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Background/Objective: Traumatic intracranial hemorrhage (tICH) accounts for

significant trauma morbidity and mortality. Several studies have developed prognostic

models for tICH outcomes, but previous models face limitations, including poor

generalizability and limited accuracy. The objective was to develop a prognostic model

and determine predictors of mortality using the largest trauma database in the U.S.,

applying rigorous analytical methodology with true hold-out-set model validation.

Methods: We identified 248,536 patients in the National Trauma Data Bank

(NTDB) from 2012 to 2016 with a diagnosis code associated with tICH. For each

admission, we collected demographic information, systolic blood pressure, blood

alcohol level (BAL), Glasgow Coma Score (GCS), Injury Severity Score (ISS), presence

of epidural/subdural/subarachnoid/intraparenchymal hemorrhage, comorbidities,

complications, trauma center level, and trauma center region. Our final study population

was 212,666 patients following exclusion of records with missing data. The dependent

variable was patient death. Linear support vector machine (SVM) classification was

carried out with recursive feature selection. Model performance was assessed using

holdout 10-fold cross-validation.

Results: Cross-validation demonstrated a mean accuracy of 0.792 (95% CI

0.783–0.799). Accuracy, precision, recall, and AUCwere 0.827, 0.309, 0.750, and 0.791,

respectively. In the final model, high ISS, advanced age, subdural hemorrhage, and

subarachnoid hemorrhage were associated with increased mortality, while high GCS

verbal and motor subscores, current smoker, BAL beyond the legal limit, and level 1

trauma center were associated with decreased mortality.

Conclusions: A linear SVM model was developed for tICH, with nine features selected

as predictors of mortality. These findings are applicable to multiple hemorrhage subtypes

and may benefit the triage of high risk patients upon admission. While many studies

have attempted to create models to predict mortality in TBI, we sought to confirm those
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predictors using modern modeling approaches, machine learning, and true hold-out test

sets, using the largest available TBI database in the U.S. We find that while the predictors

we identify are consistent with prior reports, overall prediction accuracy is somewhat

lower than prior reports when assessed more rigorously.

Keywords: national trauma data bank, support vector machine, traumatic brain injury, traumatic intracranial

hemorrhage, mortality predictors

INTRODUCTION

Traumatic brain injury (TBI) is a leading cause of death
worldwide, with an annual incidence of ∼1.7 million in the
United States (1, 2). Among these patients, traumatic intracranial
hemorrhages (tICH) are common findings, occurring in up to
half of patients and are associated with significant morbidity
and mortality (3). Prognostic modeling provides a unique
opportunity to aid clinical reasoning and streamline decision
making, utilizing patient data to predict various outcomes
of TBI.

Several studies have developed prognostic models for
traumatic brain injury outcomes using clinical and radiographic
data. Such models include age, Glasgow Coma Score (GCS),
pupil reactivity, major extracranial injury, time from injury
to presentation, hypotensive episode post-injury, motor ability,
presence of subarachnoid/subdural hemorrhage, blood alcohol
concentration, antiplatelet/anticoagulant use, and Injury Severity
Score as predictors of mortality (3–10). However, these models
are limited by unknown generalizability to broader populations,
limited accuracy, and the large number of variables needed
to predict outcomes. In addition, very few have been built
upon a complete, national database and utilize a true “hold-out
set” for validation. Compared to models which utilize simple
cross validation without a hold-out set and have a tendency
to show inflated performance as a result of tuning of hyper
parameters to the data set, a model built with a true hold-
out set is more robust and therefore more generalizable. The
primary objective of this study was to determine predictors of
mortality using the largest trauma registry in the United States,
applying rigorous analytical methodology with true hold-out-set
model validation.

METHODS

Study Population
Following Institutional Review board approval (IRB Registration
#: 00000396, 00000482, 00004624), data were retrospectively
collected from the National Trauma Data Bank, the largest and
essentially all-encompassing aggregation of U.S. trauma registry
data. A series of 4,339,668 patients were admitted between
January 1, 2012 and December 31, 2016. For years 2012–
2015, patients were identified by International Classification of
Diseases, Ninth Revision (ICD-9) codes corresponding to specific
tICH subtypes: epidural (852.4, 852.5), subdural (852.2, 852.3),
subarachnoid (852.0, 852.1), or intraparenchymal hemorrhage
(851.0, 851.1, 851.4, 851.5, 851.8, 851.9). For 2016, patients were
identified via ICD-10 codes: epidural (S064X), subdural (S065X),

subarachnoid (S066X), or intraparenchymal hemorrhage (S0633,
S0637, S0638). A total of 248,546 patients from 2012 to 2016 met
the criteria for tICH.

