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Abstract: In this study, ultraporous aluminas (UPA) were synthesized as new effective adsorbents for
Remazol Brilliant Blue R (RBBR) removal from aqueous solutions. The UPA monoliths were grown via
facile oxidation process, followed by isochronous annealing treatment in air at different temperatures,
through which γ, θ, and α phase polycrystalline fibrous grains of UPA can be accordingly obtained.
The experimental factors that affect the material adsorption performances including initial pH,
contact time, and temperature were comprehensively studied by batch experiments. The RBBR
adsorption isotherms of UPA(γ) and UPA(θ) powders were found almost identical, while UPA(α)
powders showed low effectiveness. To obtain the desirable mechanical stability of the UPA monolith
with considerable RBBR adsorption capacity, UPA(θ) powders were further studied. The UPA(θ)
powders exhibited maximum RBBR adsorption at pH 2 due to the positively charged surface under
acidic conditions. Compared with the Lagergren pseudo-first-order model, the pseudo-second-order
model was found to explain the adsorption kinetics better. Despite the film diffusion dominating
the adsorption process, the contributions of the intraparticle diffusion and chemical reactions were
also found significant. The adsorption equilibrium data at different temperatures were fitted by the
Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich (D–R) isotherm models. The Langmuir
model was found the most effective in the description of equilibrium data, and the maximum RBBR
adsorption capacity retained by UPA(θ) powders was 122.55 mg·g−1 at 295 K. Thermodynamic
parameters (∆G0, ∆H0, and ∆S0) indicated the adsorption process was spontaneous and exothermic
in nature.

Keywords: ultraporous aluminas; RBBR; kinetic models; diffusion models; isotherm models; thermo-
dynamics

1. Introduction

Throughout history, textile dyeing can be dated back to the Neolithic period (also
known as the New Stone Age), followed by the serendipitous discovery of the first synthetic
dye, mauveine (aniline purple) by William Perkin in 1856 [1]. Since then, the practice of
employing synthetic dyes in the printing and dyeing process of fabrics has been extensively
developed worldwide. At present, >7 × 105 tons of dyes are produced annually, and nearly
10–15% of the total dyes are discharged in the surrounding environment with or without
partial treatments, making the dyestuff-related industries responsible for up to 20% of
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industrial water pollution [2,3]. In addition to the textile industry, other kinds of dye-
relevant industries (e.g., paper and pulp, plastic, leather, cosmetics, pharmaceutics, and
photography) are also recognized as the most polluting industries. Accompanying the great
conveniences brought by dye-based industrial applications, some serious problems are also
caused owing to their carcinogenicity, genotoxicity, and/or mutagenicity in nature, which
poses numerous threats to the ecological system and living organisms [3–7]. Therefore,
proper treatments regarding purifications and remediations of industrial textile effluents
are urgent and necessary.

The majority of dyes industrially used nowadays are organic compounds with com-
plex and reinforced structures, which normally consist of two major components, i.e.,
chromophore and auxochrome groups [2,6,7]. The persistent structure and poor biodegrad-
ability of these refractory organics make the choice of an appropriate dye treatment method
challenging [2]. Generally, the most known and extensively applied methods for the treat-
ment of dyehouse effluents can be classified into physical (adsorption, membrane filtration,
and reverse osmosis), chemical/electrochemical (adsorption, coagulation, flocculation, and
advanced oxidation processes), biological (intracellular, and isolated enzymes) methods,
and/or emerging combination of several above-mentioned techniques with the purpose
of synergistic effects [4–7]. Among the available conventional methods for dye treatment,
chemisorption involving chemical reactions between solutes and the functional groups on
adsorbent surfaces in aqueous solutions has been confirmed and extensively studied as the
most effective process for the treatment of industrial textile effluents [4,6,7].

Mesoporous materials of 2–50 nm pore diameter, owing to their numerous advantages
including ordered, homogenous pore distributions, regular and tunable pore sizes, high
specific surface areas, framework/wall substitutions with various metal oxides, favorable
biocompatibility, and low toxicity, have been widely applied in the research field of wastew-
ater treatment, catalyst support, drug delivery, and energy-related aspects, etc. [8–10]. Be-
sides the size of pores inside the building framework, the compositions of material can vary,
including pure organics (e.g., porous polymers), organic/inorganic (e.g., metal–organic
frameworks, MOFs), and pure inorganics (e.g., silica, alumina, and titania). The great
advantage of inorganic materials, in comparison with other materials, is that they can be
synthesized relatively cheaply and usually by simple synthesis procedures [4,6,7,11–13].
For example, Khoshhesab et al. synthesized NiO nanoparticles by chemical precipitation
method and studied its adsorption capacity for Remazol Brilliant Blue R (RBBR, also called
RB19) with commercial NiO powders as a comparison [13]. Moussavi et al. synthesized
porous MgO nanoparticle (nano-MgO) by sol–gel method and applied it for both azo and
anthraquinone (AQ) dye removal from industrial wastewaters [7]. In particular, Madrakian
et al. successfully synthesized magnetite-modified multiwalled carbon nanotubes (MMM-
CNTs) for the removal of four anionic dyes including RB19, Methylthymol blue, Congo
red, and Mordant Blue 29 [4]. Recently, Beauvy et al. developed a new method for the
synthesis of ultraporous alumina (UPA) monolith, which was followed by isochronous
annealing treatment in air at different temperatures, anhydrous monolithic UPA with dif-
ferent crystallizations can be accordingly obtained [11,12,14,15]. The versatile applications
of UPA materials with regard to photocatalytic, optical, electronic, and arsenic wastewater
treatment performances have been extensively studied [16–20].

