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ABSTRACT

The chemical modification of synthetic oligonucleotides has recently been investigated to improve their
pharmacological utili zation. In addition to chemical alterations of the backbone and of the heterocyclic
bases, their conjugation with amphiphylic moieties, such as the polyethylene glycol has been proposed.
The large scale production of these molecules as demanded for commercial purposes is hampered by the
heterogeneity of the solid-phase processes and by the low reactivity of high-molecular weight PEGs in
solution. A new synthetic procedure based on the recently developed liquid-phase method (HELP), has
been set up to overcome these limitations.

INTRODUCTION

During the last decade the use of synthetic oligonucleotides as new therapeutic agents has been widely
investigated (1). These molecules are able to interact with either specific single-stranded RNA
messengers, as antisense (2), or with double-stranded genomic DNA, as antigene (3), thus inhibiting the
expression of pathogenic genetic messages. The success of this strategy has increased the demand for a
large scaling-up of the oligonucleotide synthesis (4). Solid-phase processes permit a rapid synthesis of
even very long sequences, but unfortunately they tend to result in low yields. This limitation is mainly
due to diffusion problems inside the resin beads owing to the heterogeneity of the reaction; hence, a
large excess of high-cost monomers is required to achieve high yields. Moreover, commercial supports
are characterized by a low capacity level and a large amount of support, for a single synthetic cycle, is
required to obtain a consistent amount of product. On the other hand, the non-automated solution
synthesis requires laborious purifi cation procedures and very skillf ul operators.

The liquid-phase synthesis was proposed as a method to overcome these limitations (5). In this
procedure, the oligonucleotide synthesis is carried out in homogeneous media by linking the growing
chain to a soluble supporting polymer. The polymer-bound product is recovered from the reaction
mixture by precipitation, thus allowing the rapid elimination of excess reagent and soluble by-products.
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In a new liquid-phase method called HELP, polyethylene glycol with a molecular weight ranging
between 5 and 20 KDa (6) has been employed since it is highly soluble in a large variety of organic
solvents and is easily precipitated by the addition of ether as a cosolvent. An automated synthesizer has
been also developed (7) to carry out the overall process.

The use of synthetic oligonucleotides as new drugs for human therapy is hampered by their fast
degradation in vivo caused by endogenous nucleases, and by the difficulty with which these polyanions
cross membranes (8). As a consequence, their stabili ty and the abili ty to achieve high concentrations of
oligonucleotides at biological targets is strongly reduced.

To solve these problems, several chemical modifications of these nucleic acid derivatives have been
proposed mainly at the level of the sugar-phosphate backbone (9). With this strategy, recognition by
degradative enzymes appears reduced and the penetration through cellular barriers seems improved.
However, these modifi ed oligonucleotides often present new disadvantages such as low solubili ty in
physiological media, toxicity of their metabolites, and inhibition of the degradative process of duplexes
brought about by RNase H.

A possible solution to these problems seems to reside in conjugation with molecules that mask their
unfavorable features, such as long-chain alcohols, steroids, cholic acid, peptides, and polymers (10-13).
Among polymers, short- and long-chain PEGs have demonstrated some unique behaviors; in fact, these
non toxic compounds, when covalently bound to substrates, increase their solubili ty both in organic and
aqueous solutions, decrease their immunogenicity and antigenicity, and extend their in vivo lifetime (14).
Owing to these properties, PEG has been used for the preparation of a series of biologically active
conjugates (15).

The introduction of high-molecular weight PEG at the 3'- and 5'-end of oligonucleotides has recently
been achieved. Modification of the 3'-position is performed by starting from a PEG-modified solid-phase
support (16). The PEG chain is introduced at the 5'-end as a post-synthetic modification, or when the
oligonucleotide is bound to the solid support, or after its release (17-18). The amount of modified
oligonucleotide produced by these procedures is quite low, owing to the reduced capacity of the solid-
phase processes and due to scale-up difficulties. Moreover, in these heterogeneous conditions, high-
molecular weight PEGs display a lower reactivity because of the viscosity of their solutions.

In the previously described HELP method, PEG was used as a soluble polymeric support for the large
scale synthesis of oligonucleotides of up to 20 monomers. To obtain a therapeutically useful PEG-
conjugate, the HELP procedure has been modified by introducing a stable bond between the polymer
and the growing chain. PEG was then used as a synthetic helper in the liquid-phase procedure, as well as
a biological carrier for the final oligonucleotide, as described in the original article (19).

