression levels and the tumor size pre- and post-treatment with
radio-immunotherapy [121]. The efficacy of both treatments is modelled
by exponential decay. After calibration to longitudinal data from a murine
mammary carcinoma model [44], a global sensitivity analysis between the
parameters and tumor size throughout therapy suggests that the ratio in which
PD-1 and PD-L1 are expressed on effector T cells may be informative as to
which patients will benefit from radio-immunotherapy.

The relationship between vascularization of tumors and radiotherapy
response

Hawzikirou et al. proposed a tumor-immune-vasculature model, which
they used to investigate immune- and vasomodulatory combination therapies
but not RT [122]. This model assumes a radially symmetric tumor, with an
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outer vascularized proliferative layer and an inner avascular region composed
of a proliferative rim, a hypoxic quiescent section, and a necrotic inner core.
Immune cells are recruited by immunogenic signals released by tumor cells
and those undergoing immunogenic cell death. Tumor-immune interactions
initially occur along the periphery of the tumor, but immune cells rely on
the degree of functional vasculature to infiltrate and attack the tumor. This
model has subsequently been modified by Montaseri et al. [123] and Alfonso
et al. [124] to investigate the impact of vascularity on treatment success
following radiotherapy. Montaseri et al. developed a radiotherapy planning
framework based on the application of impulse control theory to Hatzikirou’s
model [123]. This approach was chosen to determine radiation schedules
which lead to a tumor-free state. In particular, the authors link tumor growth,
radiosensitivity, vascularity and hypoxia, as well as immune response to the
required number of fractions with a specific dose to eradicate a tumor. Once
calibrated to patient data, and validated, this framework could be used to
personalize treatment.

Alfonso et al. modified Hatzikirou’s model to investigate the impact of
vascularity on radiation response and the efficacy of radiation induced anti-
tumor immune responses [124]. Simulation outcomes suggest the existence
of a range of tumor sizes for which the efficacy of combination therapy
is high. Outside this range, however, tumor reduction by radiation may
be too small or too large to generate an immune response of sufficient
strength to control the tumor. Comparison of outcomes for iz silico tumors
treated with schedules of various lengths reveal that a higher number of
total fractions, and thus longer schedules, may lead to progressive disease,
suggesting the existence of a subset of patients that may benefit from radiation
de-escalation. The impact of treatment breaks was investigated via simulation
of a standard weekday-only schedule vs. consecutive fractions without breaks.
Results suggest that regardless of the degree of functional vasculature and
simulated tumor outcome, treatment breaks lead to larger populations of
radiation-induced effector cells suggesting that these schedules may be ideal
candidates for radio-immunotherapy combinations. Further analysis reveals
the existence of ranges of vascularity and effector recruitment for which
each type of schedule would be better suited. For instance, treatments
with weekend breaks led to control of poor to intermediately vascularized
tumors, but not for those with high levels of functional vasculature. Thus,
patients may benefit from treatment personalization according to their tumor
microenvironments. However, experimental, and clinical validation of the
model results are necessary.

Investigating personalization of radio-immunotherapy ro patients’
immune responses

Sotolongo-Grau et al. proposed a simple predator-prey like model
describing tumor-immune interactions [125]. The effects of radiation on
cancer cells are included by the addition of a non-clonogenic tumor cell
compartment which has no contribution to tumor growth but retains the
ability to induce and suppress the immune response. This suppression is
mediated by secreted factors such as interleukins. The LQ model was used
to describe the effect of radiation on both the tumor and immune cell
populations. The authors identified parameters for which tumor growth
isn’t controlled by the anti-tumor immune response due tumor-mediated
suppression of the immune system. Analysis of a large cohort of virtual
patients with characteristics within this region suggests a relationship between
the treatment success probability, immune efficiency, and the so-called tissue
effects that depend on the radiosensitivity parameters of the tissue. Based
on this the authors suggest a method for personalization of dose according
to immune efficacy. However, by sampling values for the tissue effects from
a Gaussian distribution, rather than clinical or preclinical data, this model
requires rigorous validation before being used for predictions.

