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Background. Intestinal barrier injury is an important contributor to many diseases. We previously found that heme oxygenase-1
(HO-1) and carbon monoxide (CO) protect the intestinal barrier. This study is aimed at elucidating the molecular mechanisms
of HO-1/CO in barrier loss. Materials and Methods. We induced gut leakiness by injecting carbon tetrachloride (CCl4) to
wildtype or intestinal HO-1-deficient mice. In addition, we administrated tumor necrosis factor-α (TNF-α) to cells with gain- or
loss-of-HO-1 function. The effects of HO-1/CO maintaining intestinal barrier integrity were investigated in vivo and in vitro.
Results. Cobalt protoporphyrin and CO-releasing molecule-2 alleviated colonic mucosal injury and TNF-α levels; upregulated
tight junction (TJ) expression; and inhibited epithelial IκB-α degradation and phosphorylation, NF-κB p65 phosphorylation,
long MLCK expression, and MLC-2 phosphorylation after administration of CCl4. Zinc protoporphyrin completely reversed
these effects. These findings were further confirmed in vitro, using Caco-2 cells with gain- or loss-of-HO-1-function after
TNF-α. Pretreated with JSH-23 (NF-κB inhibitor) or ML-7 (long MLCK inhibitor), HO-1 overexpression prevented TNF-α-
induced TJ disruption, while HO-1 shRNA promoted TJ damage even in the presence of JSH-23 or ML-7, thus suggesting that
HO-1 dependently protected intestinal barrier via the NF-κB p65/MLCK/p-MLC-2 pathway. Intestinal HO-1-deficient mice
further demonstrated the effects of HO-1 in maintaining intestinal barrier integrity and its relative mechanisms. Alleviated
hepatic fibrogenesis and serum ALT levels finally confirmed the clinical significance of HO-1/CO repairing barrier loss in liver
injury. Conclusion. HO-1/CO maintains intestinal barrier integrity through the NF-κB/MLCK pathway. Therefore, the intestinal
HO-1/CO-NF-κB/MLCK system is a potential therapeutic target for diseases with a leaky gut.

1. Introduction

In the intestine, the epithelial barrier that regulates the inter-
action between the luminal material (e.g., gut microbiome)
and the interstitium (e.g., mucosal immune cells) is crucial
for maintaining homeostasis. The intestinal epithelial barrier
function is critical for selective gut permeability and limits
the entry of bacteria and pathological bacterial components
like lipopolysaccharide (LPS) from the intestinal lumen to
the body [1]. If the epithelium is intact, the intestinal barrier
function is largely defined by tight epithelial junction (TJ)
proteins, such as the transmembrane protein occludin [2]

and the peripheral membrane protein zonula occludens 1
(ZO-1) [3]. Mild or severe disruption of the intestinal epithe-
lial barrier can enhance or directly trigger inflammatory
bowel disease (IBD) [4], colorectal carcinoma [5], or liver
diseases [6]. Therefore, repairing intestinal barrier loss is
essential in preventing or delaying the progression of such
diseases.

Heme oxygenase-1 (HO-1), a stress-inducible enzyme,
catalyzes the initial and rate-limiting step in the oxidative
degradation of heme, yielding equimolar amounts of biliver-
din IXα (BV), carbon monoxide (CO), and free iron [7]. CO-
releasing molecule 2 (CORM-2) can spontaneously transfer
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CO and exert typical CO-mediated pharmacological effects
[8]. Recent in vivo and in vitro studies have demonstrated
that the HO-1-CO axis prevents intestinal barrier dysfunc-
tion [9, 10]. HO-1 and CO can prevent intestinal inflamma-
tion in mice by promoting bacterial clearance [11]. In our
previous study, we identified that HO-1 dependently
preserves the intestinal mucosal barrier integrity by abrogat-
ing TJ dysregulation and epithelial cell damage [12]. We also
found that HO-1 elevation ameliorates intestinal barrier
function in bile duct ligation- (BDL-) induced cholestatic
liver injury by inhibiting NF-κB p65 [13]. However, whether
NF-κB p65 directly mediates the intestinal TJ protein dysreg-
ulation still remains unclear.

The myosin light-chain kinase (MLCK) participates in
intestinal barrier dysfunction [14]. MLCK has two splice
variants derived from the same gene using different pro-
moters. Short or smooth muscle MLCK is not expressed
in the intestinal epithelium, whereas long MLCK is highly
expressed in intestinal epithelial cells and regulates TJ perme-
ability by inducing phosphorylation of myosin light-chain 2
(MLC-2) [14–16], which, in turn, leads to remodeling of
the TJ structure. Tumor necrosis factor α (TNF-α) has been
shown to promote TJ dysregulation and induce epithelial
barrier loss by elevating the expression and activity of long
MLCK [17, 18]. This elevation is in part mediated by NF-
κB [19, 20], and a few κB sites have been identified in the
upstream promoter region that specifically drives long
MLCK activation [21, 22].

Hence, based on our previous findings, in this study, we
induced gut dysfunction (leakage) by injecting carbon tetra-
chloride (CCl4) to wildtype (WT) or intestinal HO-1-
deficient mice or by administrating TNF-α to HO-1 overex-
pression or knockdown cells. The effects of HO-1/CO main-
taining intestinal barrier integrity were examined in vivo and
in vitro. These data may provide new ideas for the targeted
regulation of intestinal epithelial barrier integrity.

