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Psychiatric and neurodegenerative diseases, including major depression

disorder (MDD), bipolar disorder, and Alzheimer’s disease, are a burden

to society. Deficits of adult hippocampal neurogenesis (AHN) have been

widely considered the main hallmark of psychiatric diseases as well as

neurodegeneration. Herein, exploring applicable targets for improving

hippocampal neural plasticity could provide a breakthrough for the

development of new treatments. Emerging evidence indicates the broad

functions of mitochondria in regulating cellular behaviors of neural stem cells,

neural progenitors, and mature neurons in adulthood could o�er multiple

neural plasticities for behavioral modulation. Normalizing mitochondrial

functions could be a new direction for neural plasticity enhancement.

Exercise, a highly encouraged integrative method for preventing disease, has

been indicated to be an e�ective pathway to improving both mitochondrial

functions and AHN. Herein, the relative mechanisms of mitochondria in

regulating neurogenesis and its e�ects in linking the e�ects of exercise

to neurological diseases requires a systematic summary. In this review,

we have assessed the relationship between mitochondrial functions and

AHN to see whether mitochondria can be potential targets for treating

neurological diseases. Moreover, as for one of well-established alternative

therapeutic approaches, we summarized the evidence to show the underlying

mechanisms of exercise to improve mitochondrial functions and AHN.

KEYWORDS

mitochondria, exercise, psychiatric diseases, neurodegenerative diseases, adult

neurogenesis

Introduction

In recent decades, psychiatric or neurodegenerative diseases have attracted increased

attention due to the growing number of patients. Psychiatric diseases such as depression

disorder (MDD) and bipolar disorder usually see patients suffering from anxiety or

depressive moods and changes in physical and emotional reactions that would be
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exacerbated by even minor environmental changes (1, 2). As

for neurodegenerative diseases such as Alzheimer’s disease

(AD) and Parkinson’s disease (PD), the progressive death

of neurons commonly induces irreversible neuronal cognitive

deficits, motor disability, and complex behavioral dysregulation

(3). The unidentified etiology of those diseases strongly limited

the development of drugs to prevent the progress of behavioral

abnormality. From the angle of symptomatic treatment, it is

urgent and necessary to explore supplementary or alternative

medicine for improving brain functions.

Neural plasticity provides the ability for the central

nervous system (CNS) to adapt to environmental challenges

under physiological and pathological conditions (4). In the

adult hippocampus, neural plasticity refers to neurogenesis

and synaptic plasticity, both of which perform critical roles

in regulating emotional and cognitive behaviors. Adult

neurogenesis was widely considered as a structural plasticity

through its regulation of the neuronal population in certain

brain regions. As for the target of alternative or integrative

medicine, improving hippocampal neurogenesis could serve

as a key therapeutic paradigm against neurological disorders

without a clear pathological mechanism (5–7). For this reason,

evaluating the mechanism of adult neurogenesis could help

explore an applicable pathway to treat neurological diseases.

Emerging evidence indicates mitochondria have a key

function in regulating the activity and fate commitment of

stem cells (8). In addition, mitochondria have been recognized

as key mediators in response to development of neurological

disease (9). Physical exercise is an effective way to prevent

chronic diseases, including diabetes, neurodegeneration, and

psychiatric disorders (10, 11). Through metabolic regulating,

exercise is beneficial tomitochondrial functions. It is noteworthy

that mitochondria could be the linker between exercise and

neurogenesis. Given this, it is necessary to summarize the effects

of mitochondria in neural functions and its roles in disease

development. In this review, we summarized the functions of

mitochondria to regulate adult hippocampal neurogenesis and

its potential regulators. Furthermore, we discussed the linkage

role of mitochondria to bridge physical exercise and brain

functional improvement.

Hippocampal plasticity and
neurogenesis in neurological
disorders

Adult neurogenesis is a temporal-spatial progress composed

by the self-renewal fate commitment of neural stem cells (NSCs)

as well as the maturation of neural progenitor cells (NPCs).

In the hippocampus, neurogenesis provides the regenerative

resources to clear panic memory (12, 13). The enhancement

of hippocampal neurogenesis was shown to promote pattern

separation behavior, which enables animals to discriminate

between environmental cues related to stress experience (14).

