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Many studies have reported neural correlates of visual awareness across

several brain regions, including the sensory, parietal, and frontal areas.

In most of these studies, participants were instructed to explicitly report

their perceptual experience through a button press or verbal report. It is

conceivable, however, that explicit reporting itself may trigger specific neural

responses that can confound the direct examination of the neural correlates

of visual awareness. This suggests the need to assess visual awareness without

explicit reporting. One way to achieve this is to develop a technique to predict

the visual awareness of participants based on their peripheral responses. Here,

we used eye movements and pupil sizes to decode trial-by-trial changes

in the awareness of a stimulus whose visibility was deteriorated due to

adaptation-induced blindness (AIB). In the experiment, participants judged

whether they perceived a target stimulus and rated the confidence they had

in their perceptual judgment, while their eye movements and pupil sizes were

recorded. We found that not only perceptual decision but also perceptual

confidence can be separately decoded from the eye movement and pupil

size. We discuss the potential of this technique with regard to assessing visual

awareness in future neuroimaging experiments.
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Introduction

One of the ultimate goals of neuroscience is to reveal how conscious experience
emerges from neural activities. One promising approach for achieving this goal is to
identify the neural correlates of consciousness (NCC; Koch, 2004), which is defined
as the minimal set of neuronal mechanisms that is jointly sufficient for any specific
conscious percept. Because the studies on NCC require the assessment of participants’
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perceptual experiences, researchers typically ask participants
to explicitly report their perceptual decisions via a button
press or verbal report. However, such explicit reporting may
lead to an overestimation of the neural correlates because
the reporting itself could induce some neural responses
(Tsuchiya et al., 2015). Indeed, Frässle et al. (2014) have shown
that prefrontal activity reflects the responses related to the
reporting rather than those related to the perceptual switch
itself. Additionally, an electroencephalogram (EEG) experiment
utilizing an inattentional blindness paradigm revealed that the
P3 component of event-related potentials as well as gamma-
band activity emerge only when participants performed a task
while paying attention to the stimulus (Pitts et al., 2014); this
is consistent with the possibility that these neural responses
correlate with reporting rather than perceptual awareness per
se. Although it is debatable whether the neural activities are
completely absent without the reporting or are present only to a
lesser, undetectable level, these studies suggest that conventional
subjective report paradigm may not be the best way to isolate
NCC. Therefore, it is valuable to develop a reliable no-report
paradigm where we can predict the differences in perceptual
decisions regarding stimuli without explicit reporting (e.g.,
Hesse and Tsao, 2020; Kapoor et al., 2022).

A conventional procedure for comparing the neural
responses between different perceptual states involves utilizing
bistable perceptual phenomena such as binocular rivalry (Alais
and Blake, 2005; Tong et al., 2006) or motion-induced blindness
(MIB; Bonneh et al., 2001). Alternatively, by adjusting the
stimulus onset asynchrony between the target and mask stimuli
in metacontrast masking, we can create a situation where the
same target stimulus is perceived in some trials but not in
other trials (Breitmeyer and Ogmen, 2000). Although these
procedures are very useful for inducing different percepts of
the stimulus while keeping its physical properties constant, the
perception of target stimuli is suppressed by other competing
stimuli, such as stimuli in the other eye for the binocular
rivalry, motion stimuli for the MIB, and mask stimuli for
metacontrast masking. Therefore, it would be difficult to
use these conventional procedures to distinguish the neural
responses to target stimuli and those to competing stimuli. One
effective technique to resolve this issue is to use a phenomenon
called adaptation-induced blindness (AIB; Motoyoshi and
Hayakawa, 2010), where adaptation to a moving stimulus
proactively reduces the visibility of a subsequently presented
target stimulus. As AIB does not require the simultaneous
presentation of competing stimuli and reportedly has little
impact on early visual processes (Motoyoshi and Hayakawa,
2010), it enables us to isolate the neural responses related to the
perceptual decisions for a target stimulus, which would be ideal
for studying NCC.