2. Materials and Methods

2.1. Animal Experiments. C57BL/6 male WTmice (6-8 weeks
of age and weighing 20-25 g) were obtained from the Labora-
tory Animal Center of Dalian Medical University (Liaoning,
China). The intestinal HO-1 conditional knockout (HO-1-/-)
mice were constructed using C57BL/6 mice by the Beijing
Viewsolid Biotechnology Co. Ltd. (Beijing, China). All the
animals were housed in an environment with a temperature
of 22 ± 1°C, a relative humidity of 50 ± 1%, and a light/dark
cycle of 12/12 hr and fed with food and water ad libitum.
All animal studies (including the mice euthanasia procedure)
were done in compliance with the regulations and guidelines
of Dalian Medical University institutional animal care and
conducted according to the AAALAC and the IACUC guide-
lines (approval No. AEE18006).

The mouse gut leakiness model was induced by CCl4
(Shanghai Aladdin Biochemical Technology Co., Ltd.,
Shanghai, China) [23]. Briefly, the mice were administered
2mL/kg CCl4 by intraperitoneal injection (CCl4 : olive oil =
1 : 3) twice a week for 12 weeks. The control group was given
olive oil. In the last 2 weeks, according to their groupings, all

surviving mice were administered cobalt protoporphyrin
(CoPP, 5mg/kg, Sigma-Aldrich, USA), zinc protoporphyrin
(ZnPP, 5mg/kg, Sigma-Aldrich), CORM-2 (8mg/kg,
Sigma-Aldrich), or inactivated-CORM-2 (iCORM-2,
8mg/kg) by intraperitoneal injection twice a week for 2
weeks [12]. For the control and CCl4 groups, the mice
received an intraperitoneal injection of saline. iCORM-2
was generated as previously described by incubation over-
night (18 h) at 37°C and bubbling with air (N2) to remove
the residual CO [24]. TheWTC57BL/6mice were randomized
into six groups: control (n = 6), CCl4 (n = 10), CCl4+CoPP
(n = 12), CCl4+ZnPP (n = 12), CCl4+CORM-2 (n = 13), and
CCl4+iCORM-2 (n = 10).

VillinCre Hmox1floxp/floxp mice with conditional
knockout HO-1 in the intestinal epithelial cells were
obtained by crossing VillinCre transgenic mice with
Hmox1floxp/floxp mice containing Loxp sites flanking exon
2 of the hmox1 gene (Supplementary Figure S3) [12].
WT and Hmox1floxp/floxp mice were bred and used as
controls for experiments involving VillinCre
Hmox1floxp/floxp mice. WT, Hmox1floxp/floxp, and VillinCre
Hmox1floxp/floxp mice were administered CCl4 to establish
the gut leakage mice model. The mice were randomized
to six groups: WT-Control (n = 5), Hmox1floxp/floxp-
Control (n = 5), VillinCre Hmox1floxp/floxp-Control (n = 6),
WT-CCl4 (n = 10), Hmox1floxp/floxp-CCl4 (n = 5), and
VillinCre Hmox1floxp/floxp-CCl4 (n = 10).

At the end of the experiment, mice were sacrificed by
cervical dislocation, and blood, colon, and liver samples
were collected. The serum samples were obtained by cen-
trifugation of the blood at 2,500 × g for 10min. The serum
levels of alanine aminotransferase (ALT) were determined
using a commercial kit (Nanjing Jiancheng Biotechnology
Institute, Nanjing, China), according to the manufacturer’s
instructions. The isolated colon tissue concentrations of
TNF-α were measured using the ELISA kits (Wuhan
USCN Business Co., Ltd., Wuhan, China) following the
manufacturer’s protocols. The colon and liver tissues in
each group were fixed with 10% paraformaldehyde for his-
topathological staining, and the remnants of colon tissues
were stored at -80°C for later use.