While declined hippocampal neurogenesis commonly results

in an elevated fear response, which subsequently manifests

as inappropriate, uncontrollable expression of fear in neutral

and safe environments (15). These documents highlight the

critical role of AHN in regulating antidepressant behaviors.

The critical role of hippocampal neurogenesis in depressive

moods could also be seen in an animal model of seizures,

which was demonstrated to be triggered by antidepressants

(16). The seizures animal model showed abnormal increase

of adult neurogenesis with upregulated immature neuronal

numbers in the hippocampal DG region (17). Another type

of neural plasticity besides neurogenesis is synaptic plasticity,

which includes synaptogenesis as well as synaptic functions

like long-term potentiation (LTP) and pre-synaptic plasticity.

Dysregulation of synaptic plasticity was also shown to be related

to the development of neurological disorders. Immobilization-

stressed mice presented intensified fear memory and enhanced

long-term potentiation (LTP) (18). In terms of synaptic

plasticity, adult neurogenesis can provide a regenerative

resource to prevent the neurodegenerative progress and

simultaneously enhance the ability in emotional regulation (19).

Promoting the AHN was documented as an effective approach

against psychiatric disorders, particularly depression. In vivo

calcium imaging to record neuronal activity in the vDG (ventral

dentate gyrus) demonstrated increased neurogenesis correlated

to decreased activity of stress-responsive cells, which are active

during attacks or while mice explore anxiogenic environments

(20). Through conditional knockout of the Bcl-gene in NSCs,

Sahay et al. established that there is enhanced AHN in mice and

found that improving AHN was sufficient to prevent behavioral

dysfunctions in a depression model (21). Additionally, blocking

AHN with temozolomide (TMZ) could also result in the

comprised therapeutic effects of antidepressants such as SSRIs

(selective serotonin reuptake inhibitors) and ketamine (22, 23).

Thus, exploring factors in regulating ANH would offer the new

drug targets for treating neurological diseases.

Mitochondrial function and
hippocampal plasticity and
neurogenesis

Biological regulation of mitochondria involves multiple

aspects, including their metabolism, biogenesis, fission, and

fusion dynamics and degradation via autophagy. Accumulating

evidence has been reported to show that all these biological

events participate in the regulation of AHN at different levels

or conditions (Table 1). Cell metabolism plays a fundamental

role in multiple biological events, including energy supply,

cell growth, differentiation, and death. During the self-renewal

and differentiation process, stem cells undergo a dramatic

metabolic reprogram. At an adult hippocampus, the metabolism
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TABLE 1 Mitochondrial biology in regulating AHNs in di�erent aspects.

Research model Mitochondrial biology AHNs events References

Normal adult mice Mitochondrial mass and dynamics Enhanced neuron maturation (24)

Linage tracing mice model Mitochondrial dynamics Daughter cells directs between self-renew or

differentiation

(25)

Drosophila multipotent

hematopoietic progenitors

(like human mammalian

myeloid progenitors)

ROS scavenge Prevented the differentiation (26)

Human embryonic stem cells SIRT1 downregulation Neuroretinal morphogenesis (27)

Optic atrophy Perturbation of inner mitochondrial

membrane

Atrophy of retinal RGCs (28)

Amyotrophic lateral sclerosis Mitochondrial fragmentation, disruption of

ETC, reduced ATP production and oxidative

stress

Increase in proliferation in the SVZ but

decrease in proliferation in the SGZ

(29, 30)

Stroke model ETC disruption and impaired ATP

production

Increased proliferation and death of

neuroblasts

(31)

Alzheimer’s disease model Increased NSCs and immature neurons in

hippocampus

(32, 33)

pattern of NSCs undergoes the switch from glycolysis to

oxidative phosphorylation (OXPHOS) following the process of

neuronal differentiation (34). In mature neurons, mitochondrial

OXPHOS provides high amounts of energy to meet the

requirement of neuronal electrophysiological activities (35,

36). Numerous mitochondrial mediators could be applied as

therapeutic targets not only for metabolic regulating but also to

improve AHN.