MATERIALS

Solvents for synthesis

Acetonitrile (AcCN), tert-butyl methylether (MTBE) and 1,2-dichloroethane (DCE) were anhydrous
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commercial products stored under argon over 4 Å molecular sieves activated at 350°C,  and were used
with less than 20 ppm of water present, as measured by the Karl-Fisher method. The ethanol (EtOH)
was in its absolute form.

HPLC solvents and buffers

Acetonitrile was of HPLC grade. Water was double-distill ed and filtered through a Milli pore GS
0.22 µm sterile fil ter. Triethylamine (TEA) was distill ed just before use. Glacial acetic acid and
concentrated ammonia solution  were commercial products at high level of purity.

0.1 M TEAAc (pH 7.0): 1.0 M stock solution was made up by adding to double-distill ed water
(100 ml), freshly distill ed TEA (27.8 ml) and acetic acid (11.4 ml). The solution was then diluted to
200 ml and the pH adjusted to 7.0 by addition of either TEA or acetic acid as required. Stock solution
was stored at 4-7°C. Stock solution was diluted to 0.1 M and the pH adjusted to 7.0. 0.1 M buffer was
then filtered through a 0.22 µm sterile fil ter and degassed by sonication (30 min.) before use.

0.1 M TEAAc (pH 7.0):AcCN = 20:80 (v/v): AcCN (800 ml) was added to a recently filtered 0.1 M
TEAAc (pH 7.0) (200 ml) and the mixture degassed by sonication (30 min.).

0.5 M NaCl (pH 12.0): 1.0 M stock solution was made up by adding to double-distill ed water (1.0 l)
NaCl (58.44 g, 1 mole); the pH was adjusted to 12 with 5N NaOH. Stock solution was stored at 4-7°C.
Stock solution was diluted to 0.5 M and the pH adjusted to 12. This 0.5 M solution was filtered through
a Milli pore GS 0.22 µm sterile fil ter and degassed by sonication (30 min.) prior to use.

0.05 M NaCl (pH 12.0): 0.5 M NaCl was diluted to 0.05 M and the pH adjusted to 12. The solution was
then degassed by sonication (30 min.) before use.

Chemicals

Polyethylene glycol monomethylether (MPEG) was a commercial product from Shearwater Polymers,
Inc., Huntsville AL (USA), with a very narrow MW distribution value, and was stored in a dessicator
over KOH pellets. 1H-tetrazole was stored at room temperature in the presence of a dessicator, while
phosphoramidites were stored at -20°C, in a dessicator. These products were from Pharmacia Biotech
Italia, Cologno Monzese, Milano (Italy). Trichloroacetic acid (TCA), 2,6-lutidine, N-methylimidazole
(NMI) were used as such; acetic anhydride was distill ed over anhydrous sodium acetate; tert-butyl
hydroperoxide (TBHP) was a commercial 80% solution in di-tert-butylperoxide. All these chemicals as
well as all anhydrous organic solvents were obtained from Fluka Chimica or Aldrich Chimica, Milano
(Italy).

Glassware and plasticware

The glassware used in each step of the oligonucleotide synthesis was first dried in an oven (110°C) for a
few hours and then stored in a dessicator over KOH pellets. All glass apparatus was furnished with
CaCl2 tubes to avoid moisture absorption. Polypropylene syringes and rubber septa were single-used.
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Preparation of reagent solutions

0.5 M 1H-tetrazole in AcCN: 1H-tetrazole (2 g), in a bottle sealed with a rubber cap, was dissolved in
dry AcCN (57.1 ml), injected with a syringe. The solution was stored under argon, at room temperature.

6% TCA in DCE (w/v): Detritylation solution was prepared before use by dissolving TCA (6 g) in dry
DCE (100 ml). Unused solution was stored in a dark bottle at 4-7°C.

0.1 M DMT-dN-phosphoramidite in AcCN: Phosphoramidite solution was prepared immediately before
use; DMT-dN-phosphoramidite (1 g), in a dark bottle sealed with a rubber cap, was dissolved in the
right volume of dry AcCN, injected with a syringe. The solution was stored under argon at -20°C.