Although some other no-report techniques have been
previously suggested, the use of those methods is limited to
the assessment of visual awareness for specific types of stimuli.

In binocular rivalry, a perceived stimulus can be predicted by
the optokinetic nystagmus (OKN)—pursuit and saccade eye
movements alternately elicited to track field motion—if the
stimuli presented in each eye are moving in opposite directions
(Frässle et al., 2014; Kapoor et al., 2022). Although this technique
is useful for moving stimuli, our perceptual awareness often
fluctuates with static stimuli in various visual tasks as well as
in daily situations, which would not induce OKN. Therefore,
it is valuable to develop a technique to predict the perceptual
decisions for a target stimulus without relying on OKN. In this
study, we examine whether the peripheral responses, namely
microsaccades and pupil size, can reliably predict moment-
to-moment changes in the perception of a static stimulus
presented along with AIB.

Microsaccades have been shown to produce weak
transient signals during fixation (Martinez-Conde et al.,
2004), counteracting Troxler fading (Martinez-Conde et al.,
2006) and MIB (Hsieh and Tse, 2009). In addition, one study
has shown that microsaccades tend to be more frequent and
directed toward the peripheral target when it was visible (Cui
et al., 2009). Because these studies convergently suggest that
microsaccades are related to perceptual awareness, here, we
hypothesized that they may entail information regarding the
prediction of perceptual awareness in AIB. Additionally, we
used pupil size as a secondary peripheral response to predict
perceptual awareness, as studies have demonstrated that pupil
dilatation was time-locked to the appearance of an attended
peripheral cue (Smallwood et al., 2011; Kang et al., 2014) and
was representative of attentional processing (Wierda et al.,
2012). In particular, pupil size has been used to decode binary
decisions on a single-trial basis [e.g., intention (Bednarik et al.,
2012); object identification (Jangraw et al., 2014); cognitive
state (Medathati et al., 2020); letter identification (Strauch et al.,
2021)]. Pupil dilation has also been associated with certainty
or confidence in decision making [e.g., memory, language,
reasoning, perception (Beatty, 1982 for a review); categorical
judgments (Brunyé and Gardony, 2017); attentional selection
(Geng et al., 2015); inference learning (Nassar et al., 2012)].
While microsaccades and pupil size covary to some extent in
various cognitive contexts (Privitera et al., 2010, 2014; Wang
et al., 2017; Krejtz et al., 2018; Raj et al., 2019) and during
microstimulation of the superior colliculus (Wang and Munoz,
2021), some differential modulations have also been reported
(Strauch et al., 2018; Dalmaso et al., 2020; Krejtz et al., 2020;
Salvi et al., 2020; Wang et al., 2020). Thus, these parameters may
possibly provide at least partly distinct information for building
a decoder of perceptual decisions.

As an initial step, to establish no-report paradigms, the
present study validated whether perceptual decisions and
confidence regarding target presence could be decoded based
on the microsaccade rate and pupil size. The results indicated
that the perceptual decision (detection of a target stimulus)
can be decoded from a subset of simple features of the
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microsaccades and pupil size. The results further showed
that perceptual confidence can be also decoded from eye
movements and pupil size significantly above chance, although
using a different subset of features. We will discuss how
this technique can be potentially improved and applied
for neuroimaging experiments to study NCC with a no-
report paradigm.

Results

In a given experimental trial, eight stimuli with moving
internal patterns were presented during an adaptation period
of 6 s (Figure 1; see the “Materials and methods” section
for details). After an inter-stimulus interval (ISI) of 0.5 s,
a static target stimulus, in which the contrast was filtered
through a temporal Gaussian window, was presented for 1 s.
It was displayed either at the top-left or bottom-right position
(positions of interest) in 65% of the trials and at the other six
locations in 15% of the trials. The remaining 20% of the trials
were catch trials, where the target stimulus was absent. The
participants were instructed to maintain fixation on a bullseye
at the center of the monitor and report via button press if they
perceived the target stimulus, along with their confidence level
regarding the same (i.e., “sure yes,” “sure no,” “maybe yes,” or
“maybe no”). The experiment was composed of a calibration
block followed by four main blocks of 43 trials each. In the
calibration experiment, the contrast threshold of the target
stimulus was estimated using a staircase method. The target
contrast in the main experiment was fixed at the threshold level

{32.2± 8.8% [standard error (SE)]}. The gaze position, velocity,
instantaneous acceleration, and pupil size of both eyes were
monitored during the task.

