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ABSTRACT
Machine learning has been recently used to predict therapeutic antibody aggregation rates and viscosity 
at high concentrations (150 mg/ml). These works focused on commercially available antibodies, which 
may have been optimized for stability. In this study, we measured accelerated aggregation rates at 45°C 
and viscosity at 150 mg/ml for 20 preclinical and clinical-stage antibodies. Features obtained from 
molecular dynamics simulations of the full-length antibody and sequences were used for machine 
learning model construction. We found a k-nearest neighbors regression model with two features, spatial 
positive charge map on the CDRH2 and solvent-accessible surface area of hydrophobic residues on the 
variable fragment, gives the best performance for predicting antibody aggregation rates (r = 0.89). For the 
viscosity classification model, the model with the highest accuracy is a logistic regression model with two 
features, spatial negative charge map on the heavy chain variable region and spatial negative charge map 
on the light chain variable region. The accuracy and the area under precision recall curve of the 
classification model from validation tests are 0.86 and 0.70, respectively. In addition, we combined data 
from another 27 commercial mAbs to develop a viscosity predictive model. The best model is a logistic 
regression model with two features, number of hydrophobic residues on the light chain variable region 
and net charges on the light chain variable region. The accuracy and the area under precision recall curve 
of the classification model are 0.85 and 0.6, respectively. The aggregation rates and viscosity models can 
be used to predict antibody stability to facilitate pharmaceutical development.
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Introduction

In recent years, high concentration antibody formulations have 
been developed for low-volume, subcutaneous administration 
of therapeutic antibodies and the industry is moving toward 
convenient, patient-centric dosing schemes that enable at- 
home delivery.1 The developability properties of monoclonal 
antibodies (mAbs), such as low aggregation propensity and low 
viscosity, are essential to new drug development.2–4 However, 
the stability profiles of antibodies at high concentrations are 
difficult to assess during early-stage discovery and candidate 
screening due to the limited number of molecules for which 
sequence, biophysical property data, and sufficient material are 
available. Therefore, development of predictive tools that can 
evaluate the developability of high concentration antibody 
formulation as early as possible in the discovery/development 
process is desired.

Computational tools have been applied to identify drug-like 
antibodies that have favorable stability.4 For viscosity predic-
tion, Sharma et al. found that viscosity is highly correlated with 
variable fragment (Fv) net charge and charge symmetry and 
weakly correlated with hydrophobicity.5 Based on these three 
parameters, a linear equation was proposed to calculate visc-
osity at 180 mg/ml (pH 5.5 and 200 mM arginine-HCl).5 

Spatial charge map (SCM) is another viscosity predictive tool 
calculated by molecular dynamics (MD) simulation that 
accounts for the exposed surface-negative charge distribution 
on the Fv region.6 Tomer et al. proposed an equation to predict 
the concentration-dependent viscosity curves using charges on 
the heavy and light chain variable regions and the hinge region 
and the hydrophobic surface area of full-length antibody.7 The 
comparison of these viscosity prediction tools is summarized 
in a recent review paper.8 Recently, a machine learning model 
based on 27 mAbs was proposed to predict antibody viscosity 
at 150 mg/ml.9 This machine learning model implements the 
decision tree (DT) classification method that includes two 
features of mAbs, net charge and high viscosity index (HVI). 
In addition, a coarse-grained model combined with hydrody-
namic calculations and HVI-derived parameters were devel-
oped to predict viscosity at different concentrations.10 For 
aggregation, there are several in silico models for predicting 
solubility/protein aggregation rates, such as Camsol,11 

Solubis,12 and developability index (DI),13 or identifying aggre-
gation-prone regions, such as ANuPP,14 Aggrescan 3D,15 and 
spatial aggregation propensity (SAP).16 The aggregation rate 
tools predict the kinetic rate of proteins. The aggregation- 
prone regions identify specific sequences that induce 
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aggregation, which can guide protein engineering to reduce the 
aggregation. Furthermore, machine learning has been applied 
to predict antibody amyloidogenesis (classification)17–20 and 
protein aggregation kinetics (regression)21,22 based on the 
sequence features. Antibody amyloidogenesis is of great con-
cern for diseases in humans, but has limited application in the 
development of therapeutic proteins.23 Moreover, a machine 
learning-based model that was trained on 21 mAbs was devel-
oped to predict therapeutic antibody aggregation rates at 
150 mg/ml using structural-based features extracted from 
MD simulations.24

The molecular origin of antibody aggregation and viscosity 
remains unclear, but hydrophobicity and charge are considered 
to be the two major driving forces.23,25 Recent studies that 
evaluated the aggregation and viscosity of 21 mAbs showed 
no overlap between those with high aggregation rates and those 
with high viscosity,9,24 indicating that the underlying mechan-
isms of aggregation and viscosity are different. Machine learn-
ing provides a great tool to find the most relevant features for 
aggregation and viscosity, respectively. Previous machine 
learning research on predicting antibody aggregation rates 
and viscosity used data derived from commercial mAbs, 
which may have gone through molecule and/or formulation 
optimization for stability.9,24 Although predictive models could 
be applied to mAbs in early development, such studies have not 
been previously reported. In this work, we measured the aggre-
gation rates and viscosity at 150 mg/ml of 20 preclinical and 
clinical stage mAbs. The molecules used for this study were 
from a subset of preclinical/clinical stage assets that were 
accessible from a material generation and technology develop-
ment program, with the intellectual property approved for 
publication purposes. Machine learning regression methods 
such as linear regression, support vector regression (SVR) 
and k-nearest neighbors (KNN) regression were applied to 
predict antibody aggregation rates using features obtained 
from MD simulations of the full-length antibody. Moreover, 

machine learning classification methods such as logistic regres-
sion (LR), support vector machine (SVM), KNN classification, 
and DT classification were implemented to predict low and 
high viscosity with a threshold value of 30 cP. In addition to the 
20 preclinical and clinical stage mAbs in this work, we included 
27 commercial mAbs from our previous work to expand the 
training and testing dataset. From this work, we provide here 
the best machine learning models as aggregation and viscosity 
predictive tools for antibody development.