2.2. Cell Culture. The human colonic adenocarcinoma cell
line Caco-2 was cultured in Dulbecco’s modified Eagle’s
medium (DMEM, Gibco, Invitrogen Inc., Carlsbad, CA,
USA) supplemented with 10% fetal calf serum (FCS, Gibco),
100U/mL penicillin, and 100mg/mL streptomycin at 37°C in
a 5% CO2 atmosphere. The cells were separately transfected
with the human FUGW-HO-1 and pLKO.1-sh-HO-1 plas-
mids (Hanheng Biotechnology Corp., Shanghai, China) to
overexpress and knockdown HO-1, respectively. Lipofiter™
(Hanbio Biotechnology, China) was used for transfection,
according to the manufacturer’s instructions. In separate
experiments, the cells were pretreated with JSH-23 (10μM,
Selleckchem, Houston, TX, USA), a specific inhibitor of
NF-κB for 3 h [13], or ML-7 (10μM, Selleckchem), an inhib-
itor of long MLCK for 3 h [25], followed by 24 h of TNF-α
(100 ng/mL, PeproTech, Rocky Hill, NJ, USA) [21] treatment
to simulate intestinal epithelial barrier damage.
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2.3. Western Blot. Isolated colonic epithelia and cell mono-
layers were sonicated in RIPA lysis buffer (Beyotime Biotech-
nology, Shanghai, China) with protease and phosphatase
inhibitors (Biotool, Houston, USA) and centrifuged at
14,000 × g for 15min. The supernatants were then trans-
ferred to a new enzyme-free tube. Protein concentrations
were determined by using the bicinchoninic acid protein
assay kits (Beyotime Biotechnology). Samples were mixed
with 4x loading buffer and run on an 8% or 10% sodium
dodecyl sulfate-polyacrylamide gel. The proteins were trans-
ferred to a polyvinylidene fluoride membrane at 250mA for
2 h. The membranes were blocked for nonspecific binding
in 5% milk in TBS-Tween 20 (TBST) for 1 h at room temper-
ature and then incubated overnight at 4°C with anti-ZO-1
(1 : 500; Proteintech Cat# 21773-1-AP; RRID:AB_
10733242), anti-occludin (1 : 1000; Abcam Cat# ab167161;
RRID:AB_2756463), anti-IκB-α (1 : 1000; Abcam Cat#
ab32518; RRID:AB_733068), anti-phospho-IκB-α (1 : 1000;
Abcam Cat# ab133462; RRID:AB_2801653), anti-NF-κB
p65 (1 : 500; Cell Signaling Technology Cat# 6956; RRI-
D:AB_10828935), anti-phospho-NF-κB p65 (1 : 500; Cell Sig-
naling Technology Cat# 3033; RRID:AB_331284), anti-long
MLCK (1 : 1000; Abcam Cat# ab76092; RRID:AB_1524000),
anti-MLC-2 (1 : 500; Cell Signaling Technology Cat# 3672;
RRID:AB_10692513), anti-phospho-MLC-2 (1 : 500; Cell
Signaling Technology Cat# 3675; RRID:AB_2250969), anti-
β-actin (1 : 2000; Proteintech Cat# 60008-1-Ig; RRID:AB_
2289225), or anti-GAPDH (1 : 2000; Proteintech Cat#
60004-1-Ig, RRID:AB_2107436). Membranes were then
washed in TBST for 30min, exposed to the secondary anti-
body linked to horseradish peroxidase for 1 h, and washed
for 30min in TBST before being developed using ECL detec-
tion reagents (Millipore Corp., Billerica, MA, USA).

2.4. Hematoxylin and Eosin, Mayer-Sirius Red Staining, and
Immunohistochemistry. The paraffin-embedded colon and
liver samples were used to prepare 5μm thick sections with
a microtome. The sections were stained with hematoxylin
and eosin (H&E) using standard methods. For Mayer-Sirius
red collagen staining, the liver sections were deparaffinized
and stained with Sirius red buffer for 1 h at room tempera-
ture. After washing, the sections on the slides were stained
with Mayer solution and mounted. Immunohistochemistry
(IHC) staining was performed according to standard
methods. All of these slides were examined and read by an
experienced pathologist who was blinded to the study design.
The Image J software was used to analyze the images of Sirius
red and IHC staining.

Colonic epithelial injury from H&E staining was scored
according to the inflammatory manifestations and lesion
depths of the colon [26]. Inflammatory manifestations (1-4
points) are as follows: 1 =mild inflammation and scattered
mononuclear cells can be seen focally; 2 =moderate inflam-
mation with scattered mononuclear cells in many places;
3 = severe inflammation, accompanied by increased vascular
density and significantly thickened intestinal wall; and
4= extreme inflammation, accompanied by a full layer of leu-
kocyte infiltration of the intestinal wall and disappearance of
goblet cells. Lesion depths (0-3 points) are as follows:

0 =none; 1 = submucosa; 2 =muscle layer; and 3= serious
film layer.

2.5. Data Analysis. All presented data were representative of
three or more independent experiments, each with similar
results. The continuous data are shown as mean ±
standard deviation. Comparisons between the two groups
were performed using Student’s t-test. Comparisons among
multiple groups were made using ANOVA of Tukey’s post
hoc test. P values ≤ 0.05 were considered statistically
significant.