Behavioral responses

Figure 2 illustrates the response distributions for the catch
trials and those in which a target stimulus was presented in the
positions of interest and in any other position, respectively. In
the catch trials, no participant reported seeing a target in more
than five out of 36 trials, ensuring their proper engagement
in the task. The target stimulus was reported to be visible in
the top-left position in 51.6% of the trials, while it was visible
in the bottom-right position in 66.3% of the trials. Although
the number of visible and invisible stimulus trials was not
fully balanced, in the main analysis, we did not equate the
number of trials by resampling because such an imbalance might
reveal information about perceptual decisions. We calculated
the accuracy and area under the receiver operating characteristic
(ROC) curve (AUC), which is suitable for unbalanced data. We
did not use eye movement directions as inputs for the decoder
so that the difference in the hit rates across positions would not
bias the decision boundary of the decoder.

Figure 3 displays the transitions of the microsaccades
and pupil size over time, each combined with the stimulus
conditions (panels A and B) and the response conditions (panels
C and D). The count of the trials with microsaccades fluctuated,
and the pupil size, z-transformed within each participant,
increased rapidly during the target presentation, which could be
associated with the phasic locus coeruleus activity (Reimer et al.,

FIGURE 1

Time course of visual stimuli. The adaptation stimulus, composed of eight drifting Gabor patches, was presented for 60 s (the first trial) or 6 s (all
other trials). After an inter-stimulus interval of 0.5 s, a target stimulus was presented in 80% of the trials for 1 s (either at the top-left or
bottom-right positions in 65% of the trials, and at the other positions in 15%). In the remaining 20% of the trials, the target was absent. When a
target was presented, its contrast was filtered with a temporal Gaussian window to reach its maximum value 0.5 s after the onset. The maximum
contrast in the main experiment was determined in a calibration experiment using a staircase method. Finally, after a pause of 0.5 s, the
response key assignment was displayed until the participant responded.
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FIGURE 2

Behavioral responses. Trial count for each behavioral response in 36 catch trials, 56 trials in which the target stimulus was presented at the top
left and the bottom right, respectively, and the remaining 24 trials, in which the target stimulus was presented at any other position. The
adjacent bars correspond to average and individual responses, respectively (N = 7).

FIGURE 3

Microsaccades and pupil size over time. The average count of trials with microsaccades detected (see “Materials and methods”) is shown for
stimulus conditions [“catch,” “top left,” “bottom right,” and “any other position”; (A)] and for response conditions [“sure yes,” “maybe yes,” “maybe
no,” and “sure no”; (C)], respectively. The average pupil size is shown for different stimulus (B) and response (D) conditions, respectively. The
time points consist of the adaptation, inter-stimulus interval (ISI), and target periods. The shaded areas represent ± 1 SE across all participants.
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2016; Breton-Provencher and Sur, 2019; Joshi and Gold, 2020).
More specifically, for the “sure no” response condition, the
microsaccades tended to burst intermittently, and the pupil size
was seemingly reduced during the late phase of the adaptation,
although the changes were not very large. Next, we took a
machine learning approach to determine the possible links
between perceptual decisions and the features derived from
microsaccades and pupil size.