Results

Accelerated aggregation rates

An accelerated stability study at 45°C was performed to mea-
sure aggregation of 20 mAbs in a 20 mM histidine-HCl buffer, 
pH 6.0 at 150 mg/mL for 2 weeks. The onset temperature 
(Tonset) of the first thermal transition melting temperature 
(Tm1) for the 20 mAbs were experimentally measured as > 
50°C by differential scanning calorimetry (Table S1). 
Therefore, this thermal stress condition should enable an accel-
erated screening approach to screen the propensity for mAb 
aggregation, without directly imparting conformational 
unfolding due to storage temperature. The rate of aggregation 
per week is reported in Figure 1 and Table S2. Five mAbs had 
aggregation rates over 3% per week (mAb1, mAb3, mAb9, 
mAb11, and mAb20).

Machine learning and feature selection for preclinical and 
clinical stage antibody aggregation rates.

We applied a machine learning protocol developed from 
our previous work24 to predict antibody aggregation. Thirty- 
five structural descriptors, including solvent-accessible surface 
area of hydrophobic residues (SASA_phobic), solvent- 
accessible surface area of hydrophilic residues (SASA_philic), 
SAP, spatial negative charge map (SCM_neg) and spatial posi-
tive charge map (SCM_pos) on the complementarity- 

Figure 1. Aggregation rates of all 20 mAbs studied in this work.
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determining region (CDR) loops and Fv region, were used for 
feature selection and model building (Table 1). Surface- 
exposed hydrophobicity, charge patches and area have been 
found to correlate with antibody aggregation,13,16,24 although 
the detailed mechanisms remain unknown. These could have 
compound effects for aggregation; therefore, all the relevant 
features were included for selection.

After the preprocessing step, four features were removed 
because of a high correlation (r > 0.8) with other features 
shown in the Supporting Information (aggregation_ 
feature_correlation_SI.xlsx). These are SAP_pos_L2, 
SAP_pos_L3, SASA_phobic_H1, and SASA_phobic_L1. 
Exhaustive one-feature and two-feature combinations using 
different regression models were performed to select high- 
performance features based on mean square error (MSE). The 
MSE are averaged from 100 randomly generated fourfold cross- 
validation sets. Table 2 lists the top 5 one-feature and two- 
feature combinations using linear regression, SVR and KNN 
models; the complete list is in the Supporting Information 
(aggregation_exhaustive_SI.xlsx). For the linear model, the 

best one-feature is SCM_neg_H2 (MSE = 5.04), and the best 
two-feature combination is SCM_neg_H2 and 
SASA_phobic_H3 (MSE = 4.81). For the SVR model, the best 
one-feature is SCM_pos_H2 (MSE = 4.96), and the best two- 
feature combination is SCM_pos_H2 and SASA_phobic_Fv 
(MSE = 4.12). For the KNN model, the best one-feature and 
two-feature combinations are the same as that for the SVR 
model; however, the MSE, which are 4.35 and 3.37, respectively, 
are much better. Overall, the KNN model is the best for pre-
dicting aggregation rates.

Cross-validation for aggregation rate models

The performance of different regression models is evaluated by 
the leave-out-one-cross-validation (LOOCV) method. Figure 2 
illustrates the linear correlation coefficients of the experimental 
aggregation rates and predicted rates using the best two-feature 
combination from the three regression models. If the correlation 
coefficients of LOOCV is similar to that using the whole dataset, 
it indicates the predictive models can be applied in predictive 
models for new datasets. The correlation coefficients and root 
mean square errors (RMSE) of the linear regression model using 
all 20 data and LOOCV are 0.54 and 1.88 (%/week) and 0.38 and 
2.15 (%/week), respectively. The correlation coefficients and 
RMSE of the SVR model using all 20 data and LOOCV are 
0.88 and 1.71 (%/week) and 0.69 and 1.99 (%/week), respectively. 
The correlation coefficients of the KNN model using all 20 data 
and LOOCV are 0.89 and 1.07 (%/week) and 0.79 and 1.50 
(%/week), respectively. In addition, Table 3 shows the boot-
strapping results of the best two-feature combinations for the 
three regression models. The values of correlation coefficients 
(0.54, 0.88, 0.89) and RMSE (1.88, 1.71, 1.07) of the regression 
equations using all 20 data fall within the range of standard 
deviation obtained from the bootstrap method (r = 0.56 ± 0.12, 
0.87 ± 0.07, 0.90 ± 0.07 and RMSE 1.72 ± 0.42, 1.52 ± 0.29, 0.89 ± 
0.22) for the linear, SVR and KNN models, respectively. Overall, 
the KNN model gives the best result for predicting antibody 
aggregation rates from the validation testing.

Predictive models for aggregation rates

The best model for predicting aggregation rates for preclinical 
and clinical antibodies is the KNN model with two features, 
SCM_pos_H2 and SASA_phobic_Fv. Unlike linear models 
whose parameters are constants, the parameters for the KNN 
models depend on the values of the training and testing data. It 
is nontrivial to show the KNN models in a concise form. 
Therefore, the input data for the 20 antibodies are provided 
in the Supporting Information (aggregation_features_SI.csv) 
for constructing the models, which can be used to predict the 
aggregation rates of new antibodies. Note that we limited the 
models to two features so as not to overfit.

Viscosity and diffusion interaction coefficients 
measurements

The viscosity measurements were conducted from 80 to 
250 mg/mL at multiple shear rates depending on the mAbs 
tested. For mAbs that exhibit shear thinning effect, the 

Table 1. List of mAb properties and domains for feature selection of antibody 
aggregation rate. The CDR definitions are based on Chothia numbering. The 
feature properties are obtained from dynamic average of MD trajectories. In 
total, there are 35 features for selection.

Feature list (mAb properties (5) x domains (7) = 35)

mAb properties description domains description

Solvent accessible surface area 
of hydrophobic residues 
(SASA_phobic)

Calculated by VMD CDRH1 H26-H32

Solvent accessible surface area 
of hydrophilic residues 
(SASA_philic)

Calculated by VMD CDRH2 H52-H56

Spatial aggregation propensity 
(SAP)

In-house program CDRH3 H95-H102

Spatial negative charge map 
(SCM_neg)

In-house program CDRL1 L24-L34

Spatial positive charge map 
(SCM_pos)

In-house program CDRL2 L50-L56

CDRL3 L89-L97
Fv H1-H113 + 

L1-L107

Table 2. Mean squared error (MSE) of the top five one-feature and two-feature 
combinations of the linear regression, support vector regression (SVR) and 
k-nearest neighbors regression (KNN) models for predicting aggregation rates. 
There are 20 mAbs in this study. The MSE are averaged from 100 randomly 
generated fourfold cross-validation sets.