Mitochondrial metabolism in regulating
neurogenesis

Mitochondria have been primarily identified as cellular

organelles that provide energy. In neurons, mitochondrial

dysfunction is reported to be involved in multiple

neurodegenerative or psychiatric diseases (37, 38). Dysregulated

AHN induced by abnormal mitochondrial function is one

of the main reasons to these diseases. According to the

environmental changes, quiescent NSCs in the hippocampus

are undergoing extensive changes along with proliferative

activity, cellular growth, and synaptic growth. Adult NSCs

display astroglia features, including 100% GFAP expression, as

well as glycolytic cellular metabolisms pattern (39). Following

neurogenesis, mature neurons require high amounts of ATP

for their biological functions, such as presynaptic vesicle

recycling. Mature neurons integrated in neural circuits are

highly dependent on the mitochondrial electron transport chain

(ETC) and OXPHOS (40–42). Single cell transcriptomics shows

the dramatic upregulating profile of OXPHOS-related genes

during the neural lineage commitment of hippocampal NSCs.

Moreover, specific ablation ofmitochondrial transcription factor

A (Tfam) in adult NSCs reproduces multiple hallmarks of aging

in the hippocampus, including declined neurogenesis. Such

alteration could be reversed by pharmacological enhancement

of mitochondrial function (34). The evidence suggests

mitochondrial metabolism has a critical role in regulating

hippocampal neurogenesis and relative physiological process.

Suppressing mitochondrial OXPHOS could also affect the other

types of adult stem cells. In hematopoietic stem cell (HSCs),

deleting PTEN-like mitochondrial phosphatase Ptpmt1 could

lead to defective hematopoiesis with impaired differentiation

of HSCs (43). Additionally, the metabolic pattern of cells

could shift from mitochondrial OXPHOS to glycolysis during

the reprogramming process of the inducible pluripotent

stem cells (iPSCs), indicating that mitochondria also act

critically in embryonic stem cells (44). Generally, switching

of mitochondrial function is commonly associated with the

energetic demands of stem cells to meet the requirement of their

self-renewal or differentiation. Most neurological drugs that

are widely used in clinic reportedly have an effect on metabolic

regulation. Indeed, mitochondria are widely reported as the

target for improving brain functions. The brain functional

recovery drug piracetam was documented to prevent declined

neurogenesis via promoting mitochondrial metabolism in

an aging model (34, 45). Antioxidants could also reserve the

functions of mitochondria (46). However, it is noteworthy

that exercise may elevate the level of radial oxidative species

(ROS), which has been recently declared as a mechanism in
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antidiabetic effects (47). Since antioxidant and exercise can

provide effects similar to those of mitochondria, a certain level

of ROS might serve as the “second messenger” to promote

the fate commitment of the NSCs at the physiological level

(48). Hence, exercise could be an effective way to control

the level of ROS into physiological reasonable by promoting

mitochondrial OXPHOS.

Mitochondria dynamics and NSCs
behaviors

Mitochondria are constantly varying between being

fragmented or filamentous networks to adapt to the

requirements of cellular functions. According to different

energetic demands of the stem cells stage between self-renewal

and differentiation, dynamics alterations of mitochondrial

morphology are critical in regulating stemness (49).

Mitochondrial elongation commonly occurs in aging skeletal

muscle cells with increased mitochondrial fusion protein

MFN1/2 and the accumulated mutation of mitochondrial DNA

(50). Following the neural commitment of NSCs, mitochondria

shift from the elongated morphology to fragmentation. On the

cell metabolic level, increasing mitochondrial fragments are

associated with enhanced OXPHOS and production of ROS,

previously mentioned as the second messenger to stimulate

downstream signaling like NRF2 and downregulate Notch1

for lineage commitment determination (48). Sirtuins were

also considered as regulators to link mitochondrial dynamics

with adult neurogenesis (25). Physical exercise, the well-known

upregulator of SIRT3 and lipid metabolism, could enhance adult

neurogenesis in an unpredictable chronic stress depression

model (51). Hypoxia inducible factor (HIF) signaling also

provides the link between oxygen levels and mitochondrial

dynamics (52, 53). The activation of the HIF complex under

hypoxia ensures that energy demands meet pathological

conditions by increasing levels of glycolytic enzymes and

inhibiting oxygen consumption (54). Such mechanisms also

mediate self-derived neural repair under stress. In the hypoxia

condition, activation of HIF induces NSCs proliferation

and switched their migration in subventricular zone, which

promotes regenerative progress in infarction region (55).