Demographic and clinical data were collected for each patient
including, sex, age, race, ethnicity, systolic blood pressure, blood
alcohol concentration, Glasgow Coma Score (GCS) subscores,
Injury Severity Score (ISS), tICH type, comorbidities (CVA,
residual neurologic deficit, diabetes, smoker), complications
(stroke/CVA), trauma center level, and trauma center region.
Patients with missing data in any of the aforementioned
fields were removed from the analysis to yield the final study
population (n= 212,666).

Because this analysis involved only the national database and
its de-identified data, we did not need to obtain informed consent
from human subjects.

Statistical Analysis
The dependent variable in the analysis was patient death
as defined by in-hospital mortality or discharge to hospice.
Discharge to hospice was equated to mortality in this study
given that the majority of patients who are discharged to
hospice following traumatic brain injury die within 30 days
(11). The independent variables studied included sex, age, race,
ethnicity, systolic blood pressure, blood alcohol concentration,
GCS-Verbal, GCS-Eye, GCS-Motor, ISS, presence of epidural
hemorrhage, presence of subdural hemorrhage, presence of
subarachnoid hemorrhage, presence of intraparenchymal
hemorrhage, comorbidities, complications, trauma center
level, and trauma center region. Variables were selected if they
were available in the NTDB and if previous literature had
either hypothesized or identified an association of the variable
with mortality.

Before model development and training, numerical measures
were scaled into continuous variables bounded by 0 and 1, and
the data distribution was balanced using the synthetic minority
oversampling technique (SMOTE). Eighty percentage of the data
set was used for initial training and testing, while 20% of the data
was used as a final hold-out testing set.

The Python-based (www.python.org) sklearn library
implementation of linear SVM uses certain parameters in
order to generate the optimal hyperplane: C, dual, and penalty.
C, or cost, indicates the size of the margins surrounding the
hyperplane, where a larger C will create a hyperplane with
smaller margins. Therefore, C is modified to influence the
number of data points that are misclassified when training.
Dual specifies whether the model will solve the dual or primal
optimization problem when run on the training set. Penalty
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specifies whether L1 or L2 regularization is used when calculating
penalty for the model prediction (12).

In order to determine the optimal settings for each of
these parameters, a series of SVM models were generated to
select the model providing the best predictive performance.
In the model creation, we incrementally changed C between
0.0001 and 5 to identify the value which provided the maximal
predictive scores. Due to the number of datapoints and relatively
low number of features in our dataset, it was preferable to
solve the primal optimization problem (13). Further, as L1
regularization is conventionally used to eliminate features as
predictive contributors altogether, penalty was set to L1 in order
to aid feature selection (14).

Using these parameters, linear support vector machine (SVM)
was carried out and trained on a random 80% training set. Initial
model performance was assessed using 10-fold cross-validation
within this training set. Recursive feature elimination (RFE) was
used to consider smaller and smaller subsets of variables in order
to identify the most important and optimal number of features
without sacrificing accuracy. This new linear SVM with RFE
was trained once again on the 80% training set data. Finally,
the SVM was tested on the remaining 20% of data, a true hold-
out data set. In this way, the generalizability of hyperparameters
selected during the initial cross-validation step could be assessed
in a rigorous fashion. Model accuracy, precision, and recall were
assessed on this hold-out set. A receiver operating characteristic
(ROC) curve was generated.

For each data point, the trained linear SVM can use the
values of the independent variables to calculate the probability
of mortality for each patient. The linear SVM’s decision function
was calibrated using Platt’s method to increase probability
accuracy (15), and probabilities for each data point were
calculated. The values were used to develop a post hoc risk
stratification in order to better visualize how risk status is
distributed across the study population. Four subgroups were
chosen based on tICH mortality risk stratification thresholds
used in past literature (4), and based on the calculated
probabilities, the study population was split into four subgroups:
Grade I (< 5% predicted mortality), Grade II (5–15% predicted
mortality), Grade III (15–40% predictedmortality), andGrade IV
(> 40% predicted mortality). For each subgroup, predicted and
actual mortality were compared to assess whether the predictive
value of the SVM was maintained within each subgroup.