Investigating the optimal radiation dose fractionation schedules to
induce immune responses

Poleszczuk and Enderling investigated the induction of a systemic anti-
tumor immune response following treatment with radio-immunotherapy
[126]. This model considers two spatially distant tumors, of which only one
is irradiated, although activated T-cells are assumed to travel between the two
sites. Comparison of simulated post-treatment tumor volumes suggest that
the optimal dose fractionation scheme for the clinically relevant dose range
of 60 — 70 Gy is 5 — 6 fractions in the range of 11 — 13 Gy as opposed to
the clinically used 2 Gy x 30. While this model was calibrated to murine
data, results of recent clinical studies corroborate these findings [127].

Serre et al. reports a model describing the tumor dynamics, antigen,
immune effector cells, primary immune response, and secondary immune
response [128]. Radiotherapy and two checkpoint inhibitors are included,
namely anti-PD-L1 and anti-CTLA-4. The model is calibrated to data from a
murine fibrosarcoma model and is able to describe the non-linear relationship
between tumor size and rejection probability observed in a preclinical study
[129].

Chakwizira et al. adapted the model from Serre et al. to investigate the
synergy between radiotherapy and 1-MT (1-methyl tryptophan) [130]. This
immunotherapy abrogates tumor-tolerance developed by a variety of immune
cells by inhibiting IDO (indoleamine-2,3-dioxygenase) [131]. The immune
component is adapted via removal of the anti-PD-1 and anti-CTLA-4 specific
terms, and the assumption that the tumor is strongly immunosuppressive
on days without immunotherapy but has no immunosuppressive ability on
days that 1-MT is administered. From the lack of long-term survivors in the
syngeneic rat glioma model to which this mathematical model is calibrated,
Chakwizira et al. assume that the effect of the memory immune cells is
negligible, and thus omit it from the model completely. I silico simulations
suggest the existence of an optimal number of fractions for a range of BED
values, which increase the synergy between the treatments leading to increased
predicted survival time. However, the model requires validation before it can
be used in a non-hypothesis generating manner.

In 2020, Ahlstedt et al. investigated the effect of single- or two-fraction
radiotherapy in combination with 1-MT in a syngeneic rat glioma model
[132]. The authors adapted the model proposed by Chakwizira et al. [130] to
include Gompertzian tumor growth as opposed to exponential tumor growth.
The model yields a good visual fit to tumor area measurements, and model
simulations suggest that variations in inter-fraction timing may affect tumor
regression at day 18, with intervals of between 5 and 7 days resulting in the
lowest predicted tumor areas. However, statistical significance remains to be
further demonstrated.

Kosinsky et al. presented a tumor growth model [133] with detailed
immune components related to the cancer-immune cycle described by Chen
and Mellman [134]. These include tumor antigen levels, population levels
of mature dendritic cells, differentiated and non-differentiated T cells, and
an immune-suppression component related to PD-L1 expression levels. The
model was calibrated and validated on data from a CT26 murine colorectal
carcinoma model and can recapitulate observed growth dynamics of control
tumors and those receiving treatments, including radiation and anti-PD-L1
monotherapies, and combinations of these. After investigation of various
combination therapy characteristics including timing and dose size, the
authors suggest that administration of the immune checkpoint inhibitor prior
to, or concurrently with, radiotherapy results in superior tumor responses
compared to administration following radiation.

More recently, Alfonso et al. developed a three-dimensional, spatially
explicit, agent-based model to simulate radiation-induced shifts in patient-
specific tumor-immune ecosystem composition [135]. Combining molecular
and bioinformatics analysis of over 10,000 patient tissue samples across 31
cancer types to map the pan-cancer tumor-immune milieu with dynamic
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simulation of radiation response revealed that radiation response may be a
combination of the direct cytotoxic effects of radiation on cancer cells as
well as subsequent stimulation or inhibition of immune cell infiltrates. For
selected patients, radiation could potentially be drastically de-escalated while
other patients may need significantly larger doses to control the tumor. This
work further emphasizes the need to depart from average outcomes of large
clinical trials towards more patient-specific response analyses.