One-feature MSE Two-features MSE

SCM_neg_H2 5.04 SCM_neg_H2 SASA_phobic_H3 4.81
SAP_pos_H1 5.31 SCM_neg_H2 SASA_philic_L3 4.97

Linear SASA_phobic_H3 5.49 SAP_pos_L1 SCM_neg_H2 5.08
SCM_neg_H1 5.66 SCM_neg_H1 SASA_phobic_H3 5.19
SASA_philic_L3 5.70 SCM_neg_H2 SCM_pos_L1 5.23
SCM_pos_H2 4.96 SCM_pos_H2 SASA_phobic_Fv 4.12
SCM_neg_H2 5.14 SAP_pos_L1 SCM_pos_H2 4.68

SVR SCM_pos_L3 5.43 SAP_pos_L1 SCM_neg_H2 4.89
SASA_phobic_Fv 5.44 SAP_pos_Fv SASA_phobic_Fv 4.90
SAP_pos_L1 5.46 SCM_pos_H2 SCM_pos_L3 4.90
SCM_pos_H2 4.35 SCM_pos_H2 SASA_phobic_Fv 3.37
SCM_pos_L3 4.97 SAP_pos_L1 SCM_pos_H2 3.80

KNN SCM_neg_H1 5.35 SCM_neg_H1 SCM_pos_H2 3.97
SCM_pos_H1 5.59 SCM_pos_H2 SASA_philic_L3 4.21
SAP_pos_Fv 5.65 SCM_pos_L3 SASA_philic_L1 4.73
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viscosity is extrapolated to zero-shear rate at different concen-
trations. Figure 3 depicts the viscosity interpolated at 150 mg/ 
ml for the 20 mAbs in this study. Six mAbs exhibit high 
viscosity (> 30 cP), including mAb10, mAb12, mAb13, 
mAb14, mAb16 and mAb20. In addition, Figure 4 plots the 
relationship between viscosity and diffusion interaction coeffi-
cients (kD). Five high viscosity mAbs have kD values < −5 mL/ 

g (mAb10, mAb12, mAb13, mAb16, and mAb20). 
Interestingly, mAb8, which has the most negative kD value 
(−36 mL/g), only exhibits moderate viscosity (16.07 cP) at 
150 mg/mL.

Previous viscosity predictive models

SCM scores and a decision tree model have been applied to 
predict or classify antibody viscosity.6,9 These two 
approaches are used to predict viscosity of the 20 mAbs in 
this study, as shown in Table 4. The high viscosity for the 
predicted models is defined as SCM_neg_Fv > 1000, 
12< mAb_chg<32 and HVI > 17.3 for the SCM model6 and 
the machine learning model,8 respectively. Assuming the 
high and low viscosity are positive and negative cases, respec-
tively, the accuracy for the SCM model is 0.60 and the 

Figure 2. Correlation coefficients for the best two-feature linear, support vector regression (SVR) and k-nearest neighbors (KNN) regression models trained using all 20 
data and LOOCV. The features for the linear regression model are SCM_neg_H2 and SASA_phobic_H3. The features for the SVR and KNN models are both SCM_pos_H2 
and SASA_phobic_Fv.

Table 3. Bootstrapping of the best two-feature combinations for the Linear, SVR 
and KNN regression models. In bootstrapping, the 20 data from the original 
dataset were randomly sampled with replacement. The regression models were 
generated 100 times and average value of the regression coefficients (r), RMSE 
and their standard deviations were calculated.

Two-features r RMSE

Linear SCM_neg_H2 SASA_phobic_H3 0.56 ± 0.12 1.72 ± 0.42
SVR SCM_pos_H2 SASA_phobic_Fv 0.87 ± 0.07 1.52 ± 0.29
KNN SCM_pos_H2 SASA_phobic_Fv 0.90 ± 0.07 0.89 ± 0.22
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precision, recall and F1-score for the SCM model are 0.38, 
0.50 and 0.43, respectively. The accuracy for the decision tree 
model is 0.55. The precision, recall and F1-score for the 
decision tree model are 0.20, 0.17 and 0.18, respectively. It 
should be noted that the mAb_chg criterion was 
12< mAb_chg<34 in the previous work.9 In this study, the 
upper-bound charge is modified to 32 because there were no 
low viscosity data that have mAb_chg equal to 32 in the 
previous study. The new criterion does not affect the perfor-
mance of the previous dataset, but can correctly predict 
mAb4 and mAb17 as low viscosity mAbs in this work. 
Based on these metrics, the SCM model predicts better than 

that of the decision tree model for the 20 datasets. The 
performance of the decision tree model for the preclinical 
and clinical-stage antibody data is worse than that of the 
commercially available antibody data reported elsewhere.2 

Because the decision tree model was trained using the com-
mercial antibody, which have different molecular origins 
compared to the clinical-stage antibody. Therefore, it does 
not generalize well to the clinical-stage antibody data.

Machine learning and feature selection for preclinical and 
clinical stage antibody viscosity

Commercially available antibodies are likely to have gone 
through stability optimization processes prior to lead candidate 
molecule selection. Some unstable molecular regions may have 
been removed. Using data on these marketed mAbs for model 
training is not ideal for predicting preclinical and clinical-stage 
antibody viscosity. In this study, the machine learning protocol 
we previously proposed was applied to develop new predictive 
models for the preclinical and clinical stage mAb data. These 
molecules include 18 IgG1 and 2 IgG4P isotypes, with an even 
distribution of lambda and kappa light chains (Table S1). Five 
of them have high viscosity (>30 cP) at 150 mg/ml. The com-
mercial mAb dataset include 21 IgG1, 4 IgG2 and 2 IgG4 
isotype mAbs, with 1 lambda and 26 kappa light-chain 
molecules.9 Six of them have high viscosity at 150 mg/ml. 
The decision tree model trained from the imbalanced number 
of kappa and lambda light chains for the commercial mAbs 
could be the reason for low accuracy when predicting the 
preclinical/clinical stage molecules, which contain 10 IgG1 
mAbs with lambda light chain (Table 4). Additionally, com-
paring the molecular descriptors of commercial and early-stage 
mAbs, we found SAP_pos_Fv is statistically different between 
these two groups (Table S3), which may have gone through 

Figure 3. Viscosity at 150 mg/mL at pH 6.0 in histidine buffer of all 20 mAbs studied in this work. The red dashed line indicates the low/high viscosity cutoff (30 cP). 
A histogram showing the experimental viscosity at 150 mg/ml of 20 mAbs. The viscosity of mAb10, mAb12, mAb13, mAb14, mAb16 and mAb20 are above the high 
viscosity threshold 30 cP.