RESULTS

Study Population
77,938 (36.6%) the 212,666 selected patients in the study were
female with a mean age at admission of 54.3 years. Of the total
studied population, 1,910 patients were self-reported American
Indian, 4,912 Asian, 20,334 African American, 550 Native
Hawaiian or other Pacific Islander, 160,044 White, and 16,248
other. 19,374 (9.1%) reported Hispanic or Latino ethnicity.
The mean systolic blood pressure was 139 mmHg. 29,501
(13.9%) patients had a blood alcohol concentration above the
legal limit, 8,560 (4.0%) had a blood alcohol concentration
below the legal limit, and 157,854 (74.2%) had a blood alcohol

concentration of zero. Mean total GCS was 12.3, while mean
ISS was 17.5. 13,156 (6.2%) patients had epidural hemorrhage,
122,772 (57.7%) patients had subdural hemorrhage, 106,359
(50.0%) patients had subarachnoid hemorrhage, and 48,352
(22.7%) patients had intraparenchymal hemorrhage. 62,273
(29.3%) patients had greater than one type of hemorrhage
with subdural hemorrhage and subarachnoid hemorrhage being
the most common combination. Pre-existing comorbidities
evaluated included CVA/residual neurologic deficit, diabetes,
and current smoker. 6,118 (2.9%) patients had CVA/residual
neurologic deficit, 26,265 (12.4%) had diabetes, and 25,659
(12.1%) were current smokers. Medical complications occurring
during the patients’ stay included CVA/stroke in 1,485 (0.7%)
patients. 82,544 (38.8%) patients were seen at a Level 1 Trauma
Center (comprehensive regional resource capable of providing
total care for every aspect of injury), 41,335 (19.4%) patients
at a Level 2 Trauma Center (able to initiate definitive care for
all injured patients), 3,412 (1.6%) patients at a Level 3 Trauma
Center (able to provide prompt assessment, resuscitation,
surgery, intensive care and stabilization), and 147 (0.1%) patients
at a Level 4 Trauma Center (able to provide advanced trauma
life support prior to transfer of patients to a higher level trauma
center). 51,774 (24.3%) patients were seen at a trauma center in
the Midwest, 40,047 (18.8%) in the Northeast, 76,456 (36.0%)
in the South, and 42,399 (19.9%) in the West. 19,140 (9.0%)
patients had a disposition of death or hospice (Table 1, Figure 1).
The mortality rate of the population removed due to missing
data was 11.3%. An unpaired samples t-test showed this rate was
not significantly different from that of the study population (p
= 0.529).

Model Evaluation
Cross-validation demonstrated amean accuracy of 0.792 (95%CI
0.783–0.799). Accuracy for the model, or proportion of correct
classifications, was 0.827. Precision, the proportion of true
positives to total predicted positives, was 0.309. Recall/sensitivity,
the proportion of true positives to total positives, was 0.750.
Specificity, the proportion of true negatives to total negatives,
was 0.831. Area under the ROC curve (AUC) was 0.791,
which describes the model’s ability to discriminate between
outcomes. In the final model, nine features were selected.
High ISS, advanced age, presence of subdural hemorrhage,
and presence of subarachnoid hemorrhage were associated
with increased mortality, while high GCS-V, high GCS-M,
current smoker, blood alcohol level beyond the legal limit,
and level 1 trauma center were associated with decreased
mortality (Figure 2).

Post hoc risk stratification of the study population showed
that the 134,161 (63.1%) patients with Grade I tICH (predicted
mortality < 5%) had an actual total mortality of 1.5% [95% CI:
(1.4%, 1.6%)], the 41,899 (19.7%) patients with Grade II tICH
(predictedmortality 5–15%) had an actualmortality of 9.8% [95%
CI: (9.5%, 10.0%)], the 15,501 (7.3%) patients with Grade III
tICH (predicted mortality 15–40%) had an actual mortality of
22.2% [95% CI: (21.5%, 22.7%)], and the 21,105 (9.9%) patients
with Grade IV tICH (predicted mortality > 40%) had an actual
mortality of 46.6% [95% CI: (45.8%, 47.2%)].
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TABLE 1 | Study population demographics.