In the present study, RBBR was chosen as a representative AQ dye, which widely
exists in industrial textile effluents. The UPA powders with different polycrystalline
phases (i.e., γ, θ, and α) were synthesized for RBBR removal, and the experimental factors
that affect the material adsorption performances were comprehensively studied by batch
experiments. The adsorption kinetic models including the Lagergren pseudo-first-order,
pseudo-second-order, film diffusion (Boyd plot), and intraparticle diffusion (Weber and
Morris plot) models were applied to fit the kinetic data. Additionally, the adsorption
equilibrium data at different temperatures were fitted by using the Langmuir, Freundlich,
Temkin, and Dubinin–Radushkevich (D–R) isotherm models. The present study provides
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an improved understanding of the UPA potentials in wastewater treatment, which can
explore its applications in the environmental field.

2. Materials and Methods
2.1. Chemicals and UPA Monolith Synthesis

Figure S1a,b showed the physicochemical characteristics of RBBR and its molecular
compositions (wt%) including C (42.17%), H (2.57%), N (4.47%), Na (7.34%), O (28.09%),
and S (15.35%) [21]. The chemicals including acetone, Hg(NO3)2, AgNO3, sodium acetate,
CH3COOH, and NaOH were purchased from Sigma-Aldrich, Inc. (St. Louis, MO, USA).
The raw laminated metallic aluminum plate (100 × 100 mm, 1.0 mm of thickness, 99.99% of
purity) was supplied by Goodfellow Cambridge Ltd. (Huntingdon, UK). All the chemicals
used in this study were of analytical grade and used as received directly without further
purification. Milli-Q water (Figure S2, Millipore Corp., Burlington, MA, USA) with a
specific resistivity of 18.2 MΩ·cm−1 at 25 ◦C was used to prepare solutions throughout the
experiments.

The UPA monolith samples were synthesized via a facile oxidation process according
to the previous studies (Figure S3) [11,12,16,17,22]. Briefly, high purity but fragile UPA
monolith samples were obtained with a growth rate of ~1 cm·h−1 at room temperature in a
humid atmosphere (70–80% RH) by the oxidation of metallic aluminum plates through a
liquid layer of mercury–silver amalgam (Figure S4) [11]. Anhydrous monolithic UPA can be
obtained from fragile UPA, converting to amorphous UPA, polycrystalline UPA(γ), UPA(θ),
and UPA(α) monolith under 4 h of an isochronous annealing treatment in air at <870, 950,
1150, and 1350 ◦C, respectively (Figure S5) [11,12,17,18,22]. The mechanical stability of the
UPA materials increased with the increasing calcination temperature at the expense of the
specific surface area, which decreased from 300 m2·g−1 (raw fragile UPA) to 202 m2·g−1 of
UPA(γ), 93 m2·g−1 of UPA(θ), and 6 m2·g−1 of UPA(α) (Figure S6). Figure S7a,b showed
the adsorption isotherm profiles regarding RBBR adsorption capacity with units as mg·g−1

and mg·m−2 retained by UPA(γ), UPA(θ), and UPA(α) powders, respectively. These
results showed that the RBBR adsorption capacity was proportional to the UPA specific
surface area and attained approximately 1.1 mg·m−2 regardless of its polycrystalline phase.
Therefore, to obtain the desirable mechanical stability of UPA monolith with considerable
RBBR adsorption capacity, in the following studies, UPA(θ) monolith was employed to
achieve more homogeneous adsorbent dispersion after a rigorous grinding process.