Prediction of perceptual decisions
from eye features

For each trial, the recorded eye movement and pupil size
data were divided into the adaptation, ISI, and target periods.
The means of the microsaccade rate and the pupil size were
calculated for each period. The resulting six features (three time
periods multiplied by two averaged eye behaviors) were sent to a
sparse logistic regression classifier (Freedman, 2009) to decode
the perceptual decisions about target presence. As vaguely
suggested by the transitions of the microsaccades and pupil
size over time (Figure 3), the peripheral responses during the
periods of the adaptation and the ISI may possibly provide some
information for decoding the subsequent perceptual decisions
via changes in the degree of adaptation, prior expectation
(e.g., Denison et al., 2011; Balcetis et al., 2012; Koizumi et al.,
2019), and even internal states such as arousal and fatigue (e.g.,
Sheth and Pham, 2008; Lambourne and Tomporowski, 2010).
Decoding was performed separately for each participant, and
10 × 10-fold stratified cross-validation (sCV) was performed.
Accuracy and AUC were computed over the 100 folds to
estimate the decoding performance. The sparsing parameter of
the coefficient matrix was optimized to maximize AUC using
a grid search. The statistical significance against the chance
level was evaluated using a permutation test, in which the
corresponding null distribution was estimated by permuting the
labels in the data.

We successfully decoded the perceptual decisions
about the target presence shown either at the top-left or
bottom-right positions significantly above chance level,
supported by BF10 indicating moderate evidence regarding
AUC (accuracy = 0.63 ± 0.03, p = 0.003, BF10 = 9.54,
AUC = 0.56 ± 0.02, p < 0.001, BF10 = 3.23, Figure 4A).
The imbalance between two classes might affect the decoding
accuracy; but the AUC, which is robust against response biases,
was significantly higher than chance. Furthermore, even if
the number of trials was equated by randomly resampling
the visible trials, the AUC was significantly higher than
chance (0.60 ± 0.01, p < 0.001, BF10 = 131.77). We also
performed the perceptual-decision decoding separately for
each of the two target positions (Figure 4B) and observed that
the performance averaged across the two positions was also
significantly above chance (accuracy = 0.64 ± 0.03, p = 0.04,

BF10 = 8.21, AUC = 0.56 ± 0.02, p < 0.001, BF10 = 2.09) and
was very similar to the decoder constructed from the data of
both stimulus positions [t(6) = −0.26, p = 0.80, BF10 = 0.38
for accuracy and t(6) = 0.46, p = 0.66, BF10 = 0.79 for AUC].
The decoding performance was even higher when only the
position with the best decoding performance was considered
for each participant (accuracy = 0.68 ± 0.03, p = 0.02,
BF10 = 18.20, AUC = 0.62 ± 0.03, p < 0.001, BF10 = 5.67,
Figure 4C). Choosing the best position for each participant can
be advantageous for achieving better decoding accuracy during
future use of our method in neuroimaging experiments.

To understand which of the six features are critical
for perceptual-decision decoding, we looked at the weights
attributed to each feature by the decoders. Figure 5 shows
the weights of each participant and their average. We found
that all of the weights averaged across participants (lower-
right panel) were not significantly different from 0, with BF10

values indicating anecdotal evidence or even weak support for
the null hypothesis (BF10 = 0.38, BF10 = 0.54, BF10 = 0.62,
BF10 = 2.34, BF10 = 0.39, BF10 = 0.48 for the microsaccade
rate during the adaptation, ISI, and target periods and for
the pupil size during the adaptation, ISI, and target periods,
respectively). These results indicate that the feature weights were
inconsistent across participants. In other words, the perceptual
decision about target presence was not associated with a
specific type of eye movement. For example, more frequent
microsaccades occurring during the adaptation period were
associated with the “yes” responses (positive weights indicated
by a reddish color in Figure 5) for some participants (e.g.,
MA, TY, and FU), possibly due to less adaptation originating
from unstable fixation. However, this was not the case for the
other participants. Additionally, a larger pupil size during the
target period was associated with a “yes” response for some
participants (OI, OK, SD, TY), possibly due to their greater
attention (Hoeks and Levelt, 1993), although this was not the
case for the other participants. We note that it is unlikely
that the decoder was merely reflecting random noise in the
eye movements because a permutation test on the averaged
decoding accuracy indicated that the accuracy was indeed highly
significant relative to chance. Instead, one interesting reason
for the inconsistency of the feature weights (and sparsing
parameters) across participants, though speculative, could be
that the perceptual states were determined by combinations
of several factors, such as degree of adaptation, attention,
and alertness, interacting with each other in a state-dependent
manner, resulting in different balances of the feature weights
across participants.