Sex

• Male 134,728 (63.4%)

• Female 77,938 (36.6%)

Age (years) mean = 54.3, standard deviation =

24.2

• 0–9 7,741 (3.6%)

• 10–19 12,891 (6.1%)

• 20–29 24,381 (11.5%)

• 30–39 17,458 (8.2%)

• 40–49 19,983 (9.4%)

• 50–59 29,329 (13.8%)

• 60–69 28,987 (13.6%)

• 70–79 32,150 (15.1%)

• 80–89 38,216 (18.0%)

• 90+ 1,531 (0.7%)

Race

• American Indian 1,910

• Asian 4,912

• African American 20,334

• Native Hawaiian or Other Pacific Islander 550

• White 160,044

• Other Race 16,248

• Unknown 8,779

Ethnicity

• Hispanic or Latino 19,374 (9.1%)

• Not Hispanic or Latino 161,397 (75.9%)

• Unknown 31,896 (15.0%)

Systolic blood pressure (mmHg) median = 138, range = 0–300

• <90 8,178 (3.8%)

• 90–140 104,714 (49.2%)

• >140 99,775 (46.9%)

Blood alcohol concentration

• Zero 157,854 (74.2%)

• Trace amounts 8,560 (4.0%)

• Above legal limit 29,501 (13.9%)

• Unknown 16,752 (7.9%)

Glasgow coma score median = 15, range = 3–15

• Mild (13–15) 156,654 (73.7%)

• Moderate (9–12) 12,132 (5.7%)

• Severe (3–8) 43,881 (20.6%)

Injury severity score median = 16, range = 1–75

• Minor trauma (1–15) 92,376 (43.4%)

• Major trauma (16–75) 120,291 (56.6%)

Epidural hemorrhage

• Present 13,156 (6.2%)

• Absent 199,511 (93.8%)

Subdural hemorrhage

• Present 122,772 (57.7%)

• Absent 89,895 (42.3%)

Subarachnoid hemorrhage

• Present 106,359 (50.0%)

• Absent 106.308 (50.0%)

(Continued)

TABLE 1 | Continued

Intraparenchymal hemorrhage

• Present 48,352 (22.7%)

• Absent 164,315 (77.3%)

Comorbidities

• CVA/residual neurological deficit 6,118 (2.9%)

• Diabetes 26,265 (12.4%)

• Smoker 25,659 (12.1%)

Complications

• Stroke/CVA 1,485 (0.7%)

Trauma center level

• I 82,544 (38.8%)

• II 41,335 (19.4%)

• III 3,412 (1.6%)

• IV 147 (0.1%)

• Not applicable 85,229 (40.1%)

Trauma center region

• Midwest 51,774 (24.3%)

• Northeast 40,047 (18.8%)

• South 76,456 (36.0%)

• West 42,399 (19.9%)

• Unknown 1,991 (0.9%)

Outcome

• Alive at discharge 193,527 (91.0%)

• Death/discharge to hospice 19,140 (9.0%)

The dataset was trained using several other machine learning
algorithms in order to confirm that the use of a linear SVM was
appropriate for the characteristics of these data. In comparing

the performance of a logistic regression, decision tree classifier,
k-nearest neighbors algorithm, Gaussian Naive Bayes classifier,
linear discriminant analysis, radial basis function kernel SVM,

and polynomial kernel SVM to our linear SVM, performance
was highest with the linear SVM model (Table 2). Performance

was measured with each model’s accuracy of mortality prediction
when applied to the testing set.

Post-Hoc Tests
Accounting for variable collinearity is not a priority in support

vector machines as it is in other machine learning models, such
as regression. In a support vector machine, jointly considering

variables, even if they are correlated, improves the predictive

power of the model, because the algorithm is not affected
by the statistical attributes of the dataset (16). Therefore, the

associations that this model identifies are, on their own, not
necessarily comparable to those that would be identified by a
regression, and cannot be interpreted as such. Therefore, we
cannot necessarily conclude that each of the nine features is a
unique predictor of mortality.

Previous literature has suggested that SAH is more predictive
of TBI mortality when it occurs simultaneously with another
tICH, such as SDH (17, 18). We examined the mortality
in subgroups of the SAH population, including SAH with
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FIGURE 1 | Histograms of demographic and clinical data. (A) Patient age by sex. (B) Systolic blood pressure. (C) Blood alcohol concentration. (D) Glasgow Coma

Subscores. (E) Injury Severity Score. (F) Hemorrhage type. (G) Comorbidities. (H) Trauma center level by region. CVA, cerebral vascular accident; GCS-E, Glasgow

Coma Score–Eye; GCS-V, Glasgow Coma Score–Verbal; GCS-M, Glasgow Coma Score–Motor.

concurrent SDH, SAH without SDH, and SAH without other
tICH. These groups had mortality rates of 16.67, 6.16, and
5.73%, respectively. Unpaired samples t-tests showed that the
rates of mortality were significantly different between SAH with
concurrent SDH and SAH without SDH (p = 0.00821), as well
as between SAH with concurrent SDH and SAH without other
tICH (p = 4.25 × 10−4). However, an unpaired samples t-test
analyzing mortality in the groups of all SAH vs. without SAH
produced results that were not statistically significant (p= 0.643).