2.2. Characterization

The obtained samples were characterized by using scanning electron microscopy
(SEM, Zeiss Supra 40 VP, Carl Zeiss, Jena, Germany) and transmission electron microscopy
(TEM, JEOL 2011, JEOL Ltd., Tokyo, Japan) techniques. The material compositions before
and after RBBR adsorption were analyzed by elemental mapping with energy-dispersive
X-ray (EDX) spectroscopy (SEM S440, LEICA, Germany). The Fourier transform infrared
(FTIR) spectra of the obtained samples were recorded by using a PerkinElmer Spectrum
100 system spectrometer (PerkinElmer, Waltham, MA, USA) in pressed KBr pellets (Sigma-
Aldrich, St. Louis, MO, USA, 99%, analytical reagent) and in the 400–4000 cm−1 region.
The powder X-ray diffraction (XRD) pattern of the obtained samples was carried out by
using an Inel Equinox 1000 X-ray diffractometer (Inel, Celje, Slovenia) with Co Kα radiation
source (λ = 1.7902 Å), and the analysis was performed at 2θ diffraction angles from 25◦ to
85◦ at a speed of 2◦/min. The Brunauer–Emmett–Teller (BET) specific surface area and pore
size distribution of the obtained samples were studied by nitrogen adsorption–desorption
measurement (Belsorp-max, MicrotracBEL, Japan; data analysis: MicroActive for ASAP
2460) with outgassing at 200 ◦C for 12 h. The mass of UPA(γ), UPA(θ), and UPA(α)
powders and the corresponding range of points (P/P0) used for the BET measurements
were 0.0602 (0.0052–0.9888), 0.0586 (0.0100–0.9898), and 0.4335 g (0.0063–0.9948 pressure),
respectively. The zeta potential values of the obtained samples as a function of pH were
measured by a Nano ZS90 Zetasizer (Malvern Instruments Ltd., Malvern, UK). The desired
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pH values of suspensions between 2 and 12 were adjusted by adding negligible volumes of
0.1–0.01 mol·L−1 HCl (2.0–3.5), CH3COOH (3.5–7.0), or NaOH solution.

2.3. Batch Adsorption Studies

The complete experimental details can be found in the Supplementary Materials. The
RBBR concentration in the supernatant (Ct, mg·L−1) was determined by spectrophotometry
method at the wavelength of 590 nm (Figure S1c,d, UviLine 9400 UV–Visible spectropho-
tometer, Secomam, France). The adsorption percentage (%), the adsorption capacity at
equilibrium (qe, mg·g−1), and the distribution coefficient (Kd) were obtained from the
following equations, respectively:

Adsorption (%) =
C0 − Ce

C0
× 100 (1)

qe =
C0 − Ce

m
×V (2)

Kd =
C0 − Ce

Ce
× V

m
=

qe

Ce
(3)

where C0 (mg·L−1) is the initial adsorbate concentration in suspension, Ce (mg·L−1) is
the adsorbate concentration in the supernatant at equilibrium, V (L) is the volume of
suspension, and m (g) is the mass of adsorbent. All of the experimental data are the
averages of triplicate determinations.

2.4. Data Analysis
2.4.1. Adsorption Kinetic Study

The kinetic data were fitted by the Lagergren pseudo-first-order and pseudo-second-
order models by using the following linearized equations, respectively [23,24]:

Lagergren pseudo-first-order model:

ln(Qm −Qt) = ln Qm − k′t (4)

pseudo-second-order model:
t

Qt
=

1
k′′Qm2 +

t
Qm

(5)

where Qt and Qm (mg·g−1) refer to the adsorption capacity at time t (h) and at equilibrium
obtained from the kinetic models. k′ (h−1) and k” (g·mg−1·h−1) are the adsorption rate
constants obtained from the kinetic models.

2.4.2. Rate-Limiting Step Determination Study

In order to identify the bottleneck (slowest) step of the adsorption process, both the
first-curved and second-linear adsorption parts of the kinetic data were fitted by the film
diffusion (Boyd plot) and intraparticle diffusion models (Weber and Morris plot) by using
the following linearized equations, respectively [25–27]:

Film diffusion model [25,26]:

ln(1− Qt

Qm
) = −kFDt (6)

Intraparticle diffusion model [27]:

Qt = kIPDt0.5 + CIPD (7)

where Qt/Qm is the fractional attainment of equilibrium. kFD (min−1) and kIPD (mg·g−1·
min−0.5) are the rate constants obtained from the diffusion models. CIPD is proportional to
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the boundary layer, which provides information about boundary layer thickness, i.e., the
larger value of CIPD, the greater of boundary layer effect on the adsorption process [27,28].

2.4.3. Adsorption Equilibrium Study

To obtain a better understanding of the adsorption mechanisms, the adsorption equi-
librium data were fitted by Langmuir, Freundlich, Temkin, and D–R isotherm models [29].

The linearized equation of the Langmuir isotherm model is listed as follows [30–32]:
Langmuir isotherm model:

Ce

qe
=

1
KLqe,max

+
Ce

qe,max
(8)

where qe,max (mg·g−1) is the maximum adsorption capacity obtained from the isotherm
models, and KL (L·mg−1) is the constant of the Langmuir isotherm model related to the
adsorption energy. The essential characteristics of the Langmuir model can be expressed in
terms of a dimensionless constant, commonly known as separation factor or equilibrium
parameter (RL), which is defined by the following equation [33,34]:

RL =
1

1 + KLC0
(9)

According to Hall et al. [33], the magnitude of RL indicates the adsorption process in
nature to be either unfavorable (RL > 1), linear (RL = 1), favorable (0 < RL < 1) or irreversible
(RL = 0).