Figure 4. The relationship of viscosity at 150 mg/ml with the diffusion interaction 
coefficients (kD) for the 20 mAbs in this study. Open circles showing the viscosity 
on the y-axis and kD on the x-axis. Five high viscosity mAbs have kD values < 
−5 mL/g (mAb10, mAb12, mAb13, mAb16 and mAb20).
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different screening and optimization procedures. These are the 
rationales for developing new predictive models for the pre-
clinical/clinical stage mAbs.

Table 5 lists the 35 features used for selection and model 
construction. These features include the number of hydropho-
bic residues (N_phobic), the number of hydrophilic residues 
(N_philic), the number of positive residues (N_pos), the num-
ber of negative residues (N_neg), net charges, charge sym-
metric parameter (CSP), SAP, SCM_neg, SCM_pos, and HVI 
on all or some of the heavy chain variable region (VH), light 
chain variable region (VL), Fv and mAb domains. Four differ-
ent classification algorithms (LR, SVM, KNN and DT) were 
used to select features and evaluate model performance using 
exhaustive one-feature and two-feature combinations. The 

model performance is evaluated by accuracy (ACC) and the 
area under precision-recall curve (AUPRC). The ACC and 
AUPRC are averaged from 100 randomly generated 4-fold 
cross-validation sets.

Table 6 summarizes the classification results for different 
models. The complete list is in the Supporting Information 
(viscosity_exhaustive_SI.xlsx). The ACC and AUPRC for the 
baseline model are 0.70 and 0.30, respectively. The ACC and 
AUPRC of the best one-feature combinations for the four 
classification models range from 0.73 to 0.79 and from 0.47 
to 0.59, respectively, showing slight improvement compared to 
that of the baseline model. However, the ACC and AUPRC of 
the best two-feature combinations for the four models range 
from 0.83 to 0.86 and from 0.64 to 0.74, respectively, which are 
significantly better than that of the baseline model.

Predictive models for preclinical and clinical stage 
antibody viscosity

The predictive models for the LR and DT models based on the 
20 preclinical and clinical-stage antibodies are provided to 
classify low/high viscosity for new data. The high viscosity 
threshold is above 30 cP. The LR model is 

High viscosity : � 1:1 � SCM neg VHþ 1:3�SCM neg VL
� 0:86 > 0 

The features need to be scaled by their means and standard 
deviations. The mean and standard deviation for 
SCM_neg_VH are 540.81 and 241.47, respectively. The mean 
and standard deviation for SCM_neg_VL are 466.72 and 
155.21, respectively. If the predictive model is greater than 0, 
it is predicted to be high viscosity. Moreover, the DT model is 

Lowviscosity : SAP pos VL � 38:05
Lowviscosity : SAP pos VL38:05andN phobic VL39:50
Highviscosity : SAP pos VL38:05andN phobic VL � 39:50

�

8
<

:

Table 4. Viscosity classification accuracy (ACC) of the 20 mAbs in this study using the SCM score and the machine learning model from a previous work. Predicted and 
experimental high viscosity are shaded in gray. The high viscosity is defined as SCM_neg_Fv > 1000, 12< mAb_chg<32 and HVI>17.3, and Vis_exp > 30 cP, respectively. 
Correct predictions are labeled as 1, and wrong predictions are labeled as 0.

SCM_neg_Fv mAb_chg HVI Vis_exp (150 mg/ml) SCM_pred ML_pred

mAb1 772.7 28 14.60 16.64 1 1
mAb2 1214.6 20 15.56 6.49 0 1
mAb3 869 28 17.02 7.30 1 1
mAb4 870 32 23.38 9.72 1 1
mAb5 1055 24 19.74 7.03 0 0
mAb6 507.6 28 14.98 10.41 1 1
mAb7 1010.2 26 16.09 23.33 0 1
mAb8 2156.2 4 12.45 16.07 0 1
mAb9 808.1 12 10.04 6.23 1 1
mAb10 667.5 24 16.74 227.54 0 0
mAb11 987.2 24 18.26 25.95 1 0
mAb12 767 30 13.79 108.25 0 0
mAb13 1089.1 22 20.18 93.00 1 1
mAb14 993.9 24 17.11 102.46 0 0
mAb15 993.6 26 20.6 21.26 1 0
mAb16 1151.8 18 16.45 115.60 1 0
mAb17 763 32 22.52 13.14 1 1
mAb18 886.9 24 12.72 13.63 1 1
mAb19 1294.7 26 22.47 7.80 0 0
mAb20 1292.7 20 16.59 48.86 1 0

ACC (%) 60 55

Table 5. List of mAb properties and domains for feature selection of antibody 
viscosity. The structural features (SAP, SCM pos and SCM neg) are obtained from 
dynamic average of MD trajectories. Other features are extracted from antibody 
sequences. Charge symmetry parameters are calculated for Fv and mAb domains 
(2). High viscosity index is calculated for Fv domain (1). The remaining properties 
are calculated for VH, VL, Fv and mAb domains (8x4 = 32). In total, there are 35 
features for selection.

Feature list

mAb properties description domains description

Number of hydrophobic 
residues (N_phobic)

A,F,I,L,M,P,V,W VH H1-H113

Number of hydrophilic 
residues (N_philic)

S,T,N,Q,Y,K,R,H,D,E VL L1-L107

Number of positive 
residues (N_pos)

K,R,H Fv H1-H113 + 
L1-L107

Number of negative 
residues (N_neg)

D,E mAb Full length

Net charges Calculated by PROPKA3
Charge symmetric 

parameter (CSP)
Product of heavy and 

light chain charge
Spatial aggregation 

propensity (SAP)
In-house program

Spatial positive charge 
map (SCM_pos)

In-house program

Spatial negative charge 
map (SCM_neg)

In-house program

High viscosity index (HVI) In-house program

e2026208-6 P.-K. LAI ET AL.



The feature values are not scaled. The predictive models for 
SVM and KNN can be obtained by training the 20 mAb data 
using the corresponding best two-feature combinations in the 
Supporting Information (viscosity_features_SI.csv).