Optimal sequencing of radiotherapy and surgery for the induction of an
immune response

Poleszczuk et al. [136] and Alfonso et al. [137] focused on comparing
adjuvant and neoadjuvant radiotherapy. In a rigorous analysis of more than
a quarter of a million female patients in the Surveillance, Epidemiology,
and End Results (SEER) database with early-stage breast cancer who
received radiation either before or after surgery, Poleszczuk used different
statistical approaches including the Wilcoxon rank-sum test with normal
approximation to compare continuous factors, Pearson’s chi-square test to
compare categorical factors, Kaplan-Meier analysis, and multivariate Cox
proportional hazards models to estimate hazard ratios of developing second
primary tumors after either adjuvant or neoadjuvant radiation. Their analyses
showed that neoadjuvant radiotherapy may significantly improve disease-free
survival without reducing overall survival, especially for estrogen receptor-
positive patients

Alfonso etal. [137] extended this work by statistically analyzing additional
SEER data sets of adjuvant or neoadjuvant radiation of early-stage cancers,
including cancers of lung and bronchus, esophagus, rectum, cervix uteri,
corpus uteri, and breast. Data suggested improved overall survival after
neoadjuvant radiation for cancers with low 20-year survival rates and
improved disease-free survival for cancers with higher survival (breast:
HR = 0.64; P < .001). In addition to the statistical analyses, mechanistic
ordinary differential equation mathematical model simulations suggested
that neoadjuvant radiation could increase outcomes by creating an immune
memory that facilitates tumor elimination for a broader range of model
parameters.

The spatial evolution of these interaction dynamics may also be considered
using systems of partial differential equations. Lai and Friedman considered
six cell populations, four different cytokines, the levels of PD-1, PD-L1
and the PD-1:PD-L1 complex, and an anti-PD-L1 immunotherapy [138].
Simulations suggest combination therapy with concurrent administration
results in higher treatment efficacies than sequential schedules. However,
the authors caution against drawing conclusions from this model, instead
encouraging its use in hypothesis generation.

As previously discussed, preclinical and clinical studies into the optimal
timing, and fractionation schedules are ongoing for various cancer sites
and immunotherapies. Once optimal schedules have been found, we expect
the focus will shift to identifying patients who would benefit from these
combinations, and how to truly personalize radiation treatment with and
without concurrent immunotherapeutics.

Spatially fractionated radiotherapy

Recently Asperud et al. [139] developed a model for tumor-immune
interactions following spatially fractionated radiotherapy (SFRT). In this
radiotherapy modality the radiation beam is fractionated, creating areas of
high and low dose [140,141]. The model was calibrated to published tumor
growth data for syngeneic xenograft models of breast cancer (67NR) and
Lewis lung carcinoma, following administration of either full tumor or half-
tumor irradiation with singles doses of 10 Gy or 15 Gy respectively [142].
Despite acceptable model fits, predictions of 67NR tumor growth following
15 Gy and 20 Gy failed to recapitulate the reported regrowth of tumors. The
authors comment that these discrepancies may be due to the adoption of

parameter values from published data of various cancer models, rather than
parameter values specifically calibrated to the experimental data reported by
Markovsky et al. [142]. Another possibility is the underlying assumption of a
well-mixed tumor-immune model. SFRT induced cell death is concentrated
in the irradiated portion of the tumor, although higher than expected death
has been reported in the unirradiated portions, suggesting that bystander
effects may occur [143]. Thus, incorporation of a spatial aspect may be
necessary.