Regarding the relation between the microsaccade rate
and pupil size, their feature weights did not correlate
across participants during the adaptation and target periods
(Pearson’s r = −0.42, BF10 = 0.68 and Pearson’s r = −0.15,
BF10 = 0.48, respectively) while they correlated only during the
ISI period (Pearson’s r = −0.87, BF10 = 6.44). These results
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FIGURE 4

Average decoding accuracy and area under the receiver operating characteristic curve (AUC). Averaged accuracy across participants of (A) the
perceptual-decision (“yes” vs. “no”) decoding calculated using both positions of interest (N = 7), (B) that calculated separately for the two
positions of interest and then averaged (N = 7), (C) that for the best position when the trials were separated based on the target position (N = 7,
top left for three participants and bottom right for four participants), and (D) confidence (“sure” vs. “maybe”) decoding (N = 6). The dashed red
lines represent a significance level of 0.05 based on the permutation test, while the dashed black lines represent 0.5.

indicate partly similar but mostly distinct contributions of
microsaccades and pupil size.

Although we did not use blinking as a feature for decoding,
it is possible that blink frequency, during which the pupil data
were linearly interpolated, is at least partly related to perceptual
decisions. To test this possibility, we examined whether the
total blink duration in each trial differed by its label (yes/no).
However, we found no difference in blink duration between
the “yes” and “no” trials [0.24 ± 0.07 s for the “yes” trials and
0.23± 0.07 s for the “no” trials, t(6) = 0.71, p = 0.50, BF10 = 0.43],
suggesting that the blink rate had little effect on the decoding.

It is also possible that the decoding performance depends
on occasional gaze movements away from the fixation location,
as such gaze movements would weaken retinotopic adaptation

and might be related to the occurrences of microsaccades.
To test this possibility, we identified trials that included any
time points with gazes of more than 0.8 deg away from the
fixation location, estimated by linear interpolation throughout
the adaptation, ISI, and target periods, and distinguished 25%
(SD = 20%) of the trials in total. Even after excluding these trials,
perceptual decisions about the target presence shown either at
the top-left or bottom-right positions were decoded significantly
above chance level, supported by BF10 indicating moderate
evidence regarding the AUC (accuracy = 0.66± 0.03, p < 0.001,
BF10 = 13.50, AUC = 0.61± 0.03, p < 0.001, BF10 = 6.12).

Finally, a perceptual-decision decoder was trained with the
data from all the participants together to test whether the
decoder could detect a latent pattern that was common across
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FIGURE 5

Weights assigned by the perceptual-decision decoder. Representation of decoder weights from every participant attributed to the mean
microsaccade rate (SacRate) and the mean pupil size (Pupil) during the adaptation (Adapt), inter-stimulus interval (ISI), and target (Target)
periods, respectively. For visualization purposes, the color scale was bounded between –2 and 2, but some weights were outside this range.

the participants. This decoder was not better than the chance
level (accuracy = 0.56, p = 0.98, AUC = 0.50, p = 0.68) and
was outperformed by the individual decoders, again supporting
the idea that the features that are useful for perceptual-decision
decoding vary across participants.

Prediction of perceptual confidence
from eye features

We applied the same decoding method to predict the
reported confidence level (sure/maybe) (Figure 4D). The
decoding accuracy of the confidence level was computed using
visible-only trials, invisible-only trials, or both visible and
invisible trials to investigate whether the decision boundary
between the low and high levels of confidence is dependent
on perceptual decisions about target presence. One out of the
seven participants who reported “maybe” in only one trial
was removed from the analysis. The results show that the