3. Results

3.1. Damage to the Intestinal Mucosal Barrier and Activation
of the NF-κB p65/MLCK Pathway Is Abolished after CoPP
and CORM-2 Treatment following CCl4 Injection. To define
the role of HO-1/CO in repairing intestinal barrier loss,
C57BL/6 WT mice were subjected to 12 weeks of CCl4
injection. All surviving mice (about 75% survival rate)
were then administrated with CoPP (an HO-1 inducer),
ZnPP (an HO-1 inhibitor), CORM-2, or iCORM-2 for
the last 2 weeks. Western blot and qRT-PCR were used
to confirm that HO-1 protein and mRNA were upregu-
lated in colonic epithelia after applying CoPP, but not
with ZnPP (Supplementary Figure S1a and S1b). Next,
we investigated whether HO-1 and CO are involved in
regulating intestinal epithelial barrier integrity following
CCl4 injection. The increased pathological score and TNF-α
levels of the colon (Figures 1(a)–1(c)), the reduced length of
the colon (Figure 1(d)), and the disrupted proteins of TJs
such as ZO-1 (Figures 1(e) and 1(k)) and occludin
(Figures 1(e) and 1(l)) were observed in the CCl4-treated
group (all P < 0:001). CoPP treatment attenuated the CCl4-
induced colon pathological changes (P < 0:05) and TNF-α
levels (P < 0:001) but did not affect the colon length
(P > 0:05) (Figures 1(a)–1(d)). Importantly, CoPP and
CORM-2 administration significantly increased the
expression of colonic epithelial ZO-1 (both P < 0:001) and
occludin (both P < 0:01) proteins as compared to the CCl4-
treated group (Figures 1(e), 1(k), and 1(l)). ZnPP treatment
significantly promoted colonic TNF-α levels (Figure 1(c),
P < 0:05) and decreased the length of the colon and the
expression of colonic epithelial TJ proteins (ZO-1 and
occludin) after CCl4 administration (Figures 1(d), 1(e),
1(k), and 1(l), all P < 0:01). However, ZnPP did not affect
colonic mucosal damage after CCl4 challenge in mice
(Figures 1(a) and 1(b), P > 0:05). In addition, there was no
significant difference in the pathological scores, TNF-α
levels, length of the colon, and expression of colonic
epithelial ZO-1 and occludin between CCl4 and iCORM-2
mice (Figures 1(a)–1(e), 1(k), 1(l), all P > 0:05). Our
findings suggested that the upregulation of HO-1 and CO
may repair intestinal epithelial barrier injury after CCl4
injection.

On the other hand, CCl4 induced a significant degra-
dation of the inhibitor of nuclear factor-κB α (IκB-α),
which was consistent with a marked upregulation of the
phosphorylation levels of IκB-α and NF-κB p65 in colonic
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Figure 1: Continued.
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Figure 1: Continued.
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epithelial tissues of mice as compared to the control group
(Figures 1(e)–1(h), all P < 0:001). As expected, CCl4 dra-
matically induced long (epithelial) MLCK expression
(Figures 1(e) and 1(i), P < 0:001) and MLC-2 phosphoryla-
tion (but not MLC-2 level) (Figures 1(e) and 1(j), P < 0:01),
compared with the control group. Interestingly, CoPP and
CORM-2 treatment significantly inhibited IκB-α degradation
and phosphorylation, reduced NF-κB p65 activity and
phosphorylation, and suppressed long MLCK activation
and MLC-2 phosphorylation compared to the CCl4-treated
group (Figures 1(e)–1(j)). ZnPP treatment completely
reversed these effects as a response to CCl4 administration
(Figures 1(e)–1(j)). In addition, iCORM-2 significantly
upregulated NF-κB p65 phosphorylation, but it had no
effects on the degradation and phosphorylation of IκB-α
and on the expression of long MLCK and phospho-MLC-2
after CCl4 administration (Figures 1(e)–1(j)). Taken
together, these findings indicated that the NF-κB
p65/MLCK-p-MLC-2 pathway might be the crucial down-
stream molecular mechanism of the HO-1-CO axis on
protecting against intestinal barrier loss after CCl4 injection.

3.2. Elevation of HO-1 in Intestinal Epithelial Monolayer Cells
Protects against Barrier Loss after TNF-α Stimulation. In
order to confirm the in vivo studies of HO-1 repairing
intestinal barrier injury, gain- or loss-of-HO-1-function
experiment was conducted using Caco-2 cells transfected
with FUGW-HO-1 or pLKO.1-sh-HO-1 plasmid in vitro.
The cells transfected with empty plasmids served as the
control groups (Supplementary Figure 2). Similar to the
in vivo data, the expression of epithelial ZO-1, occludin,
and IκB-α was significantly increased (all P < 0:05), while
the expression of phospho-NF-κB p65 (P < 0:05), long
MLCK (P < 0:01), and phospho-MLC-2 (P < 0:05) were
remarkably decreased in Caco-2 cells transfected with

FUGW-HO-1 plasmid after TNF-α treatment, compared
to the scrambled control group (Figures 2(a) and 2(b)).
However, relative to the control group, HO-1 shRNA
significantly decreased the expression of epithelial ZO-1
(P < 0:01), occludin (P < 0:01), and IκB-α (P < 0:05)
proteins and increased the expression of phospho-IκB-α
(P < 0:05), phospho-NF-κB p65 (P < 0:01), long MLCK
(P < 0:05), and phospho-MLC-2 (P < 0:05) as a response to
TNF-α treatment (Figures 2(c) and 2(d)). These data
suggested that HO-1 dependently repairs intestinal barrier
dysfunction, followed by reduced NF-κB p65/MLCK-p-
MLC-2 pathway activation.