Thin- layer chromatography (TLC)

TLC was performed on precoated sili ca gel sheets using the following elution systems:
Eluent 1: acetone:ethyl acetate:water = 10:5:1 (v/v/v), eluent 2: n-propanol:30% ammonia:water =
65:35:10 (v/v/v). Plates were observed using a UV light source and developed by spraying 60%
perchloric acid:ethanol = 3:2 (v/v) to reveal DMT-bearing compounds (dark orange spots). Moreover,
after the acidic treatment, the plates were heated at 100°C for 10 min. to achieve the carbonization of
the sugar moiety of the oligonucleotide (dark spots). MPEG-bearing compounds were also detected by
exposure to iodine vapor (brown spots).

METHODS

1. Functionalization Of MPEG

Synthesis of 5'-DMT-dN1 (first nucleoside) -3'-ββββCE-phosphite-MPEG (Coupling)
MPEG 5,000 (1 g, 0.2 mmole), placed in a 250 ml three-necked round-bottom flask provided with a
three-way stopcock, sealed with rubber caps, was coevaporated with dry AcCN (3 x 10 ml) and
carefully dried under vacuum. Argon was flushed through the flask for 4-5 minutes. To the PEG residue,
wetted with 1.0 ml of dry AcCN, 0.1 M 5'-DMT-dN1-3'-(βCE)(N,N-iPr2)-phosphoramidite in dry AcCN
solution (5.0 ml, 0.5 mmole, 2.5 equivalents) and 0.5 M 1H-tetrazole in dry AcCN solution (4.0 ml, 2
mmole, 10 equivalents) were then simultaneously added by syringes through the rubber septum. The
solution was stirred, under argon atmosphere, at room temperature, for 5 min. The solution was ice-
cooled and MTBE (90 ml) was slowly added dropwise under vigorous stirring. A white powder was
recovered after filtration through a por.3 Gooch, rapidly washed with ether and dried under vacuum, and
stored in a dessicator over KOH pellets.

The presence of residual reagents or soluble by-products was checked by TLC (eluent acetone:ethyl
acetate:water = 10:5:1, v/v/v). Under these conditions MPEG and MPEG-derivatives have Rf = 0. The
crude product was suspended into EtOH (100 ml) and gently warmed up to 38°C; once solubili sed, was
slowly cooled from room temperature to 4-7°C, and left at 4-7°C for 1 h. The white cloudy powder
formed was recovered by filtration through a por.3 Gooch, rapidly washed with ether and dried under
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vacuum, and stored in a dessicator over KOH pellets.

The degree of functionalisation was estimated spectrophotometrically: a weighed aliquot of product was
dissolved in 60% perchloric acid:ethanol = 3:2 (v/v, 10 ml), the resulting orange solution was diluted 10-
fold and the absorbance at 498 nm was measured. The nucleoside loading was calculated, in µmol/g,
from the equation: [A498(10 mm cell) x 10 x 14.3]/mg of weighed support.

Acetylation of 5'-DMT-dN1-3'-ββββCE-phosphite-MPEG (Capping)
1.0g of 5'-DMT-dN1-3'-βCE-phosphite-MPEG was dissolved in dry AcCN (5 ml) in a 250 ml round-
bottom flask. 2,6-lutidine (0.5 ml), NMI (0.5 ml) and acetic anhydride (0.5 ml) were added following
this order, under stirring. The solution was left to react, at room temperature for 3 min. DMT-dN1-
phosphate-MPEG was precipitated from the ice-cooled solution with MTBE (80 ml), which was slowly
added dropwise. A white powder was recovered after filtration through a por.3 Gooch, extensively
washed with ether and dried under vacuum and stored in a dessicator over KOH pellets. The product
was stored at 4-7°C.

Synthesis of 5'-DMT-dN1-3'-ββββCE-phosphate-MPEG (Oxidation)
1.0g of 5'-DMT-dN1-3'-βCE-phosphite-MPEG, placed in a 250 ml round-bottom flask, was dissolved in
dry AcCN (10 ml) and the ice-cooled TBHP solution (0.6 ml) was added while stirring. The solution
was stirred for 15 min. MTBE (90 ml) was then slowly added dropwise to the ice-cooled solution, under
vigorous stirring. A white powder was recovered after filtration through a por.3 Gooch, washed with
ether and dried under vacuum and stored in a dessicator over KOH pellets. The product was stored at 4-
7°C.