The linearized equation of the Freundlich isotherm model is listed as follows [35]:
Freundlich isotherm model:

log qe = log KF +
1
n

log Ce (10)

where KF (mg(1−1/n)·L1/n·g−1) and 1/n are the Freundlich constants indicating the adsorp-
tion capacity and adsorption intensity, respectively. The magnitude of 1/n ranges between 0
and 1, indicating the surface heterogeneity, which becomes more heterogeneous as its value
approaches zero [5,29,36]. Meanwhile, 1/n > 1 indicates a cooperative adsorption [29].

The linearized equation of the Temkin isotherm model is listed as follows [37]:
Temkin isotherm model:

qe = B ln KT + B ln Ce (11)

where B = RT/bT (J·mol−1) and KT (L·g−1) are the constant and equilibrium binding
constant of the Temkin isotherm model, respectively.

The linearized equation of the D–R isotherm model is listed as follows [38]:
D–R isotherm model:

ln qe = ln qe,max − βε2 (12)

ε = RT ln(1 +
1

Ce
) (13)

where β (mol2·kJ−2) is the constant of the D–R isotherm model, ε is the constant of the D–R
isotherm model related to the Polanyi potential, R (8.3145 J·mol−1·K−1) is the universal
gas constant, and T (K) is the absolute temperature in Kelvin. E (kJ·mol−1) is defined as
the free energy change required to transfer 1 mol of adsorbate from infinity in solution to
the solid surface [28]. This relationship can be described as follows [39]:

E =
1√
2β

(14)
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The magnitude of E is useful to estimate the mechanism of the adsorption reaction.
If the value of E is in the range of 8–16 kJ·mol−1, the adsorption process is governed by
an ion-exchange mechanism, while in the case of E < 8 kJ·mol−1, the adsorption process
may be affected by physical forces. On the other hand, the adsorption process may be
dominated by particle diffusion if the value of E is greater than 16 kJ·mol−1 [40,41].

2.4.4. Adsorption Thermodynamic Study

The thermodynamic parameters including standard Gibbs free energy (∆G0, kJ·mol−1),
standard enthalpy change (∆H0, kJ·mol−1), and standard entropy change (∆S0, J·mol−1·K−1)
were obtained from the following equations, respectively:

∆G0 = −RT ln K0 (15)

ln K0 =
∆S0

R
− ∆H0

RT
(16)

where lnK0 (K0, the standard distribution coefficient) can be obtained by plotting lnKd
versus Ce and extrapolating Ce to zero. The slope and intercept of the plot of lnK0 versus
1000/T correspond to –∆H0/1000R and ∆S0/R, respectively.

3. Results and Discussions
3.1. Characterization

Figure 1a,b showed the SEM and TEM images of UPA(θ) powders, which evidenced
the ultraporous morphology of obtained samples. The EDX spectra of UPA(θ) powders
showed that there were no residual mercury or silver element retained on the surface of
obtained samples (Figure S8). As shown in Figure S9, the UPA(θ) border became smoother
after RBBR adsorption, and the corresponding TEM elemental mappings in Figure 1c,d
clearly confirmed the uniform distribution of RBBR retained on UPA(θ) surfaces.

In Figure 2a, the absorption band in the range of 3400–3500 cm−1 was assigned to the
–OH stretching vibration of UPA(θ) powders, and the broader absorption band in this range
indicated the presence of carboxyl and amino groups distributed on the UPA(θ) surface
after RBBR adsorption (Figure S1a). Based on the calculation from Bragg equation (2 dsinθ
= nλ, n = 1, 2, 3, etc.) (Figure 2b), the typical XRD patterns at 2θ = 36.64◦ (d = 0.28 nm),
38.46◦ (d = 0.27 nm), and 80.32◦ (d = 0.14 nm) correspond to the (111), (−204), and (403)
planes of theta alumina, respectively, (JCPDS 35–0121, 11–0517, and 23–1009) [42]. The
nitrogen adsorption–desorption isotherm curve of UPA(θ) powders followed the typical
characteristics of type IV isotherm and H3 hysteresis (IUPAC), indicating the mesoporous
property of UPA(θ) powders (Figure 2c) [43,44]. Moreover, the specific surface area of
UPA(θ) powders was 93 m2·g−1 with an average pore diameter of 35 nm (Gaussian curve
from 0–150 nm), and most data of pore size distribution located in the mesoporous range
(Figure 2c). The ultraporous nature of UPA(θ) powders is expected to favor the diffusion-
controlled surface reactions, which will be discussed in the following studies.
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(d) zeta potential value of UPA(θ) powders as a function of pH. m/V[UPA(θ)] = 4.44 g·L−1, I =
100 mmol·L−1 sodium acetate.