Machine learning and feature selection for combined pre-
clinical and clinical stage and commercial antibody viscosity

One of the major challenges in applying machine learning to 
predict antibody stability at high concentration is developing 
robust models with a limited amount of data. In previous work, 
our group has trained a viscosity classification model using 27 
commercial mAbs.9 In this study, the viscosity of 20 preclinical 
and clinical stage mAbs were measured in a similar solution 
condition as that of the previous work (histidine/histidine-HCl 
buffer at pH 6.0, without surfactant and other excipients). 
A Chinese hamster ovary expression system used to produce 
the material and, following purification, the starting monomer 
purity was >95%. In both studies, the viscosity was measured at 

18–20°C by VROC Initium viscometer at multiple shear rates. 
For the 27 commercial mAbs, non-Newtonian effects were 
assumed. In this study, we found non-Newtonian effects for 
low viscosity mAbs were negligible, but significant for high 
viscosity mAbs. For high viscosity mAbs, viscosity was extra-
polated to zero-shear rate.

In order to expand the data size, we combined the two 
datasets for machine learning training. In total, there are 47 
data that cover preclinical, clinical and commercial mAbs. The 
same protocol and features were used as those for the 20 
preclinical and clinical mAbs described previously. Table 7 
shows the top 5 one-feature and two-feature combinations 
for different classification models. The complete list is in the 
Supporting Information (viscosity_exhaustive_combined_SI. 
xlsx). The ACC and AUPRC for the baseline model are 0.74 
and 0.26, respectively. The best one-feature for the LR, SVM 
and DT models are the same, mAbCSP, which have the same 

Table 6. Accuracy (ACC) and area under the precision-recall curve (AUPRC) of the top five one-feature and two-feature combinations of the logistic regression 
(LR), support vector machine (SVM), k-nearest neighbors (KNN) and decision tree (DT) models for classifying low/high viscosity. There are 20 mAbs in this study. 
The ACC and AUPRC are averaged from 100 randomly generated 4-fold cross-validation sets. The baseline ACC is 0.70 and the baseline AUPRC is 0.30.

One-feature ACC AUPRC Two-features ACC AUPRC

N_neg_VH 0.79 0.57 SCM_neg_VH SCM_neg_VL 0.86 0.70
SCM_neg_VL 0.77 0.54 N_neg_VH SCM_neg_VL 0.84 0.68

LR net charges_VH 0.78 0.53 N_neg_VH net charges_VL 0.83 0.67
N_neg_VL 0.77 0.51 SCM_neg_VL SCM_pos_VH 0.83 0.66
net charges_VL 0.74 0.48 net charges_VH net charges_VL 0.81 0.65
N_neg_VH 0.76 0.47 N_philic_VH SAP_pos_VL 0.82 0.64
net charges_VH 0.74 0.46 N_philic_Fv SAP_pos_VL 0.82 0.63

SVM SCM_neg_VL 0.72 0.45 N_philic_Fv N_neg_VH 0.82 0.60
mAbCSP 0.74 0.37 N_phobic_VL N_neg_VH 0.82 0.60
N_neg_VL 0.70 0.34 N_philic_VH N_neg_VH 0.81 0.58
HVI 0.76 0.59 N_pos_VL N_neg_VH 0.83 0.66
SAP_pos_VL 0.82 0.65 N_philic_Fv FvCSP 0.82 0.64

KNN SCM_neg_VL 0.74 0.52 N_pos_VL net charges_VH 0.83 0.64
net charges_VH 0.78 0.51 SCM_neg_VH SCM_neg_VL 0.82 0.62
N_neg_VH 0.78 0.5 N_philic_VH FvCSP 0.76 0.62
SAP_pos_VL 0.73 0.52 N_phobic_VL SAP_pos_VL 0.84 0.74
net charges_VH 0.77 0.51 N_neg_Fv SCM_pos_VL 0.78 0.60

DT N_neg_mAb 0.79 0.51 N_neg_mAb net charges_VL 0.77 0.60
SCM_pos_VL 0.75 0.49 N_neg_mAb SCM_neg_VL 0.76 0.58
N_neg_VH 0.76 0.49 N_phobic_VL net charges_VH 0.79 0.56

Table 7. Accuracy (ACC) and area under the precision-recall curve (AUPRC) of the top five one-feature and two-feature combinations of the logistic regression (LR), 
support vector machine (SVM), k-nearest neighbors and decision tree (DT) models for classifying low/high viscosity. There are 20 mAbs in this study plus 27 mAbs 
from the literature. The ACC and AUPRC are averaged from 100 randomly generated 4-fold cross-validation sets. The baseline ACC is 0.74 and the baseline AUPRC is 
0.26.

One-feature ACC AUPRC Two-features ACC AUPRC

mAbCSP 0.81 0.49 N_phobic_VL net charges_VL 0.85 0.60
net charges_VL 0.76 0.39 N_phobic_VL mAbCSP 0.85 0.58

LR N_neg_VL 0.77 0.37 net charges_VL HVI 0.84 0.56
FvCSP 0.76 0.36 N_phobic_Fv net charges_VL 0.84 0.56
N_pos_VL 0.75 0.35 N_phobic_mAb net charges_VL 0.83 0.55
mAbCSP 0.81 0.47 N_phobic_VL net charges_VL 0.83 0.53
net charges_mAb 0.77 0.37 N_philic_mAb mAbCSP 0.83 0.51

SVM net charges_VL 0.76 0.37 net charges_mAb mAbCSP 0.83 0.50
N_pos_VL 0.73 0.29 N_neg_VH net charges_mAb 0.82 0.49
net charges_VH 0.75 0.28 net charges_VL net charges_mAb 0.82 0.49
net charges_mAb 0.78 0.47 N_neg_Fv net charges_VL 0.85 0.57
N_phobic_VH 0.77 0.42 net charges_VL net charges_mAb 0.82 0.53

KNN net charges_VL 0.78 0.42 net charges_VH net charges_mAb 0.82 0.53
mAbCSP 0.76 0.41 N_philic_VL net charges_VL 0.82 0.53
SAP_pos_VL 0.73 0.39 mAbCSP HVI 0.80 0.53
mAbCSP 0.81 0.47 N_phobic_VL net charges_VL 0.85 0.57
SAP_pos_mAb 0.75 0.41 net charges_VL net charges_mAb 0.84 0.56

DT net charges_mAb 0.75 0.40 N_philic_VL net charges_VL 0.84 0.54
net charges_VL 0.76 0.39 SAP_pos_mAb FvCSP 0.78 0.48
net charges_VH 0.76 0.35 SCM_pos_VL mAbCSP 0.80 0.48
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ACC (0.81) and similar AUPRC (0.47 to 0.49). Similarly, the 
best two-feature combinations for the LR, SVM and DT mod-
els are also the same, N_phobic_VL and net charges_VL 
(ACC = 0.83 to 0.85 and AUPRC = 0.53 to 0.60). On the 
other hand, the best one-feature for the KNN model is net 
charges_mAb (ACC = 0.78; AUPRC = 0.47). The best two- 
feature combination for the KNN model is N_neg_Fv and net 
charges_VL (ACC = 0.85; AUPRC = 0.57).