The nine identified variables may not all be obtainable
at admission of a patient, decreasing the applicability of

the full model in many situations. Therefore, another model
was trained only using independent variables that can be
easily identified or approximated at admission: presence of
epidural hematoma, presence of subdural hematoma, presence
of subarachnoid hemorrhage, presence of contusion, age, ISS,
GCS-V, GCS-M, and GCS-E. Model evaluation gave an accuracy
of 0.806, precision of 0.274, recall of 0.714, and AUC of
0.764. Though performance was somewhat lower than the
complete model, a pared-down model such as this may
nonetheless be a viable alternative when all nine predictors are
not available.
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FIGURE 2 | Association of selected features with mortality. Nine features were selected in constructing a hyperplane to separate mortality outcomes. The magnitude

of the feature’s coefficient is proportional to its importance in predicting mortality outcomes. GCS, Glasgow Coma Score; BAL, blood alcohol level; ACS, American

College of Surgeons; SAH, subarachnoid hemorrhage; SDH, subdural hemorrhage; ISS, Injury Severity score.

TABLE 2 | Classifier comparison.

Classifier Accuracy of mortality prediction

SVM, linear kernel 0.827

SVM, radial basis function kernel 0.791

SVM, polynomial kernel 0.804

Logistic regression 0.801

K-nearest neighbors algorithm 0.810

Decision tree classifier 0.792

Gaussian naïve bayes classifier 0.744

Linear discriminate analysis 0.812

SVM, Support Vector Machine.

TABLE 3 | Model comparison.

Paper Accuracy Sensitivity/

recall

Specificity AUC N

Current study 82.7 75.0 83.1 0.791 212,666

Powers et al. (4) 88.1 83.0 76.1 n/a 4,100

Rau et al. (10) 97.7 100 97.7 n/a 545

Han et al. (6) n/a 76.1 82.9 0.87 300

Jacobs et al. (7) n/a n/a n/a 0.86 700

Steyerberg et al.

(8)

n/a n/a n/a 0.66–0.84 8,509

MRC Crash Trial

Collaborators (5)

n/a n/a n/a 0.81–0.88 10,008

AUC, Area under the ROC curve.

DISCUSSION

Model Evaluation
While a variety of models exist, the linear SVM was chosen for
its ability to accommodate many independent variables and the

limited influence of outliers onmodel performance. Additionally,
given the benefit of the large NTDB data set, a true hold-
out set was used to avoid overfitting and allows for a more
accurate depiction of model performance. The use of a true hold-
out set is a novel approach compared to previously developed
models; given the significantly smaller sample sizes seen in
comparable studies, the use of a true hold-out set is often not
possible. Thus, our model is likely to be more generalizable to
broader populations, despite a marginal sacrifice in accuracy
and sensitivity (14). Compared to other previously developed
models, ours performs comparably well on specificity and AUC,
while performing on the lower end for accuracy and sensitivity
(Table 3). This discrepancy may have been the result of using a
true hold-out set for model validation, which was possible given
this study’s large patient population.

Treatment (e.g., surgery) for each case of tICH was not
evaluated as part of the model, given the assumption that
patients were treated optimally eithermedically and/or surgically.
Similarly to previously developed models, the goal of this study
was not to identify best treatments, but rather, to identify
predictors of mortality assuming that patients received the most
appropriate care.

Variable Associations
The associations of higher ISS, advanced age, presence of
SDH, presence of SAH, low GCS, level 1 trauma center,
and BAL beyond the legal limit with mortality corroborate
conclusions made by previous literature (3–10). Prior analyses
of the relationship of alcohol consumption and TBI outcomes
have produced contradictory conclusions, likely due to differing
methods of study and the complex relationship between alcohol
intake and the physiologic response to tICH. Though it is
hypothesized that low to moderate alcohol intake is protective
in TBI due to NMDA receptor and sympathetic nervous
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system inhibition, high alcohol intake has overwhelmingly been
associated with poorer TBI outcomes due to increased cerebral
edema and negative effects on neurobehavioral function (19),
which this study corroborates. Interestingly, current smoker
status was found to be associated with decreased mortality.
Smaller past studies have found this factor to be a poor predictor
of outcomes in TBI (20), and further study into this variable
in particular is therefore warranted. However, one potential
explanation for the beneficial effect identified by this study is
the neuroprotective effect of nicotine through modulation of the
cholinergic anti-inflammatory pathway (21, 22).