3.3. HO-1 Overexpression and NF-κB p65 Signaling in
Intestinal Epithelial Cells Are Required for Regulating
Barrier Loss following TNF-α Stimulation. To investigate
whether NF-κB p65 mediated the downstream MLCK-p-
MLC-2 signaling in intestinal epithelial cells and its relation-
ship with HO-1 and barrier loss, we used JSH-23, a specific
NF-κB inhibitor, to pretreat Caco-2 cells in which HO-1
function was either increased or decreased. The results
showed that in the presence of JSH-23, HO-1 overexpression
significantly reduced NF-κB p65 phosphorylation, long
MLCK expression, and MLC-2 phosphorylation and mark-
edly increased ZO-1 and occludin expression in Caco-2 cells
transfected with the FUGW-HO-1 plasmid after TNF-α
stimulation, compared to the scrambled control group
(Figures 3(a) and 3(b)). In contrast, even in the presence of
JSH-23, Caco-2 cells transfected with the pLKO.1-sh-HO-1
plasmid showed higher phosphorylation of NF-κB p65,
expression of long MLCK, and phosphorylation of MLC-2
and lower expression of ZO-1 and occludin after TNF-α
stimulation, compared to the scrambled control group
(Figures 3(c) and 3(d)). These findings indicated that NF-
κB p65 might mediate the activation of epithelial long
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Figure 1: CoPP and CORM-2 mice show less barrier loss and NF-κB p65/MLCK pathway activation following CCl4 injection. C57BL/6
wildtype mice received CCl4 injection for 12 weeks. All surviving mice were then administrated with CoPP, ZnPP, CORM-2, or iCORM-2
for the last 2 weeks. (a) Representative colon sections after hematoxylin and eosin (H&E) staining (200x, scale bar = 10 μm). (b) Colon
pathology scores. (c) Colonic TNF-α levels (n = 5). (d) Colon length (cm) (n = 5). (e) Representative protein bands and quantification
analyses of a Western blot for (f) IκB-α, (g) p-IκB-α, (h) p-NF-κB p65/NF-κB p65, (i) long MLCK, (j) p-MLC-2/MLC-2, (k) ZO-1, and (l)
occludin in the colonic epithelia. All presented data were representative of three or more independent experiments, each with similar
results. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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Figure 2: HO-1 overexpression protects against epithelial barrier loss after TNF-α stimulation. (a, b) Representative protein bands and
quantification analyses of a Western blot for IκB-α, p-IκB-α, p-NF-κB p65/NF-κB p65, long MLCK, p-MLC-2/MLC-2, ZO-1, and occludin
in Caco-2 cells transfected with the FUGW-HO-1 plasmid after TNF-α stimulation. (c, d) Representative protein bands and quantification
analyses of a Western blot for IκB-α, p-IκB-α, p-NF-κB p65/NF-κB p65, long MLCK, p-MLC-2/MLC-2, ZO-1, and occludin in Caco-2
cells transfected with the pLKO.1-sh-HO-1 plasmid after TNF-α stimulation. All data presented are representative of three or more
independent experiments, each with similar results. ∗P < 0:05 and ∗∗P < 0:01. N.S.: no significance.
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Figure 3: The barrier function is dependent on HO-1 and NF-κB p65 signals from intestinal epithelial cells. (a, b) Representative protein
bands and quantification of the Western blot for p-NF-κB p65/NF-κB p65, long MLCK, p-MLC-2/MLC-2, ZO-1, and occludin in Caco-2
cells transfected with FUGW-HO-1 plasmid after pretreatment of JSH-23 with or without TNF-α stimulation. (c, d) Representative
protein bands of a Western blot for p-NF-κB p65/NF-κB p65, long MLCK, p-MLC-2/MLC-2, ZO-1, and occludin in Caco-2 cells
transfected with pLKO.1-sh-HO-1 plasmid after pretreatment of JSH-23 with or without TNF-α stimulation. All data presented were
representative of three or more independent experiments, each with similar results. ∗P < 0:05 and ∗∗P < 0:01.
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MLCK, the phosphorylation of MLC-2 in enterocytes, and
the disruption of TJs, and it may also contribute to reduced
barrier function. Importantly, HO-1 dependently blocked
the activation of NF-κB p65 and downstream MLCK-p-
MLC-2 signaling, resulting in intestinal epithelial barrier
function restoration.

3.4. HO-1 Elevation and Long MLCK Inhibition in Intestinal
Epithelial Cells Are Protected against Barrier Loss after TNF-α
Stimulation. To further dissect the functional role of epithe-
lial long MLCK in HO-1-mediated barrier loss restoration,

Caco-2 cells were pretreated with ML-7, a long MLCK
inhibitor. As shown in Figures 4(a) and 4(b), long MLCK
protein expression and MLC-2 phosphorylation were
markedly decreased, and epithelial ZO-1 and occludin
expression was increased in HO-1 overexpression Caco-2
cell lines pretreated with ML-7 after TNF-α stimulation
compared to the control group. However, relative to the
control group, HO-1 shRNA completely reversed these
effects after TNF-α stimulation, even in the presence of
ML-7 (Figures 4(c) and 4(d)). These data indicated that
the downstream MLCK/p-MLC-2 signaling pathway directly
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Figure 4: HO-1 andMLCK in intestinal epithelial cells mediate barrier loss. (a, b) Representative protein bands and quantification analyses of
a Western blot for long MLCK, p-MLC-2/MLC-2, ZO-1, and occludin in Caco-2 cells transfected with FUGW-HO-1 plasmid after
pretreatment of ML-7 with or without TNF-α stimulation. (c, d) Representative protein bands and quantification analyses of a Western
blot for long MLCK, p-MLC-2/MLC-2, ZO-1, and occludin in Caco-2 cells transfected with pLKO.1-sh-HO-1 plasmid after pretreatment
of ML-7 with or without TNF-α stimulation. All data presented were representative of three or more independent experiments, each with
similar results. ∗P < 0:05 and ∗∗P < 0:01.
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Figure 5: Continued.
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Figure 5: Continued.
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contributes to barrier loss, and HO-1 suppresses the activation
of MLCK/p-MLC-2 signaling in a dependent manner.