Predictive models for antibody viscosity from combined 
datasets

The predictive models for the LR and DT models using the 20 
preclinical and clinical stage and the 27 commercial antibodies 
are provided to classify low/high viscosity for new data. The LR 
predictive model is 

High viscosity : � 0:72 � N phobic VL � 1:17�netcharges VL
� 1:19 > 0 

The features need to be scaled by their means and standard 
deviations. The mean and standard deviation for 
N_phobic_VL are 37.91 and 2.70, respectively. The mean and 
standard deviation for net charges_VL are 0.64 and 1.93, 
respectively.

The DT predictive model is

Lowviscosity : netcharges VL> � 0:50
Lowviscosity : netcharges VL � � 0:50andN phobic VL> 38:0

Highviscosity : netcharges VL � � 0:50andN phobic VL � 38:0 

Similarly, these feature values are unscaled. In addition, the 
predictive models for SVM and KNN can be constructed by 
training the 47 mAb data using the best two- 
feature combination in the Supporting Information 
(viscosity_features_combined_SI.csv).

Discussion

In this study, we measured the aggregation rates and viscosity 
of 20 preclinical and clinical stage mAbs at high concentration. 
Antibodies having the top 5 highest aggregation rates are 
mAb1, mAb3, mAb9 and mAb11 and mAb20, and the top 5 
highest viscosity are mAb10, mAb12, mAb13, mAb14 and 
mAb16. Interestingly, these groups of mAbs do not overlap, 
suggesting that the driving forces for antibody aggregation and 
viscosity may be different.

Antibody self-association is considered to promote high 
viscosity.26 Diffusion interaction coefficients (kD) are com-
monly used to measure protein–protein interactions, although 
their relationship to predict viscosity remains 
controversial.27,28 Figure 4 shows that most high viscosity 
mAbs have large negative kD values; however, mAb8, which 
has the most negative kD value exhibits low viscosity. From the 
SCM score in Table 4, mAb8 has the highest SCM score, 
indicating strong electrostatic interactions due to negative 

charge patches on the Fv region, which supports the experi-
mental kD measurement. Kingsbury et al. recently found that 
antibody solutions that have large negative kD values could 
exhibit either high viscosity or high opalescence.27 We found 
that mAb8 also exhibits high solution opalescence, which 
agrees with the previous finding. Although kD or the SCM 
score cannot distinguish high viscosity and high opalescence, 
they are still good indicators for poor stability.

The protocol and machine learning features described in 
this paper are built on our previous works.6,9,16,24 Because of 
the limited availability of high concentration therapeutic anti-
body aggregation and viscosity data, it is of great value to 
evaluate the performance of existing models and improve the 
predictive models using larger datasets.

We applied machine learning to predict the antibody aggre-
gation rates at 45°C in a 20 mM histidine-HCl buffer, pH 6.0 at 
150 mg/mL based on 20 preclinical and clinical stage mAbs. It 
is worth noting that the ranking of aggregation tendency may 
differ and the accelerated thermal stress conditions may not 
always correlate to real-time stability at the intended storage 
conditions. This may be due to differences in the molecular 
origins of degradation pathways, impacting the physicochem-
ical stability and resulting in conformational changes of the 
protein structure.29–31 The accelerated stability condition 
described here provides a screening approach to assess the 
propensity for aggregation, especially in a controlled matrix 
(i.e., base buffer, with no stabilizing excipients). Of course, the 
approach that we present here can be used to parameterize the 
model at any conditions. In previous work, we developed an 
aggregation rate model at 40°C in a 10 mM histidine-HCl 
buffer, pH 6.0 at 150 mg/mL based on 21 commercial 
antibodies.24 Although the solution conditions (buffer and 
pH) are similar for the two datasets, the difference in the 
temperature makes the aggregation rates very different even 
for the same antibody (data not shown). As such, the previous 
model may not be directly applicable to the data at 45°C. 
Therefore, new models were built using a similar protocol as 
the previous work.24 In this study, we found the best aggrega-
tion rates model is the KNN model, which agrees with our 
previous work.24 The best two-feature combination of the 
KNN model is SCM_pos_H2 and SASA_phobic_Fv. 
Hydrophobicity has been used to predict antibody aggregation 
in earlier works.13,16 In addition, in our previous work, we also 
found SCM_pos is an important feature for the antibody 
aggregation rate. It should be noted that SCM includes 
a distance cutoff of 10 Å, so SCM_pos_H2 does not mean 
only the positive charges on the CDRH2 region are important. 
Residues surrounding CDRH2 should be also considered.

It has been suggested that, due to their complex nature, 
mAb degradation pathways may or may not follow Arrhenius 
behavior/kinetics. Therefore, expanding this approach to 
extrapolate to real-time storage for predicting shelf-life con-
siderations could be difficult. Recently, Kuzman et al. and 
Gentiluomo et al. have shown some potential for predicting 
long-term shelf-life stability when using non-linear machine 
learning models.32,33 This, however, also leads to some chal-
lenges when assuming first-order kinetics of proteins that may 
be susceptible to different degradation pathways that may affect 
chemical and physical stability upon exposure to thermal 
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stress.34 Therefore, the accelerated stability and real-time sta-
bility measurements are different approaches. Of course, long- 
term data could easily be used to train our model using our 
methodology.