3.2. Initial pH Effect and Adsorption Kinetics

As shown in Figure 3a, the RBBR adsorption retained by UPA(θ) powders strongly
decreased with increasing pH (up to pH = 6) and then slowly decreased in the following pH
range. According to Figure 2d, the pHzpc value of UPA(θ) powders approximately equaled
to 9.0, and the increasing solution pH values after RBBR adsorption equilibrium indicated
the significant consumption of hydrogen ions under acidic conditions (Figure S10). At
low pH values, the electrostatic attraction between the protonated (positively charged)
functional groups on UPA(θ) surfaces and RBBR species resulted in the high adsorption
percentage of RBBR [7,45,46]. As the pH value increased, these gradually deprotonated
(negatively charged) functional groups became less favorable for the adsorption process,
and consequently, the affinity of UPA(θ) powders toward the negatively charged RBBR
species (e.g.,−SO3

−, sulfonate groups) decreased (Figure 2d). Moreover, at high pH values,
the formation of excessed OH– ions under alkaline conditions and subsequent competition
with the RBBR species for the finite reaction sites on UPA(θ) surfaces may also lead to the
low RBBR adsorption percentage [7]. According to the previous studies, similar results
have also been reported by applying other kinds of adsorbents for RBBR removal [6,45–48].
For example, Gök et al. found that the adsorption of RBBR onto 1,6-diamino hexane
modified bentonite (DAH–bentonite) was strongly pH dependent, with the optimum pH
= 1.5 [6]. Therefore, the low adsorption percentage of RBBR under alkaline conditions
can be attributed to the electrostatic repulsion between the negatively charged UPA(θ)
surfaces and the anionic RBBR species, which became the essential factor in controlling the
adsorption process.
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Figure 3. (a) Effect of initial pH on RBBR adsorption, C[RBBR]initial = 800 mg·L−1, m/V[UPA(θ)] =
4.44 g·L−1, I = 100 mmol·L−1 sodium acetate, T = 310 K, stirring speed = 150 rpm, and equilibrium
time = 24 h. Adsorption kinetics regarding the (b) adsorption percentage and (c) adsorption capacity
of RBBR retained by UPA(θ) powders; (d) effect of UPA(θ) dosage on RBBR adsorption kinetics.
C[RBBR]initial = 800 mg·L−1, initial pH = 4.0 ± 0.1, I = 100 mmol·L−1 sodium acetate, T = 310 K,
stirring speed = 150 rpm, and terminal equilibrium time = 24 h. a Three-dimensional curved surface
simulation based on MATLAB matrix conversion and gridding.

The kinetic data regarding the adsorption percentage (%) and adsorption capacity (Qt,
mg·g−1) of RBBR retained by UPA(θ) powders were shown in Figure 3b,c, respectively. The
RBBR adsorption increased rapidly in the first 4 h and then maintained a high level until the
adsorption process achieved equilibrium. Figure 3b,c also showed that in the initial step,
the adsorption process achieved equilibrium much more rapidly at high adsorbent dosage.
In Figure 3c, the decrease of Qt value of RBBR adsorption may result from the increasing
UPA(θ) dosage on which more vacant reaction sites became available. In general, the
RBBR adsorption process was rapid, and 4 h was enough to achieve the entire adsorption
equilibrium. Based on the profiles of kinetic data (Figure 3b), the effect of UPA(θ) dosage on
RBBR adsorption kinetics was shown in Figure 3d (XZ side, i.e., “UPA(θ) dosage (g·L−1)–
Adsorption (%)” side). As discussed above, the increasing UPA(θ) dosage may result in
more vacant reaction sites available on the adsorbent surfaces for RBBR adsorption. This
positive relationship explained the Г line type of kinetic data on the XZ side of Figure
3d at 24 h of equilibrium time (black line highlighted). The RBBR adsorption increased
with increasing UPA(θ) dosage and exceeded 96% when UPA(θ) dosage attained more
than 10 g·L−1. As long as sufficient reaction sites were provided, the RBBR adsorption
was independent of UPA(θ) dosage. All the above discussions indicated that the UPA(θ)
dosage played an important role in the adsorption process; however, the economic issues
usually should be taken into consideration in the actual adsorbent applications. Therefore,
in order to obtain suitable dye treatment, one should determine the appropriate UPA(θ)
dosage according to the initial concentration of dye effluents [6,7,49,50].
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3.3. Adsorption Kinetic and Rate-Limiting Step Determination Studies

The fitting results of the Lagergren pseudo-first-order and pseudo-second-order mod-
els were shown in Figure 4a,b, respectively, and the fitting parameters were listed in Table 1.
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Table 1. Parameters of RBBR adsorption kinetics fitted by the Lagergren pseudo-first-order and
pseudo-second-order models at T = 310 K.

UPA(θ) Dosage (g·L−1)

Kinetic Models 4.44 6.67 8.89 13.33

Lagergren pseudo-first-order
k′ (h−1) 0.115 0.138 0.094 0.060

Qmc (mg·g−1) a 15.844 15.243 9.171 3.337
R2 0.521 0.511 0.336 0.332

Pseudo-second-order
k” (g·mg−1·h−1) 0.049 0.046 0.102 0.422
Qmc (mg·g−1) a 86.207 86.957 79.745 57.803

R2 0.999 0.999 0.999 0.999
Qme (mg·g−1) b 87.385 87.934 81.116 59.987

a Qmc (mg·g−1) is the calculated adsorption capacity at equilibrium obtained from the kinetic models. b Qme
(mg·g−1) is the experimental adsorption capacity at equilibrium.