HIF deletion, however, can impair the AHN and induce

learning and memory deficit (56). Therefore, mitochondrial

dynamics-mediated redox/oxidative status plays a key role in

regulating AHN.

Mitophagy in regulating neurogenesis

In starvation conditions, autophagy could be rapidly

activated to provides a cell with nutrients to survive (57). The

selective autophagy of mitochondria, also known as mitophagy,

can be processed such that damaged or unwanted mitochondria

require degradation (58). As differentiation of stem cells

involves extensive cellular remodeling, autophagy ensures the

elimination of unnecessary cellular components to maintain an

optimal cellular status. It was demonstrated that pretreatment

of antioxidant N-acetylcysteine (NAC) attenuated oxidative

stress-induced NSCs’ self-renewal disruption by suppressing

autophagy signaling mTOR and decreased LC3B-II protein

expression (59). In contrast, enhancing autophagy in aged

satellite cells prevented the senescence and restored regenerative

properties (60). Herein, it could hypothesize that mitochondrial

morphology is another effect pathway to regulate mitochondrial

dynamics in NSCs. At a physiological level, certain levels of

mitophagy might be necessary for controlling the differentiation

of adult NSCs. However, there is no systematic evidence that

indicates the exact mechanisms of mitophagy to regulate the

differentiation and self-renewal of adult NSCs.

Targeting mitochondria in
neurological disease treatment

At the cell level, mitochondrial alterations could be regarded

as a hallmark for stem cell differentiation. Consistently,

impairment of AHN is a well-established biological hallmark

of psychiatric diseases and neurodegeneration at the tissue

level. Such a relationship indicates that mitochondria could

perform be a therapeutic target for neurological diseases.

An increasing number of clinical reports have demonstrated

substantial mitochondrial damage could contribute to the

development of depression and cognitive impairments. Deletion

of mtDNA in a child was associated with mitochondrial

disease symptoms and mild–moderate unipolar depression (61).

Blood sample measurement of mtDNA in bipolar disorder

(BD) and MDD patients also showed a lower mtDNA copy

number than in controls (62). Another report demonstrated

a significant reduction of mtDNA copy numbers in combat

PTSD (63), indicating mtDNA or the mitochondrial mass

abnormality could be the general phenomena correlated with

psychiatric diseases. On the other hand, mitochondria perform

as the therapeutic target to psychiatric diseases. SSRIs (selective

serotonin reuptake inhibitors) like the antidepressant fluoxetine

could promote mitophagy by increasing colocalization of

autophagosomes and mitochondria, which thereby eliminates

damagedmitochondria in corticosterone-treated astrocytes (64).

McCoy et al. compared high novelty responder rats (HRs), which

show highly exploratory behavior in a novel environment as

well as remarkable resilience to chronic mild stress, and low

novelty responder rats (LRs), which are susceptible to chronic

stress. They observed that LRs displayed higher cytochrome

c oxidase (COX) activity in the dentate gyrus, prefrontal

cortex, and dorsal raphe compared to HRs (65). Apart from

selected brain regions, a declining skeletal muscle mitochondrial
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function in aging adults was also shown to be associated with

clinically significant depressive symptoms (66). These lines of

evidence support the critical regulatory roles of mitochondria in

antidepressant functions.

Environmental factors could also induce psychiatric

diseases via affecting mitochondrial functions. Glombik et al.

reported that maternal stress leads to depression-like behaviors

in the offspring of rats; they displayed brain mitochondrial

abnormalities, including significant downregulation of

Ndufv2 (complex I) (67). Animal studies have suggested

that mitochondrial abnormalities were augmented by stress,

indicating mitochondria are stress-response modulators and

contribute to the stress-induced pathophysiology of psychiatric

diseases (68). A possible mechanism might be an enhanced

requirement of the neural activity during learning or memory

coding, which could induce increased mitochondrial respiration

and thereby produce more metabolic products to influence the

signaling pathways downstream, e.g., ROS and RNS.