Two sets of antibody viscosity data for 47 mAbs in total were 
used for training and testing. In this study, the viscosity of 20 
preclinical and clinical stage mAbs were measured. In our pre-
vious study, the viscosities of 27 commercial antibodies were 
measured. We performed a blind test by using the ML model, 
trained from the 27 commercial antibodies, to predict the 20 
investigational antibodies in this study (Table 4), and the results 
were not satisfactory. Because of the limited dataset, training on 
a subset of data is prone to find features not the most relevant for 
viscosity. In order to generalize our predictive models, we 
decided to combine both datasets for the ML algorithms to 
capture the common features. The experimental conditions are 
very similar (pH = 6.0 in 10–20 mM histidine-HCl buffer at 18– 
20°C), and for binary classification, slight viscosity variation from 
equipment setup and operation do not change the overall low/ 
high viscosity categories. The DT model obtained from the 
commercial mAbs were applied to predict preclinical and clinical 
stage mAb data. The accuracy was only 0.55, indicating that the 
underlying mechanism of the preclinical and clinical mAbs could 
be different from the marketed mAbs so that the DT model does 
not capture these features. By using the same protocol, new 
predictive models based on the 20 new data were developed. 
The performance for these classification models is similar 
(ACC = 0.82 to 0.86; AUPRC = 0.64 to 0.74), although the best 
two-feature combination for each model varies. Conversely, the 
best LR, SVR and DT models for the combined 47 datasets share 
the same one-feature and two-feature combinations. As the 
number of datasets increases, only the most important feature 
combinations are selected despite the statistical models imple-
mented. The best two features are N_phobic_VL and net 
charges_VL. Both hydrophobicity and net charges are reported 
to be related to antibody viscosity. The machine learning models 
provide a quantitative relationship to connect them with anti-
body viscosity. These two features are sequence-based descrip-
tors, which can be implemented very efficiently. Why only the VL 
regions matter to the viscosity prediction is still unknown. More 
data are needed to validate these models.

Although there are some public databases for antibody 
aggregation and protein aggregation kinetics such as CPAD 
2.0,35 these data focus primarily on amyloid aggregates. These 
amyloid aggregates are related to immunogenicity in animal 
models, but are of limited utility for pharmaceutical proteins.23 

Currently, there is no public database available for therapeutic 
antibody aggregation rates and viscosity at high concentra-
tions. Data from published literature could be performed in 
different solution conditions (pH, buffers, excipients, and pro-
tein concentrations), but very often the sequence information 
is not available. This is one of the major challenges for applying 
machine learning to predict antibody stability. In addition, 
because high concentration antibodies are expensive to pro-
duce, it is not feasible to obtain a large number from one source 
with sufficient amount of data for machine learning applica-
tions. Combining the datasets from different sources with 
proper pre-experimental designs as performed in this study is 
a possible solution.

Materials and methods

Protein preparation

The 20 mAbs used for this study were internally manufactured 
at AstraZeneca (Gaithersburg, MD) and consisted of 
a combination of 18 IgG1and 2 IgG4P subclass mAbs (Table 
S1). The protein solutions were obtained as bulk Drug 
Substance, in a molecule-respective, non-surfactant contain-
ing, formulation buffer. The starting monomer purity for each 
mAb was >95% as measured by high-performance size exclu-
sion chromatography (HPSEC; Agilent Technologies Santa 
Clara, CA) using a TSK-Gel G3000SWXL HPLC column 
(Tosoh Bioscience LLC, Montgomeryville, PA) and mobile 
phase comprised of 0.1 M sodium phosphate dibasic anhy-
drous, 0.1 M sodium sulfate, and 0.05 M sodium azide at pH 
6.8 with 250 µg protein injection. The mAbs solutions were 
individually buffer exchanged into a formulation buffer of 
20 mM histidine-HCl at pH 6.0 using 10 K MWCO Slide- 
A-Lyzer dialysis cassette (Thermo Scientific). Dialysis was per-
formed overnight with multiple buffer exchanges at 
a minimum buffer-to-protein solution ratio of 1000:1. The 
dialyzed product was tested to meet the appropriate pH and 
osmolality requirements. The samples were then concentrated 
using Amicon Ultra-4 Centrifugal Filter units with 10 K 
MWCO (EMD Millipore, Merck KGaA, Darmstadt, 
Germany) to a target concentration of 150 mg/mL. Total pro-
tein was measured using a UV-vis spectrophotometer (Trinean 
DropSense 96, Unchained Labs Pleasanton, CA) with respec-
tive mAb experimentally determined extinction coefficients 
and corrected for density when necessary.

Measurement of accelerated aggregation rates

Samples were 0.22 µm filtered (PVDF membrane, EMD 
Millipore, Merck KGaA, Darmstadt, Germany) and aseptically 
hand filled into 2 R glass vials (Std Type 1, USP; Schott) with 
rubber stoppers (13 mm chlorobutyl, Diakyo/West 
Pharmaceutical Services) and aluminum overseals (13 mm, 
West Pharmaceutical Services). Samples were placed in 
a temperature and humidity-controlled incubation chamber 
with setpoints of 45°C and 75% relative humidity. The vials 
were aseptically sampled on 2-day intervals for a total duration 
of 2 weeks. The pulled samples were prepared for HPSEC 
analysis by diluting to 10 mg/mL with 0.2 µm filtered formula-
tion buffer and 250 µg of protein injected (similar to method 
described above). The rate of aggregation was determined 
using linear regression of the total content of aggregates over 
the timecourse of the stability study (Table S2).

Measurements of viscosity

Viscosity was measured at multiple concentrations (3–6 con-
centrations each construct) ranging from 80 mg/mL to 250 mg/ 
mL dependent on mAb sample; all samples included at least 
one measurement of concentrations >150 mg/mL aside from 
mAb 11, which was measured at a highest concentration of 
142 mg/mL due to material constraints. All mAb samples were 
formulated in 20 mM histidine-HCl buffer at pH 6.0. Prior to 
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concentration and viscosity measurement, samples were 
passed through a 0.45 µm filter. Concentration was determined 
using the UV-vis spectrophotometry method described above.

Using a VROC Initium viscometer (Rheosense, San Ramon, 
CA), viscosities were determined at multiple shear rates 
between 300 and 50,000 s−1 with a B05 or E02 measuring 
chip where appropriate to ensure optimal pressure across the 
sensor array of the chip. Approximate zero shear viscosity for 
each sample exhibiting shear thinning was estimated through 
extrapolation of measured viscosities across multiple shear 
rates. The viscosity at 150 mg/mL was then interpolated by 
a best fit equation of natural log of viscosity vs concentration 
for each construct.