As shown in Table 1, the low determination coefficients (R2) obtained from the Lager-
gren pseudo-first-order model (Equation (4)) showed that between the kinetic data and this
model, there was no significant correlation. On the other hand, the pseudo-second-order
model (Equation (5)) fitted the kinetic data better, and the calculated adsorption capacities
at equilibrium (Qmc) were closer to the experimental ones (Qme). Therefore, the adsorp-
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tion process followed the pseudo-second-order model based on the assumption that the
rate-limiting step may be chemical adsorption or chemisorption involving valence forces
through sharing or exchanging electrons between the adsorbent and adsorbate, which
provides the best correlation of the kinetic data [24,51].

Generally, the adsorption kinetics of solutes retained by porous materials is controlled
by different steps [50,51]: (i) solutes transfer from the aqueous phase to the more external
adsorbent surface, crossing the boundary film bordering the solid adsorbent particles (film
diffusion step), (ii) internal diffusion of solutes transferring from the adsorbent surface to
the intraparticle active sites (particle diffusion step), and (iii) sequestration on the active
sites via adsorption, complexation, or intraparticle precipitation phenomena. One or more
of the above-mentioned steps may affect the mechanisms governing the adsorption process.
The fitting results of the film diffusion and intraparticle diffusion models were shown in
Figure 4c,d, respectively, and the fitting parameters were listed in Table 2.

Table 2. Parameters of RBBR adsorption kinetics fitted by the film diffusion (Boyd plot) and intraparticle diffusion (Weber
and Morris plot) models at T = 310 K.

First-Curved Adsorption Part Second-Linear Adsorption Part

Diffusion Models 4.44 6.67 8.89 13.33 4.44 6.67 8.89 13.33

Film diffusion
kFD (min−1) 0.0111 0.0136 0.0184 0.0123 0.0006 0.0004 0.0003 0.0003

Intercept on Y axis a −0.746 −0.556 −0.690 −1.922 −3.108 −3.691 −3.471 −3.545
R2 0.911 0.956 0.976 0.807 0.885 0.909 0.866 0.826

Intraparticle diffusion
kIPD (mg·g−1·min−0.5) 3.3628 4.0538 3.0117 1.0385 0.0769 0.0374 0.0281 0.0217

CIPD 42.309 32.299 43.003 46.347 82.332 84.429 78.199 57.072
R2 0.708 0.904 0.873 0.704 0.899 0.916 0.875 0.838

a A linear plot of −ln(1 − Qt/Qm) versus t with zero intercept indicates that the kinetics of the adsorption process is controlled by diffusion
through the liquid surrounding the solid adsorbent particles.

The nonlinear distribution of points with two distinct regions observed in Figure 4d
indicated that intraparticle/pore diffusion may participate in the adsorption process but
was not the single rate-limiting step [51]. Furthermore, the deviation of intercepts of Weber
and Morris plot (CIPD, Figure 4d) may be due to the difference in the rate of mass transfer
in the initial and final stages of the adsorption process [28,52]. For the RBBR adsorption
retained by UPA(θ) powders, the initial curved region of the plot was attributed to the film
diffusion, and the subsequent linear region was attributed to the intraparticle diffusion and
chemical reactions [48,51].

3.4. Adsorption Equilibrium Study

As shown in Figure 5, the RBBR adsorption capacity of UPA(θ) powders decreased
with increasing temperature, which indicated that the adsorption reaction may be exother-
mic, and low temperature favored the adsorption process.
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speed = 150 rpm, and equilibrium time = 24 h.

Based on the assumption that the monolayer adsorption can only occur at a finite
number of definite localized sites with no lateral interaction and steric hindrance between
the adsorbed molecules, even on adjacent sites, the Langmuir model is widely used for
the fitting of the homogeneous adsorption [30–32]. This empirical model is graphically
characterized by a plateau and an equilibrium saturation point where once a molecule
occupies a site, no further adsorption can take place [29]. Unlike the Langmuir model, the
Freundlich model is an empirical model widely applied in heterogeneous systems (e.g.,
organic compounds, highly interactive species on activated carbon and molecular sieves),
which describes the nonideal and reversible adsorption with no restrictions to the formation
of monolayer [35]. The Temkin model, which contains a factor that explicitly takes account
of the adsorbent–adsorbate interactions, was firstly introduced describing the adsorption
of hydrogen onto platinum electrodes in acidic solutions [37]. By ignoring the extremely
low and large value of concentrations, this model assumes that the heat of adsorption
(function of temperature) of all the molecules in the layer would decrease linearly rather
than logarithmically with coverage [29,53]. Compared with its less applicability to the
more complex adsorption systems, especially the liquid phase adsorption isotherms, the
Temkin model can be well applied for predicting the gas phase equilibrium. The D–R
model is an empirical model generally applied to express the adsorption mechanism with
a Gaussian energy distribution onto a heterogeneous surface [38]. This model has often
successfully fitted high solute activities and the intermediate range of concentrations data
well.