Accumulating evidence suggests that improving

mitochondrial functions could help the treatment of

neurodegeneration (69, 70). The complex I inhibitor rotenone

could be utilized as a PD model for drug development (71).

The impairment of complex I was associated with reduced ATP

levels, oxidative stress, and calcium-mediated damage in such a

pathological model (72). In post-mortem tissue of sporadic AD,

scientists found mitochondrial dysfunction is correlated with

decreased levels of ATP (73). Growing evidence indicated the

medications targeting on mitochondria exert the therapeutic

effects to neurodegenerative. Metformin, a type-2 diabetes drug

approved by the FDA, was shown to enhance adult neurogenesis

and showed promising effects on an animal model of AD and

PD (74, 75). Another example is the glycogen-like peptide-

(GLP-1) analog. It has been reported that the GLP-1 analog

could promote adult neurogenesis and attenuate the behavioral

dysfunctions in neurodegenerative disorders including PD and

AD (76, 77). Herein, improving mitochondrial functions could

also result in protective effects against neurodegeneration.

Physical exercise and mitochondrial
function

Alternative and integrative medicine are increasingly

proposed as effective strategies to treat psychiatric and

neurodegenerative disorders. Due to safety concerns regarding

the tolerability and risk of medications (78), an effective

alternative therapy is highly requested to attenuate the

behavioral disorders. As for neurodegeneration, early

prevention of the diseases is currently the most effective

strategy due to the limited effects of drugs to halt or prevent

the progress of the neuron death. Physical exercise is widely

recognized as being part of a healthy lifestyle partly due to

its promotion of the maintenance of lifelong mitochondrial

quality control (79). Exercise has been increasingly reported for

its improvement of adult neurogenesis in both physiological

and pathological conditions (80–82). Exercise improves

mitochondrial functions via its multiple biological effects. It

was demonstrated that exercise promoted the production of

brain-derived neurotrophic factor (BDNF) levels and could

alter mitochondrial function, neuroplasticity, and the rate

of apoptosis in the hippocampus and thereby prevented the

occurrence of PTSD (83). In a maternal separation depression

model, exercise could alter mitochondrial function, serotonin

levels, and the rate of apoptosis (84). Herein, mitochondrial

functions perform as the linkage between exercise and its

neuroprotective effects.

Exercise-mediated mitochondrial
functions in neurogenic e�ects

In aged mice, physical exercise significantly increased DRP1

protein levels and elevated the rates of respiration and ROS

production in mitochondria, which is suggestive of its potential

in improving brain functions via its regulating mitochondrial

electron transport chain function and dynamics (85). In an

animal model of Alzheimer’s disease, 1 h of swimming exercise

for 6 days/week consolidated the intact of mitochondrial cristae

and edges, raised the brain ATP production as well as the

number of synapses by regulating the expression of GLUT1

and GLUT3 expression levels (86). Antidepressant action of

running was highly correlated with an increase of hippocampal

neurogenesis and plasticity (81). Compared with its promotion

of NSCs’ proliferation, the accelerating effects of exercise have

a longer latency period (about 2 weeks) on the maturation

of new neurons (87). Moreover, structural magnetic resonance

imaging suggested hippocampus and brain cortex growth in

schizophrenia patients and healthy controls after the endurance

aerobic physical training. This evidence indicates exercise can

also serve as a promising candidate for pathophysiology-based

add-on interventions for schizophrenia (88). A recent study

indicates that free wheel running could promote the activation

of the quiescent NSCs in the hippocampus by regulating cellular

ROS level (89). Therefore, exercise could engage broad effects of

neural functions viamultiple molecular mechanisms.