3.5. Intestinal HO-1-Deficient Mice Contribute to Increased
Intestinal Permeability after CCl4 Injection. To further con-
firm the intestinal epithelial cell-specific function of HO-1
in mediating barrier loss, we used VillinCre Hmox1floxp/floxp

mice whose hmox1 genes were conditionally knocked out in
intestinal epithelial cells. WT and Hmox1floxp/floxp mice were
used as the controls for the experiments involving VillinCre
Hmox1floxp/floxp mice. HO-1-/- mice showed more serious

colonic mucosal injury, which was characterized by infiltra-
tion of inflammatory cells in colonic serosa and thickening
of the colon wall (Figure 5(a)). Yet, no significant difference
was observed in pathological colon scores between VillinCre
Hmox1floxp/floxp mice and WT or Hmox1floxp/floxp mice after
CCl4 challenge (Figure 5(b)). The TNF-α levels of the colon
were increased (Figure 5(c), P < 0:001), and the length of
the colon was decreased (Figure 5(d), P < 0:05) in VillinCre
Hmox1floxp/floxp mice, as compared to WT mice, after CCl4
administration. The expression of colonic epithelial TJ
proteins (ZO-1 and occludin) was significantly reduced in

Hmox1
floxp

/floxp
W

T

Villi
n Cre 

Hmox1
floxp

/floxp

Hmox1
floxp

/floxp
W

T

Villi
n Cre 

Hmox1
floxp

/floxp

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

Lo
ng

 M
LC

K/
G

A
PD

H

0.0

0.5

1.0

1.5

CCl4

Control

(i)

Hmox1
floxp

/floxp
W

T

Villi
n Cre 

Hmox1
floxp

/floxp

Hmox1
floxp

/floxp
W

T

Villi
n Cre 

Hmox1
floxp

/floxp

⁎⁎⁎
⁎⁎⁎

⁎⁎⁎
⁎⁎⁎

⁎⁎⁎

p-
M

LC
-2

/M
LC

-2

0.0

0.5

1.0

1.5

2.0

CCl4

Control

(j)

Hmox1
floxp

/floxp
W

T

Villi
n Cre 

Hmox1
floxp

/floxp

Hmox1
floxp

/floxp
W

T

Villi
n Cre 

Hmox1
floxp

/floxp

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎

⁎

0.0

0.5

1.0

1.5

ZO
-1

/G
A

PD
H

CCl4

Control

(k)

Hmox1
floxp

/floxp
W

T

Villi
n Cre 

Hmox1
floxp

/floxp

Hmox1
floxp

/floxp
W

T

Villi
n Cre 

Hmox1
floxp

/floxp

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

CCl4

Control

⁎⁎

⁎⁎

O
cc

lu
di

n/
G

A
PD

H

0.0

0.5

1.0

1.5

(l)

Figure 5: HO-1-/- mice lose the protective effect against barrier loss after CCl4. (a) Representative colon sections after hematoxylin and eosin
(H&E) staining (200x, scale bar = 10 μm). (b) Colon pathology scores. (c) Colonic TNF-α levels (n = 3). (d) Colon length (cm) (n = 3). (e)
Representative protein bands and quantification analyses of a Western blot for (f) IκB-α, (g) p-IκB-α, (h) p-NF-κB p65/NF-κB p65, (i)
long MLCK, (j) p-MLC-2/MLC-2, (k) ZO-1, and (l) occludin in the colonic epithelia. All data presented were representative of three or
more independent experiments, each with similar results. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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Figure 6: Continued.
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VillinCre Hmox1floxp/floxp mice, as compared to WT and
Hmox1floxp/floxp mice after CCl4 administration
(Figures 5(e), 5(k), and 5(l); P < 0:05 and P < 0:01, respec-
tively). Importantly, colonic epithelial IκB-α degradation
and phosphorylation, NF-κB p65 activation and phosphory-
lation, long MLCK activation, and MLC-2 phosphorylation
were significantly higher in HO-1-/- mice than WT and
Hmox1floxp/floxp mice after CCl4 administration
(Figures 5(e)–5(j)). These findings further demonstrated the
crucial contributions of HO-1 in maintaining intestinal bar-
rier integrity and the relative mechanisms in these processes.

3.6. HO-1/CO Repairing Intestinal Barrier Damage Is
Protected against Liver Injury. Finally, we verified the clinical
significance of HO-1/CO repairing intestinal barrier damage
in actual disease. Supplementary Table 1 shows liver fibrosis
grades in each group. All control mice were Grade 0; Grade 3
fibrosis was only observed in the CCl4+ZnPP and CCl4
+iCORM-2 groups. The distinct pathological changes in the
liver, including the proliferation of fibrous tissue around
the portal area (Figure 6(a)), the formation of a fibrous
septum (Figure 6(a)), and the elevation of serum ALT levels
(Figure 6(b), P < 0:001), collagen deposition (Figures 6(c)
and 6(d), P < 0:001), and α-SMA expression (Figures 6(e)
and 6(f), P < 0:001) were observed in the CCl4-treated
group. The proliferation of hepatic fibrosis tissues
(Figures 6(a), 6(c), and 6(d)), the expression of α-SMA
(Figures 6(e) and 6(f)), and serum ALT levels (Figure 6(b))
in the CoPP and CORM-2 treatment groups were
significantly lower than those of the CCl4 model group. The