Tools that are useful in the field

Most of the models discussed herein consider tumor-immune interactions
on the cell population level, modeled by either ordinary or partial differential
equations. These models can be simulated and analyzed using commercial
software packages such as MATLAB, Mathematica, and Maple, or a variety
of open-source differential equation solver solutions. However, the type and
granularity of the available data, including multiplex-immuno-florescence
images from patient biopsy samples, may facilitate the use of cell-based
approaches, such as agent-based models, cellular automata, or hybrid models
[144]. Several freely available tools have been developed for these modeling
techniques, including NetLogo [145], CompuCell3D [146], PhysiCell
[147], and HAL [148].

Open questions

The combination of radiotherapy and immunotherapy has the potential
to induce durable responses and may be more effective than either treatment
individually for a subset of patients. However, the underlying mechanisms of
such synergy and methods with which to identify eligible patients remain to
be determined. Whilst a large selection of mathematical models in oncology
have been developed to help answer intriguing questions, a close iterative
dialog between mathematics, cancer biology, immunology, radiobiology, and
radiation oncology is necessary to advance the rapidly evolving field of radio-
immunology.

A current hot topic in the field is the induction of sustained systemic
anti-tumor immune responses, especially in the setting of metastatic disease.
Reports of such abscopal effects in clinic, which lead to either partial
or complete responses are increasing [49,149], yet they remain a rarity.
Thus, elucidation of the underlying mechanisms of this process and the
identification of responsible treatment schedules as well as time frames to
monitor responses may lead to improved tumor regression. The use of
mathematical models in this setting could shift the discussion from “do
abscopal effects exist” to “how can we best observe and monitor them.”
This will pave the way for interdisciplinary identification of radiation and
radio-immunotherapy protocols to best harness the patient immune system
to achieve systemic tumor clearance.

However, the relatively high radiosensitivity of immune effector cells
motivates investigation into radiotherapy modalities with immune sparing
potential such as spatially fractionated radiotherapy [142]. Exploration of
the immunological consequences of these modalities alone, or in combination
with conventional external beam radiation or immunotherapies would be well
suited to i7 silico models with explicit spatial components such as agent-based
models or partial differential equations. Future investigations may reveal
immune protection in so-called immune reservoirs, opening another avenue
for personalization of treatment: according to the patient’s tumor immune
microenvironment.

Other exciting discoveries in the field are the extreme tissue sparing
benefits of irradiation at ultra-high dose rates (FLASH-RT). Recent studies
have shown that FLASH-RT, delivered at > 40 Gy 7! compared to
conventional dose rates of > 0.01 Gy s™!, leads to tumor growth inhibition
comparable to conventional RT but has higher tissue sparing effects [150],
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and may have immune sparing potential due to the short associated on-
treatment times. Investigation into possible synergy between FLASH-RT
and immunotherapies may elucidate the protective effects and determine for
which patients this treatment would be most beneficial for.

Conclusion

Pioneering work in mathematical modeling has both accompanied and
accelerated the fields of radiation biology and radiation oncology over many
decades. The increasing understanding of the complex dynamic tumor-
immune interactions and their perturbation by radiotherapy, in combination
with expanding computing capabilities, has enabled mathematical oncology
approaches to help investigate the immunological consequences of radiation
— alone and in combination with novel immunotherapies. A wealth of
preclinical- and clinical trial data are collected while testing variations
of radio-immunotherapies, and mathematical modeling approaches may
become invaluable tools to complement available techniques to help elucidate
the mechanistic underpinnings of observed dynamics and responses. While
clearly promising, and truly exciting, we should proceed with caution.
Mathematical and computational models developed in isolation without
proper calibration and validation may not be positioned to advance the fields
[72]. However, iterative integration of mathematical modeling, computer
simulation, and quantitative data sciences, including the bourgeoning fields
of artificial intelligence and machine learning, in oncology in general, and
particularly radiation oncology, could help propel our understanding of
the adaptive and ever-evolving dynamics of tumor growth, tumor-immune
interactions, and radiation responses. This may allow for reliable prediction
of treatment outcomes, leading to the ultimate goal of therapy personalization
and optimization.
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