Measurements of diffusion interaction parameters

The diffusion interaction parameter (kD) was calculated using 
measurements obtained from experimental diffusion coeffi-
cient as a function of total protein concentration (DynaPro 
Plate Reader II -Wyatt, Santa Barbara, CA). Protein samples 
were equilibrated to room temperature and titrations were 
prepared at 2, 4, 6, 8, and 10 mg/mL in formulation buffer 
(20 mM histidine-HCl, pH 6.0) and filtered using a 0.22 um 
syringe filter. Using a low volume 384-well plate (Corning, 
Tewksbury, MA), samples were meticulously aliquot in tripli-
cate (35 µL each). A run method protocol was written using the 
Dynamics software package (Wyatt, Santa Barbara, CA; ver-
sion 7.1.9.3) to analyze samples at 25°C using an 830-nm laser 
and the sample acquisitions were set to 5 seconds, with 10 total 
acquisitions collected for each sample run. Correction factors 
such as viscosity and refractive index were also provided prior 
to sample analysis. The data was exported to excel and plots 
created to determine the slope and y-intercept for the diffusion 
coefficient versus total protein concentration. The kD was sub-
sequently calculated by taking the ratio of the slope and the 
y-intercept values.

Computational modeling of mAbs

The mAb molecules were constructed following the protocol 
proposed by Brandt et al.36 Briefly, the structure of antigen- 
binding fragment (Fab) region was superimposed on 
a template structure obtained from the KOL/Padlan 
structure.37,38 The immunoglobulin G1 (IgG1) template was 
obtained from the KOL/Padlan structure. For IgG4 models, the 
Fc regions (PDB: 4C54) were superimposed on the KOL/ 
Padlan IgG1 structure. The Fab structure was retrieved from 
either available crystal structures or homology model built 
from RosettaAntibody.39–41 Disulfide bridges were carefully 
matched to the respective isotypes. The glycosylation pattern 
for each mAb was modeled according to available literature 
data. For mAbs without literature data on the glycosylation 
pattern, the G0F glycosylation pattern was chosen.

Molecular dynamics simulations

Molecular dynamics simulations were performed using all- 
atom structures with explicit solvent using the TIP3P water 
model.42 Simulation boxes were set up using visual MD to 

place a single antibody in a water box extending 12 Å beyond 
the protein surface.43 Simulations were performed at 300 K and 
1 atm in the NPT ensemble, using the NAMD software package 
and the CHARMM36m force field.44–46 The system pH was set 
to 6.0 to match the experimental pH by adjusting the protona-
tion states of histidine residues using the PROPKA3 protocol.47 

Electrostatic interactions were treated with the Particle Mesh 
Ewald (PME) method and van der Waals interactions were 
calculated using a switching distance of 10 Å and a cutoff of 
12 Å.48 The integration time step was set to 2 fs. Each mAb 
system was pre-equilibrated for 10 ns, followed by 50 ns pro-
duction runs.

Feature selection for aggregation rates and viscosity

Based on a previous study, structural features obtained from 
MD simulations were extracted for building regression models 
for aggregation rates.24 Table 1 lists the features used for 
aggregation rates in this work. We included structural features 
such as SASA_phobic, SASA_philic, SAP and SCM_neg and 
SCM_pos covering 6 CDR and 1 Fv regions for selection.24 In 
total, there are 35 features (see supporting information: 
aggregation_features_SI.csv for details). They were calculated 
from averaging 50 ns MD trajectories. The 50 ns simulation is 
long enough to obtain converged feature values, but may not 
capture large conformational change of antibodies. In the pre-
processing step, highly correlated features (correlation coeffi-
cient > 0.8) were filtered to keep only one of them from each 
pair. The features for viscosity classification contain both struc-
tural and sequence descriptors (Table 5) as described 
previously.9 In total, there are 35 features (see Supporting 
Information: viscosity_features_SI.csv for details).

For each machine learning method described in the next 
section, exhaustive feature selection for one-feature and two- 
features were performed to search for the best feature combi-
nations using the exhaustive feature selector tool from mlxtend 
library.49 The best feature combinations for the regression 
models were selected based on their mean squared errors. 
The best feature combinations for the classification models 
were selected based on their AUPRC. AUPRC was chosen 
because the dataset contains an imbalanced number of high 
and low viscosity antibodies.

Machine learning methods for aggregation rates and 
viscosity

All the machine learning methods were implemented using the 
scikit-learn library.50 The protocols follow our previous 
works.9,24 Briefly, different regression models were used for 
aggregation rates including linear regression (linear_model. 
LinearRegression()), nearest neighbors regression (neighbors. 
KNeighborsRegressor()) and support vector regression (svm. 
SVR()). For viscosity classification, logistic regression (linear_-
model.LogisticRegression()), support vector machine (linear_-
model.svm()), nearest neighbors classification (neighbors. 
KNeighborsClassifier()) and decision tree classification (tree. 
DecisionTreeClassifier()) models were employed. The functions 
utilized from the scikit-learn library were specified in the 
parentheses. The default parameters were used for all 
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functions, except the number of neighbors in the KNN models 
is 3 and the maximum depth in the DT models is 2.

Abbreviations

CDRcomplementarity-determining region
CDRH1 the first complementarity-determining region of the heavy 

chain
CDRH2 the second complementarity-determining region of the heavy 

chain
CDRH3 the third complementarity-determining region of the heavy 

chain
CDRL1 the first complementarity-determining region of the light chain
CDRL2 the second complementarity-determining region of the light 

chain
CDRL3 the third complementarity-determining region of the light 

chain
CSP charge symmetric parameter
DT decision tree
Fv variable fragment
HVI high viscosity index
IgG1 immunoglobulin G1
KNNk- nearest neighbors
LOOCV Leave-out-one-cross-validation
LR logistic regression
mAbs monoclonal antibodies
MD molecular dynamics
MSE mean square error
N_negnumber of negative residues
N_philicnumber of hydrophilic residues
N_phobicnumber of hydrophobic residues
N_posnumber of positive residues
RMSE root mean square error
SAP spatial aggregation propensity
SASA solvent-accessible surface area
SCM spatial charge map
SVM support vector machine
SVR support vector regression
Tonsetonset temperate
Tm1 first thermal transition melting temperature
VHheavy chain variable region
VLlight chain variable region
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