group treated with ZnPP showed disordered hepatic lobular
structures and significantly increased fibrous tissue
proliferation (Figure 6(a)), collagen deposits (Figures 6(c)
and 6(d)), and α-SMA expression (Figures 6(e) and 6(f))
compared to the CCl4-treated group. There was no
significant difference in hepatic fibrosis between the CCl4
and iCORM-2 groups (all P > 0:05) (Figure 6). In addition,
VillinCre Hmox1floxp/floxp mice showed disordered hepatic
lobular structures, more fibrous tissue proliferation and
collagen deposits, higher α-SMA expression in the liver,
and higher serum ALT levels than WT and Hmox1floxp/floxp

mice after CCl4 exposure (Supplementary Table 2 and
Figure 7). In summary, these data were consistent with the
vital contributions of HO-1/CO to the intestinal barrier
restoration pathway.

4. Discussion

Our data suggested that colonic mucosal injury, TNF-α
production, TJ disruption, and epithelial NF-κB
p65/MLCK/p-MLC-2 signaling pathway activation are
markedly decreased by exogenous upregulation of HO-1
or endogenous supplementation of CO after chronic CCl4
injection. The effects of TNF-α on TJ permeability and epi-
thelial NF-κB p65/MLCK/p-MLC-2 signaling pathway acti-
vation are attenuated in an HO-1-dependent fashion. Using
intestinal HO-1-deficient mice further demonstrates the cru-
cial contributions of HO-1 in maintaining intestinal barrier
integrity and the relative mechanisms in these processes.
Consistent with the above conclusions, alleviated hepatic
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Figure 6: CoPP and CORM-2 repairing intestinal barrier damage diminished hepatic injury. Representative liver sections after hematoxylin
and eosin (H&E) staining (a), Mayer-Sirius red staining (c), and immunohistochemistry staining for α-SMA (e) (200x, scale bar = 10μm), and
serum ALT (n = 5) (b) levels; quantification of the Sirius red positive areas (d) and the α-SMA positive areas (f). Representative positive areas
were indicated by black arrows. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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fibrogenesis and serum ALT levels confirm the clinical signif-
icance of HO-1/CO repairing intestinal barrier injury. To the
best of our knowledge, this is the first study on the functional
linking of the intestinal HO-1/CO-NF-κB/MLCK system to
gut leakiness at different levels.

HO-1 and CO might be possible candidates to initiate
intestinal barrier-restorative effects due to their anti-
inflammation and antioxidative damage properties [27, 28].
However, they often used a kind of middle mechanism
(e.g., the nuclear factor erythroid-2-related factor 2
(Nrf2)/HO-1/CO pathway) for regulating the intestinal
barrier dysfunction [29, 30], and the direct effect of the
HO-1-CO axis on intestinal barrier injury is poorly under-
stood. Our data indicated that intestinal mucosal injury,
TNF-α production, and TJ disruption are markedly attenu-
ated by exogenous upregulation of HO-1 (CoPP) or endoge-
nous supplement CO (CORM-2) after chronic CCl4
injection. As the major connection between intestinal epithe-
lial cells, the TJ proteins in intestinal mucosa have an impor-
tant role in maintaining the intestinal mucosa’s mechanical
barrier integrity and functions [1]. Decreased expression of
TJ proteins leads to the increase of intestinal permeability,
thus facilitating the entry of pathogens and toxic substances
into the body [31–33]. TNF-α may have a central role in
the complex chain reaction of cytokine-mediated intestinal
mucosal injury [21, 22, 34]. Consistent with in vivo studies,

our in vitro data showed that HO-1 dependently attenuates
TJ disruption in the cell monolayers after TNF-α stimulation.
Moreover, using intestinal HO-1-/- mice, we further con-
firmed the vital role of intestinal-specific HO-1 in mediating
barrier loss.

Previous studies reported that intestinal damage induces
long MLCK expression by activating the NF-κB signaling
pathway [21, 35]. We demonstrated that intestinal IκB-α, as
an upstream inhibitor of NF-κB, is degraded and phosphor-
ylated, after which the NF-κB p65 is activated and has a
central role as a key transcription factor of barrier loss. We
previously demonstrated that the inhibition of NF-κB p65
contributes to stabilizing the intestinal barrier [13]. However,
we provided no evidence that NF-κB p65 directly mediates
the intestinal TJ protein dysregulation. The presence of
increased epithelial long MLCK expression and activity,
which is mediated by NF-κB p65, contributes to TJ dysregu-
lation [14–16]. MLC-2 has a central role as a common final
pathway of barrier disruption, and the phosphorylation of
MLC-2 is the molecular basis for the increase of permeability
of the intestinal barrier [1, 36]. This study shows that TNF-α
strongly induces epithelial NF-κB p65 phosphorylation, long
MLCK expression, and MLC-2 phosphorylation and, conse-
quently, increases the TJ disruption in the cell monolayers.
Intestinal barrier disruption is facilitated by NF-κB p65
expressed on intestinal epithelial cells. Moreover, NF-κB
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Figure 7: HO-1-/- mice promote liver injury by aggravating intestinal mucosal barrier injury. Representative liver sections after hematoxylin
and eosin (H&E) staining (a) (400x, scale bar = 10μm), Mayer-Sirius red staining (c), and immunohistochemistry staining for α-SMA (e)
(200x, scale bar = 10 μm) and serum ALT (n = 3) (b) levels; quantification of the Sirius red positive areas (d) and the α-SMA positive areas
(f) are shown. Representative positive areas are indicated by black arrows. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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p65-mediated activation of epithelial long MLCK and phos-
phorylation of MLC-2 in enterocytes and disruption of TJs
contribute to reduced barrier function after TNF-α
stimulation.