The fitting results of the Langmuir, Freundlich, Temkin, and D–R isotherm models
were shown in Figure 6, and the fitting parameters were listed in Table 3.
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Table 3. Parameters of RBBR adsorption isotherms fitted by the Langmuir, Freundlich, Temkin, and
D–R isotherm models at different temperatures.

Isotherm Models 295 K 310 K 333 K

Langmuir
qe,max (mg·g−1) 122.549 105.485 74.184

KL (L·mg−1) 0.107 0.039 0.019
R2 0.999 0.998 0.991
RL 0.011–0.078 0.030–0.188 0.056–0.275

Freundlich
KF (mg(1−1/n)·L1/n·g−1) 24.548 13.461 6.991

1/n 0.335 0.390 0.401
R2 0.880 0.903 0.982

Temkin
B (J·mol−1) 20.892 21.376 14.824
KT (L·g−1) 2.036 0.464 0.242

R2 0.960 0.961 0.973
D–R

qe,max (mg·g−1) 107.037 83.502 54.976
β (mol2·kJ−2) 7.795 × 10−6 3.257 × 10−5 8.496 × 10−5

R2 0.784 0.866 0.823

Compared the obtained R2 values from different isotherm models with each other,
the Langmuir model fitted the adsorption equilibrium data better than the other three
models (i.e., Langmuir > Temkin ≈ Freundlich > D–R model), indicating the presence of
RBBR monolayer coverage on UPA(θ) surfaces [30–32]. Based on the Langmuir model, the
qe,max values of RBBR adsorption retained by UPA(θ) powders were 122.55, 105.49, and
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74.18 mg·g−1 for 295, 310, and 333 K, respectively. These results were in good accordance
with the equilibrium qe values obtained from the adsorption equilibrium study (Figure 5),
which was consistent with the low-temperature favorable conclusion, as discussed above.
The RL values listed in Table 3 fell in the range of 0–1, indicating that the RBBR adsorption
retained by UPA(θ) powders was favorable, and RBBR tended to remain the bonding
on UPA(θ) surfaces [33]. The obtained R2 values from the Temkin model were slightly
greater than those of the Freundlich model, and the equilibrium binding constants (KT)
at high temperatures were less than that at room temperature. In the Freundlich model,
all the values of 1/n at different temperatures were less than 1, indicating the surface
heterogeneity of UPA(θ) powders during the adsorption process [5,29,36]. Among the
isotherm models applied in this study, the obtained R2 values from the D–R model were the
lowest among the considered isotherm models, and the qe,max values were much less than
the equilibrium qe values obtained from the adsorption isotherms (Figure 5). Consequently,
the model analysis indicated the low applicability of the D–R model on the adsorption
process. Therefore, the Langmuir isotherm model was found to describe the adsorption
equilibrium data best, and the maximum RBBR adsorption capacity retained by UPA(θ)
powders was 122.55 mg·g−1 at 295 K.

3.5. Adsorption Thermodynamic Study

The thermodynamic parameters can define whether the RBBR adsorption retained by
UPA(θ) powders was endothermic or exothermic, spontaneous or not [54,55]. The linear
plots of lnKd versus Ce and lnK0 versus 1000/T were shown in Figure 7a,b, respectively.
The obtained thermodynamic parameters were listed in Table 4.
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Table 4. Thermodynamic parameters of RBBR adsorption retained by UPA(θ) powders.

T (K) ∆G0 (KJ·Mol−1) ∆H0 (kJ·Mol−1) ∆S0 (J·Mol−1·K−1)

295 −4.673
310 −2.383 −39.711 −119.372
333 −0.107

In general, the positive ∆G0 values at all temperatures indicate that the adsorption
process requires energy from an external source to convert reactants into products, which
is considered thermodynamically unfavorable. In this study, the obtained negative ∆G0

values indicated that the RBBR adsorption process was thermodynamically favorable
and spontaneous. The increase of ∆G0 value with increasing temperature indicated that
low temperature favored the adsorption process. The negative ∆H0 value confirmed the
exothermicity of the adsorption process. Moreover, the magnitude order of ∆H0 value
can indicate the type of adsorption process to be either physical (2.1–20.9 kJ·mol−1) or
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chemisorption (80–200 kJ·mol−1) [56]. Consequently, the RBBR adsorption retained by
UPA(θ) powders can be attributed to a combined physic–chemical adsorption in nature. The
magnitude of ∆S0 value can be used to describe the randomness at the solid–liquid interface
during the adsorption process. According to the previous studies [54–56], the negative
value of ∆S0 reflected that the adsorption process involves an associative mechanism,
and no significant change occurred in the internal structures of the adsorbent during the
adsorption process, while the positive ∆S0 value reflected the affinity of the adsorbent to
adsorbate species involving the dissociative mechanism. For the RBBR adsorption retained
by UPA(θ) powders, the negative value of ∆S0 indicated that the adsorption process was
enthalpy driven, accompanying a decreased disorder that occurred at the solid–liquid
interface.