2. Synthesis Of MPEG-Oligonucleotide

Detrity lation
1.0g of 5'-DMT-dN1-3'-βCE-phosphate-MPEG was dissolved in dry DCE (10 ml) in a 250 ml round-
bottom flask. 6% TCA in DCE (w/v, 10 ml) was added dropwise to the ice-cooled solution, under
vigorous stirring. After 15 min. MTBE (100 ml) was slowly added dropwise to the cooled orange
solution. The mixture was filtered through a por.3 Gooch and the precipitate washed thoroughly with
ether. The white powder was then dried under vacuum and stored in a dessicator over KOH pellets.

The extent of deblocking was controlled qualitatively by TLC (no orange colour developed by acidic
spraying on spot with Rf = 0) and quantitatively by UV analysis. If the detritylation was not complete,
the TCA treatment was repeated following the above procedure. In order to eliminate traces of TCA,
the fully detritylated product was recrystalli zed from DCE/MTBE (10 ml/70 ml) and dried under
vacuum over KOH pellets.

Coupling
1.0g of 5'-HO-dN1-3'-βCE-phosphate-MPEG, placed in a 250 ml three-necked round-bottom flask
sealed with rubber caps and provided with a three-way stopcock, was coevaporated with dry AcCN (3 x



G. M. Bonora et al .

Biological Procedures Online  • Vol. 1 No. 1 • May 14, 1998 • www.biologicalprocedures.com

64

10 ml) and carefully dried under vacuum. Argon was flushed through the flask for 4-5 minutes. To the
PEG-bound product, wetted with 1.0 ml of dry AcCN, 0.1 M 5'-DMT-dN2-3'-(βCE)(N,N-iPr2)-
phosphoramidite in dry AcCN solution (5.0 ml, 0.5 mmoles, 2.5 equivalents) and 0.5 M 1H-tetrazole in
dry AcCN solution (4.0 ml, 2 mmoles, 10 equivalents) were then simultaneously added by syringes
through the rubber septum. The mixture was stirred under argon atmosphere at room temperature for 5
min. The solution was ice-cooled and MTBE (90 ml) was slowly added dropwise under vigorous
stirring. A white powder was recovered after filtration through a por.3 Gooch, rapidly washed with ether
and dried under vacuum, and stored in a dessicator over KOH pellets. The product was stored at 4-7°C.

The presence of residual reagents or soluble by-products was ascertained by TLC [eluent acetone:ethyl
acetate:water = 10:5:1 (v/v/v)]. Under these conditions MPEG and MPEG-derivatives have Rf = 0. The
crude product was suspended into EtOH (100 ml) and gently heated to 38°C; once solubili sed, it was
slowly cooled from room temperature to 4-7°C, and left at 4-7°C for 1 h. The white cloudy powder
formed was recovered by filtration through a por.3 Gooch, rapidly washed with ether and dried under
vacuum, and stored in a dessicator over KOH pellets.

The coupling yield was monitored spectrophotometrically: a weighed aliquot of product was dissolved
in 60% perchloric acid:ethanol = 3:2 (v/v, 10 ml), the resulting orange solution was diluted 10-fold and
the absorbance at 498 nm was measured. The nucleoside loading was calculated (in µmol/g) from the
equation: [A498(10 mm cell) x 10 x 14.3]/mg of weighed support.

Capping
1.0g of 5'-DMT-dN2-3'-βCE-phosphite-dN1-3'-βCE-phosphate-MPEG was dissolved in dry AcCN
(5 ml) in a 250 ml round-bottom flask. 2,6-lutidine (0.5 ml), NMI (0.5 ml) and acetic anhydride (0.5 ml)
were added following this order, under stirring. The solution was left to react at room temperature for 3
min. 5’-DMT-dN2-phosphate-dN1-MPEG was precipitated from the ice-cooled solution with MTBE
(80 ml) which was slowly added dropwise. A white powder was recovered after filtration through a
por.3 Gooch, extensively washed with ether and dried under vacuum, and stored in a dessicator over
KOH pellets. The product was stored at 4-7°C.

Oxidation
1.0g of 5'-DMT-dN2-3'-βCE-phosphite-dN1-3'-βCE-phosphate-MPEG, placed in a 250 ml round-
bottom flask, was dissolved in dry AcCN (10 ml) and the ice-cooled TBHP solution (0.6 ml) was added
under stirring. The solution was stirred for 15 min. MTBE (90 ml) was then slowly added dropwise to
the ice-cooled solution, with vigorous stirring. A white powder was recovered after filtration through a
por.3 Gooch, washed with ether and dried under vacuum, and stored in a dessicator over KOH pellets.
The product was stored at 4-7°C.