Many studies have suggested that the inhibition of the
NF-κB pathway and activation of the HO-1 pathway are
anti-inflammatory mechanisms [37, 38], while only a few
clearly clarified the crosstalk between them in regulating
intestinal barrier loss. In the present study, CoPP and
CORM-2 markedly alleviated colonic mucosal injury and
TNF-α levels; upregulated TJ expression; and inhibited epi-
thelial IκB-α degradation and phosphorylation, NF-κB p65
phosphorylation, long MLCK expression, and MLC-2 phos-
phorylation after CCl4. However, ZnPP and intestinal HO-
1-deficient completely reversed these effects. Furthermore,
HO-1 overexpression prevented TNF-α-induced TJ disrup-
tion, while HO-1 shRNA promoted TJ damage even in the
presence of JSH-23 or ML-7. These data suggested that
HO-1 dependently protects the intestinal barrier via inhibi-
tion of the NF-κB p65/MLCK/p-MLC-2 pathway.

The above data confirmed the crucial contributions and
mechanisms of HO-1/CO in maintaining intestinal barrier
integrity. There is an emerging concept that disruption of
intestinal barrier function has a central role in the initiation
of acute liver injury and progression to chronic liver disease
[6, 39]. Our study further verified the clinical significance of
HO-1/CO repairing intestinal barrier injury by alleviating
hepatic fibrogenesis and serum ALT levels. Intestinal epithe-
lial barrier disruption can enhance or directly trigger IBD or
dysbiosis [40, 41]; therefore, it is of great significance to study
the effects of HO-1/CO maintaining intestinal barrier integ-
rity on targeted treatment of IBD or intestinal microecologi-
cal diseases.

In conclusion, this is the first study that suggested a link
of the HO-1-CO axis in intestinal permeability by using a
tissue or tissue-specific genetically modified mice and cell
culture system. HO-1/CO regulates the intestinal barrier
integrity through inhibition of the NF-κB p65/MLCK/p-
MLC-2 signaling pathway, and the HO-1/CO-NF-κB/MLCK
system in the intestine is a potential therapeutic target for
barrier loss. Based on these findings, the significance of
HO-1/CO maintaining intestinal barrier integrity should be
tested in more clinical diseases with a leaky gut.
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Supplementary Materials

Supplementary Figure S1: validation of HO-1 expression in
colonic epithelia after CCl4 modeling. (a) The representative
protein bands and the quantification of a Western bolt for
HO-1 in colonic epithelia. (b) Fold-change of HO-1 mRNA
expression in the colon by qRT-PCR. All presented data were
representative of three or more independent experiments,
each with similar results. ∗∗∗P < 0:001. Supplementary Figure
S2: the expression of HO-1 in Caco-2 cells transfected with
the FUGW-HO-1 or pLKO.1-sh-HO-1 plasmid. Representa-
tive protein bands and quantification analyses of a Western
blot for HO-1 in Caco-2 cells transfected with the FUGW-
HO-1 plasmid (a) or pLKO.1-sh-HO-1 plasmid (b) with or
without TNF-α stimulation. All presented data were repre-
sentative of three or more independent experiments, each
with similar results. ∗∗∗P < 0:001. Supplementary Figure S3:
schematic of the construction of the HO-1-/- mice with con-
ditional knockout of HO-1 in intestinal epithelial cells. (a)
The principle of intestinal hmox1 conditional knockout mice.
The CRISPR/Cas9 technology was used to cut the target
gene’s DNA intron and provide the homologous template
donor. FloxP was inserted at both ends of the specific exon
through homologous recombination and DNA repair.
Hmox1-FloxP mice were crossed with Cre mice, and the spe-
cific exon of hmox1 was deleted. Thus, hmox1 does not trans-
late and produces a frame-shift mutation, and the HO-1
protein is inactivated, thereby achieving conditional
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knockout of the hmox1 gene. (b, c) The transcription ability
of small guide RNA (sgRNA) was evaluated according to
the cutting activity of the Cas9/gRNA complex. Finally, the
sgL5 and sgR8 sites were chosen. (d) Schematic of the
Cas9/gRNA complex enzyme cutting the DNA intron of
the hmox1 gene. (e) The FloxP site insert results were evalu-
ated by PCR. (f) The FloxP site insert results were evaluated
by sequencing. Table S1. Pathological grading of liver fibrosis
in each proups. Table S2. Pathological grading of liver fibro-
sis in each groups (Supplementary Materials)
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