3.6. Adsorption Mechanism

Figure 8 showed the possible mechanisms for the adsorption of RBBR retained by
UPA(θ) powders. Film diffusion, intraparticle diffusion, electrostatic attraction, surface
complexation, and hydrogen bonding could be considered as the major interactions in the
adsorption mechanisms for the removal of RBBR retained by UPA(θ) powders. The ultra-
porous nature of the UPA(θ) powders induced the adsorption of RBBR molecules by film
and intraparticle diffusion mechanisms. The hydroxyl functional groups distributed on the
UPA(θ) surface tended to form complexes with RBBR molecules by several mechanisms
including electrostatic interaction and surface complexation, especially under acidic condi-
tions. Moreover, hydrogen bonding between the hydroxyl functional groups (hydrogen
bond donors) and nitrogen and/or oxygen centers in RBBR molecules (hydrogen bond
acceptors) may also have some influences on the adsorption process.
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Compared with the other organic, inorganic, or bio-based adsorbents reported in
related studies in the literature (Table 5), UPA(θ) and UPA(γ) powders possess several
advantages for large-scale applications including nontoxicity, facile synthesis, and higher
RBBR adsorption capacity, compared with referenced adsorbents [4–7,13,45–47,49,50,57–61].
Therefore, UPA materials have high potentials as alternative adsorbents for the practical
treatment of dye effluents.

Table 5. Comparison of RBBR adsorption capacity retained by UPA materials with other organic,
inorganic, or bio-based adsorbents reported in related studies in the literature.

Adsorbents Experimental
Conditions a qe,max (Mg·g−1) b Ref.

Mazandaran wood waste (WW) pH = 1.72, T = ND 4.75 [57]
ZnO nanoparticles (ZnO NPs) pH = 3.0, T = 298 K 38.02 [49]

Commercial NiO pH = ND, T = 298 K 38.62 [13]
NiO nanoparticles pH = ND, T = 298 K 98.83 [13]

Magnetite/GO (MGO)
nanocomposite pH = 3.0, T = 298 K 62.50 [58]

Magnetite nanoparticles (MNPs) pH = ND, T = 298 K 74.40 [50]
Free fungal biomass (FFB) pH = 2.0, T = 303 K 80.91 [45]

Loofa sponge-immobilized fungal
biomass (LSIFB) pH = 2.0, T = 303 K 98.90 [45]

Magnetite-modified MWCNTs
(MMMCNTs) pH = 4.0, T = 298 K 88.80 [4]

Rhizopus arrhizus biomass pH = 2.0, T = 298 K 90.00 [46]
Carboxylated MWCNTs pH = ND, T = 298 K 95.24 [59]

Wheat bran pH = 1.5, T = 293 K 97.10 [5]
Magnetite nanoparticles-modified

AC (MMAC) pH = 4.0, T = 298 K 104.60 [60]

Polypyrrole-coated Fe3O4
(Ppy@Fe3O4 MNPs) pH = 3.0, T = 298 K 112.36 [47]

Ultraporous alumina(γ) (UPA(α)) pH = 4.0, T = 295 K 17.42 This study
Ultraporous alumina(θ) (UPA(θ)) pH = 4.0, T = 295 K 122.55 This study
Ultraporous alumina(α) (UPA(γ)) pH = 4.0, T = 295 K 212.31 This study

Modified polyethyleneimine
(LMW–PEI) pH = 10.0, T = 298 K 121.00 [61]

Modified bentonite
(DAH–bentonite) pH = 1.5, T = 293 K 134.71 [6]

MgO nanoparticles (Nano-MgO) pH = 8.0, T = 298 K 166.70 [7]
a ND: No data. b Adsorption capacity uniformly converted into mg·g−1 (typical unit).

4. Conclusions

In this study, UPA materials were synthesized as new effective and low-cost adsorbents
for RBBR removal from aqueous solutions. The synthesized materials were characterized
using FTIR, XRD, SEM, TEM, and BET. The adsorption process was pH- and temperature
dependent, and the maximum RBBR adsorption capacity retained by UPA(θ) powders was
122.55 mg·g−1 at 295 K. Both the film diffusion and intraparticle diffusion contributed to the
adsorption kinetics, and chemical reactions also played a significant role during the entire
adsorption process. According to the obtained fitting results, the pseudo-second-order
model and the Langmuir isotherm model were found to best describe the experimental
data (i.e., pseudo-second-order > Lagergren pseudo-first-order model; and Langmuir >
Temkin ≈ Freundlich > D–R isotherm model). Moreover, the thermodynamic parameters
indicated that the adsorption process was spontaneous and exothermic in nature. The
findings of this study highlight the UPA potentials in wastewater treatment, which can
broaden our understanding and its applications in the environmental field.
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