These steps were repeated until the desired length of the oligonucleotide chain had been obtained.

3. Deprotection Of Oligonucleotide-MPEG

Deprotection of phosphate backbone and N-deacylation of nucleobases
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The following treatment removes the cyanoethyl-protecting group from phosphates and the N-
isobutyryl- and N-benzoyl-protecting groups from guanosines, cytidines and adenosines. DMT-
oligonucleotide-MPEG was dissolved in 30% NH3 (5 ml x 20 mg) in a tightly closed glass container to
avoid ammonia leakage, and left in an oven, without stirring, at 60°C overnight. The solution was
transferred into a large round-bottom flask in order to avoid loss of product caused by foam, and
evaporated to dryness, rinsed with water and evaporated, and the procedure repeated until an ammonia
odourless solution was obtained. The residue was then dissolved in water (5 ml) and extracted with
ether (4 x 5 ml). The aqueous layer was freeze-dried and the residue stored at -20°C, ready for HPLC
analysis and purifications

Deprotection of terminal 5'-hydroxyl group
This treatment removes the dimethoxytrityl-protecting group from 5'-terminal hydroxyl-group. DMT-
oligonucleotide-MPEG previously treated with ammonia was dissolved in glacial acetic acid:water = 4:1
(v/v, 5 ml x 20 mg), in a 100 ml round-bottom flask, and stirred at room temperature for 30 min. The
resulting yellow solution was extracted with ether (5 x 5 ml) and the aqueous layer evaporated to
dryness. The residue was rinsed with water and evaporated and the procedure repeated until an acetic
acid odorless solution was obtained. The residue was dissolved in water and freeze-dried and stored at
-20°C, ready for HPLC analysis and purification.

Analysis and Purification

Analytical RP-HPLC
Reversed-phase HPLC was performed using a Vydac C18 column. Samples (4 mg each) were dissolved
in start buffer (1 ml), filtered through a 0.22 µm sterile filter and degassed by centrifugation. 10 l of the
resulting solution were injected. Mobile phase A: 0.1 M TEAAc (pH 7.0).  Mobile phase B: 0.1 M
TEAAc (pH 7.0):AcCN = 20:80 (v/v) Linear gradient: 40-90% B in 50 min. Flow: 1.0 ml/min.
Temperature: ambient, UV detector: 254 nm.

Analytical IE-H PLC
Ion-exchange HPLC was performed using a Pharmacia Mono Q HR 5/5 column. Samples (4 mg each)
were dissolved in water (1.0 ml), fil tered through a 0.22 µm sterile filter and degassed by centrifugation.
20 l of the resulting solution were injected. Mobile phase A: 0.05 M NaCl (pH 12.0) Mobile phase B:
0.5 M NaCl (pH 12.0). Elution gradient: 0% B 2 min. hold, 0-85% B in 23 min., 85-100% B in 5 min.,
100% B 1 min. hold. Flow: 0.6 ml/min. Temperature: ambient, UV detector: 254 nm.

Purification of crude MPEG-conjugated oligonucleotide by anion-exchange HPLC-IE
Purification of the final crude MPEG-oligonucleotide was carried out using a Pharmacia Mono Q HR
5/5 column. Sample (10 mg) was dissolved in water (1.0 ml), filtered through a 0.22 µm sterile fil ter and
degassed by centrifugation. Sample was eluted by injection of 300 l each time. Mobile phase A: 0.05 M
NaCl (pH 12.0) Mobile phase B: 0.5 M NaCl (pH 12.0). Elution gradient: 30-100% B in 13 min., 100%
B 5 min. hold. Flow: 1.0 ml/min. Temperature: ambient UV detector: 254 nm.

Desalting of purified MPEG-conjugated oligonucleotide by gel-filtration
Desalting of purified MPEG-oligonucleotide was carried out by gel-filtration using a 20 x 100 mm
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column of Sephadex
G25-F resin. Sample
(50 mg) was dissolved
in water (1 ml). Mobile
phase: water Milli pore
grade. Elution: iso-
cratic. UV detector:
254 nm. Alternatively,
the excess of salt can
be removed by a
selective precipita-
tion: MPEG-oligo-
nucleotide afforded
from IE-HPLC (0.2 g)
was suspended in
acetone or methanol
(5 ml) and left, under
stirring for 30 min. The
residue remained undis-
solved, was filtered and
the solution with the
product was evaporat-
ed to dryness. The
amount of MPEG-
oligonucleotide was as-
certained by UV and
TLC. A further
possibili ty is given by a
selective extraction:
MPEG-oligonucleotide
afforded from IE-
HPLC (1.0 g) was dissolved in the minimum amount of water (4-5 ml) and extracted with a large
volume of dichloromethane (4 x 100 ml). The organic layers with the product were pooled, dried over
Na2SO4 and evaporated to dryness. The residue was checked by UV and TLC.