Risk stratification categories developed by models such as this
one could have clinical utility. For example, for incoming patients
with tICH, the nine associated variables could be collected,
and the model would use historical national data to estimate a
mortality probability that would sort patients into appropriate
prognostic groups, thereby assisting with triage. Ongoing data
collection via the NTDB can be used to improve the model’s
performance over time.

One important application of these sorts of models is
potentially to guide enrollment in TBI-related studies. Many
studies in this field have likely been limited by overly-broad
enrollment criteria such that they included patients who would
likely have done well or, at the other extreme, would likely
have done poorly, regardless of the experimental intervention
(23). Such an approach can severely limit a clinical trial’s power.
Ideally, such studies would focus on the enrollment of patients
whose outcomes are less certain (e.g., Grade II or Grade III tICH,
as defined here), and are therefore potentially more modifiable.
A Grade “calculator” (https://ntdbmortalitycalculator.github.io/)
was developed to allow for broader usability and application of
the model. The calculator could be utilized to select patients for
clinical trial enrollment as well as better risk-stratify individuals.

Limitations
Compared to other previously developed models, this current
model performs on the lower end of accuracy and sensitivity.
However, this is likely attributable to the larger, more diverse
study population as well as the use of a true hold-out set which
avoids the overfitting likely seen in comparable models. Because
this is the first study to predict mortality using the NTDB, the
generalizability of these results may be greater.

Further, as shown in the post-hoc tests, the nine identified
features are limited to being predictors when considered in
conjunction with each other, so each may not be independently
associated withmortality. Subgroup analyses of the nine variables
using alternate machine learning methods could identify whether
each variable or specific combinations of variables are more
associated with mortality. This would help better define the
individual relationship between each variable and mortality, and
is therefore warranted in future study.

In addition, this model’s scope was limited to cases of tICH
and thus, its implications on types of non-hemorrhagic TBI may
not be clear. We aimed to focus on factors that are accurate, CT-
based predictors. The choice was made to exclude diffuse axonal
injury (DAI), concussion, traumatic cerebral edema, and diffuse
brain injury from the analysis given poor sensitivity based on CT

scan, which is how patients are typically initially evaluated, and
further evaluation with MRI is uncommon (24–27).

Medical complications and comorbidities evaluated in the
model were limited to those most closely linked to tICH.
Additional complications and comorbidities included in the
NTDB (Supplementary Tables 1, 2) may be worth evaluating
and may point to newfound associations with tICH mortality.

Like all large trauma databases, the NTDB suffers from
missing and erroneously entered physiologic data, notably for
GCS and SBP values, which can result in unexpected data
distributions. Though the use of complete case analysis in
studies of large trauma databases is standard (28), its use may
influence study results. Optimal data imputation methods for
the NTDB should be identified and applied to future studies to
minimize bias.

Further, because the NTDB aims to provide broad and general
data spanning all fields of trauma care, this study is particularly
subject to limitations of secondary data analysis. The NTDB does
not contain certain clinical factors that would be significant when
evaluating tICH prognosis, such as time to treatment and types of
interventions. It also does not include known relevant prognostic
scores, such as theMarshall CT scan classification score (MCTC).
To ensure greater robustness in subsequent studies, national
trauma data collection should seek to include additional relevant
fields for each data point that are relevant to that field of
trauma care.

Lastly, as with other database studies based on ICD codes,
errors in coding can contribute to the variability of results.

CONCLUSIONS

tICH plays a critical role in trauma morbidity and mortality.
In this study, a linear SVM model to predict mortality was
developed and rigorously validated with a true hold-out set for
tICH. High ISS, advanced age, presence of subdural hemorrhage,
and presence of subarachnoid hemorrhage were associated with
increased mortality, while high GCS verbal and motor subscores,
current smoker, blood alcohol level beyond the legal limit, and
level 1 trauma center were associated with decreased mortality.
These findings are applicable to multiple hemorrhage subtypes
and can assist in identifying and triaging patients with the highest
risk factors for death upon admission. While many studies have
attempted to create models to predict mortality in TBI, we sought
to confirm those predictors for tICH using modern modeling
approaches, machine learning, and true hold-out test sets, using
the largest available TBI database in the U.S. We find that while
the predictors we identify are consistent with prior reports,
overall prediction accuracy is somewhat lower than prior reports
when assessed more rigorously.
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