Multiple e�ects of exercise in brain tissue

Exercise could exert multiple biological effects in additional

to its roles in mitochondrial functions. Brain inflammation

is another key target of exercise for neural tissue. A

recent study showed the systematic regulatory mechanism

of exercise influenced adult neurogenesis. Injecting plasma

derived from voluntary running mice resulted in elevated

density of hippocampal DCX+ neurons correlating with
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improved working memory, which were shown to rely on the

inflammatory regulation via clusterin (90). This report further

suggested the effects of exercise mediated AHN may depend on

its effects on the peripheral circulation system. It was indicated

that LPS could reduce the number of new neurons in aged but

not adult mice, while such dysfunctions could be prevented

by free wheel running (91). Exercise could also attenuate the

inflammatory response in subjects with depression. A study on

61 university students assigned to 6 weeks of different models

of exercise including high-intensity interval training (HIT),

moderate continuous training (MCT), or no exercise (CON)

suggested that MCT exercise could have a positive effect on the

promotion of mental health by decreasing TNF-α level (92).

Neuroinflammation has been suggested to negatively affect adult

TABLE 2 Functional impacts of exercise on neuronal mitochondrial fitness/health.

Exercise model Impacts to mitochondria Impacts to neural tissue References

Wheel running Promoted autophagy/lysosome system No direct evidence (95)

High-intensity exercise Activated partial mitochondrial biogenesis Promoted AHN, attenuated the

inflammation

(96)

Regular running exercise Activated POMC neuronal mitohormesis Induced the hypothalamic mediated

thermogenesis

(97)

Treadmill exercise Increase mitochondrial biogenesis and

OXPHOS level

Possible protective effects to PD animal

model

(98)

Treadmill exercise Prevented mitochondria-mediated

caspase-dependent apoptotic pathways

Suppressed neural apoptosis in aging model (99)

Voluntary exercise Increased oxygen consumption and ATP

production via oxidative phosphorylation

Improved dopaminergic functions in PD

model

(100)

Low-intensity treadmill Attenuated apoptosis, H2O2 emission and

permeability transition pore

Elevated cognitive function and neurogenesis (101)

Treadmill exercise Increased TFAM Decreased the expression of BAD and BAX,

increased the expression of BCL-2

(102)

Treadmill exercise Inhibited mitochondrial outer membrane

permeabilization

Reduced neurobehavioral scores and cerebral

infarction volumes in stroke model

(103)

FIGURE 1

Exercise promotes adult neurogenesis via mitochondria. Physical exercise could enhance mitochondrial functions in adult neural stem cells.

Exercise promotes the fission of mitochondria, biogenesis, and OXPHOS metabolism. These alterations result in the fate determination of NSCs

from self-renewal to neural commitment, which thereby promotes adult neurogenesis in both physiological and pathological conditions.
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neurogenesis, and physical exercise could promote AHN by

buffering the inflammation response in neural tissue (93). The

activation of microglia mediated the proinflammatory factors,

including interleukin-6, TNF-α, ROS, and nitric oxide, which

all have anti-neurogenic properties (94). Table 2 summarizes

the recent evidence in support of the effects of exercise,

showing different patterns of mitochondrial biology as well as

neuronal functions (Table 2). However, limited evidence has

shown the possible role of mitochondria during exercise and

their ability tomediate the functions of neural tissue, particularly

adult NSCs.

Conclusion

Mitochondria are key organelles in the mediation of

energy functions. Based on this mechanism, recent studies

have demonstrated that mitochondria mediate multiple cellular

behaviors that are far beyond energy supply, e.g., the fate

commitment and proliferation of somatic stem cells as

well as the reprogramming and differentiation process of

pluripotent stem cells (104, 105). Improving mitochondrial

function has also been considered a therapeutic strategy

against neurological diseases. Therapeutic approaches targeting

mitochondria should focus on future pre-clinical exploration

for treating neurodegenerative and psychiatric disorders.

Mitochondria play the critical roles in regulating stem cell

behaviors including self-renew and fate commitment of the

adult NSCs (Figure 1). Therefore, a systematic strategy to

improve mitochondrial functions throughout the body is

preferable; we should not only promote neuronal regeneration

but also focus on regulating the NSCs environment, including

the peripheral factors and the neurogenic niche. With such

requirements, exercise is the ideal option, accompanied as

it is by considerable healing effects and relatively few

safety issues.
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