DISCUSSION

The general procedure for the liquid-phase synthesis of oligonucleotides conjugated with high-molecular
mass PEGs can be schematized by the flow-chart.

As clearly indicated in the original article (19), the HELP-derived procedure described offers many
advantages for the production of these conjugates, even in a large scale. Moreover, the recent
development of an automated instrument for the liquid-phase synthesis opens new possibili ties for the
industrial production of oligomers and biomolecules when their pharmacological features are improved
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by conjugation with PEG.

The detailed procedures described above are easily reproducible on  the bench on condition that some
special precautions are taken. In particular :
1.  A careful dehydration of the starting PEG and of their oligonucleotide-bound intermediates must

always be achieved, especially before the coupling steps, owing to the hygroscopicity of the polymer.
2.  During the coupling step it is imperative to avoid any unnecessary dilution of the reaction mixture to

avoid a rapid decrease in yield. Thus, it is strongly suggested always to operate at the highest
concentration allowed by the solubili ty of the reaction components.

3.  Regarding the capping procedure, as already underlined in the usual solid-phase approaches, it is
preferable to carry it out before the oxidation, to destroy any side-product  that, on the contrary,
would be irreversibly stabili zed by the oxidation step.

4.  A further strong recommendation regards the need for the cooling down of the organic solution
before its treatment with the acidic mixture demanded for the detritylation step, to avoid, or to reduce
as much as possible any depurination of the product. A high percentage of acid and repeated
treatments at the beginning of the synthesis when the ratio between the PEG and the oligonucleotide
is disadvantageous, are demanded to completely remove the DMT protecting groups due to the ether
units of this support, easily protonated, that reduce the effective acid concentration.

5.  A critical point of the proposed procedure is the amount of polymer-bound product recovered at the
end of the overall process because of several precipitation/filtration steps required during the
intermediate purifi cation. For a maximum yield it is customary to add the ether solution slowly, under
vigorous stirring of the cooled reaction mixture. This procedure must take at least 30 minutes to be
efficiently completed. It is not convenient to save time by speeding up this step, since any residual
impurity will be entrapped into the precipitated polymer-conjugate and will be transferred to the
following steps.

6.  A TLC analysis must be routinely performed before any new synthetic step. If there were evidence
that the ether precipitation did not purify the product completely, an additional crystalli zation from an
EtOH solution would be strongly recommended:  the PEG-bound crude product dissolves quite
easily into a 10% solution ( w/v ) at 37°C, and precipitates quantitatively at temperature below 20°C.
This purification step must be introduced as a rule at the end of each growing cycle.

The final deblocking procedure is almost identical to that commonly adopted for similar solid-phase
processes.  The purification of the crude, deblocked product is better achieved by ionic exchange
chromatography. In fact, the lipophylic properties of the PEG moiety hamper any useful separation of
the conjugates by the standard reverse-phase procedure, even if the terminal DMT group is left on the
chain: a single peak was always observed in our chromatographic conditions, in which are present all the
different PEG-bound oligonucleotides obtained at the various steps of synthesis. On the other hand, the
polymer moiety does not mask the oligonucleotide part from its binding to the strong anion-exchange
support, and the different chains are efficiently separated on the basis of their charge.

The desalting of the purified PEG-conjugate can be safely performed by the gel-filtration procedure. As
an alternative, a selective solvent-cosolvent precipitation of the PEG-bound product can also be used
owing to the solubili ty of these conjugates in organic solvents where the inorganic salts are insoluble.
Furthermore, a selective extraction of the conjugates from a very concentrated aqueous solution with
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large volumes of halogenated hydrocarbons can be also taken into account. In any case it is convenient
to compare the results of the different procedures, verified on a small scale, before deciding which apply
to the entire batch.

The procedure here reported may be in principle extended to other high-molecular weight polymeric
supports whose properties are similar to the one of  PEG.
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