confidence level can be decoded significantly above chance level
using the permutation test but with BF10 indicating anecdotal
evidence regarding AUC (accuracy = 0.73 ± 0.03, p = 0.008,
BF10 = 14.44, AUC = 0.56 ± 0.03, p < 0.001, BF10 = 1.04).
When the visible and invisible trials were analyzed separately,
the decoding performance was found to be significant for the
visible trials (accuracy = 0.72 ± 0.05, p < 0.001, BF10 = 4.80,
AUC = 0.65 ± 0.05, p < 0.001, BF10 = 1.84) but not for the
invisible trials (accuracy = 0.68 ± 0.04, p = 0.11, BF10 = 1.58,
AUC = 0.53 ± 0.01, p = 0.20, BF10 = 0.67). As suggested by the
BF10 values for AUC, the feasibility of the confidence decoding
would not be very high.

The feature weights for confidence were not consistent
across participants (Figure 6), and none of the weights were
significantly different from 0 (BF10 = 0.58, BF10 = 0.54,
BF10 = 0.53, BF10 = 0.83, BF10 = 1.47, BF10 = 1.89 for the
microsaccade rate during the adaptation, ISI, and target periods
and for the pupil size during the adaptation, ISI, and target
periods, respectively). For example, a larger pupil size during the
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FIGURE 6

Weights of the perceptual-confidence decoder. Representation of decoder weights from every participant attributed to the mean microsaccade
rate (SacRate) and the mean pupil size (Pupil) during the adaptation (Adapt), inter-stimulus interval (ISI), and target (Target) periods, respectively.
For visualization purposes, the color scale was bounded between –2 and 2, but some weights were outside this range.

ISI was associated with a “sure” response for some participants
(OI, OK, SD, TY), possibly due to a higher amplitude of
attention (Hoeks and Levelt, 1993), although this was not the
case for the other participants.

When we compared the feature weights between the
perceptual-decision decoding and the confidence decoding,
the weight maps did not seem to overlap. On average,
the correlation between the feature weights of the yes/no
decoding and the confidence decoding was very low (Pearson’s
r = 0.06 ± 0.27). This supports the dissociation of the
mechanisms supporting Type 1 and Type 2 judgments, as has
been suggested by recent neuroimaging data (Cortese et al.,
2016; Peters et al., 2017).

Discussion

In this experiment, eye movements and pupil sizes were
recorded while participants performed a perceptual-decision

task associated with the existence of the target stimulus in AIB.
A sparse logistic regression classifier was trained on the features
extracted from the microsaccade rate and pupil size data to
verify whether they could be used to predict the subjective
experience of the target stimulus on a trial-by-trial basis.

The decoding performance metrics, such as accuracy and
AUC, suggested that it was possible to predict perceptual
decisions about target presence at above chance level from
the microsaccade rate and pupil size. The peripheral responses
might be the trace of the neural processes that lead to the
decisions or simply the result of the perceptual decisions.
Although the present study is not designed to elucidate
the causal links between perceptual decisions and peripheral
responses, this could be tackled in future experiments by
combining the current paradigm with the manipulation of
peripheral responses possibly via biological feedback.

The moderate level of decoding accuracy can be partly
explained by the fact that we used very weak visual stimuli
to roughly equate the number of visible and invisible trials
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to build a decoder. Another possibility is that the perceptual-
decision decoding for oblique target positions was more difficult
than that for cardinal positions due to less typical oblique
eye movements (e.g., microsaccades in oblique directions
are relatively rare; Engbert, 2006). In future applications of
this decoder in neuroimaging experiments, one may further
optimize the predictability of perceptual decisions by selecting
the target position that yielded a better decoding performance
for each participant. The decoding was performed with the
eye features simply averaged in each of the three periods to
avoid overfitting due to a large number of interval parameters;
however, using more finely grained intervals may also improve
predictability partly because microsaccades and pupil size
may be more informative at some time points than others
(Strauch et al., 2021).

Interestingly, we found that the weight patterns were not
consistent across participants (Figure 5), which explains why
decoding performance decreased when all the participants’ data
were merged to build a unitary classifier. Such an idiosyncrasy
could be rather advantageous for future applications in
neuroimaging experiments. Indeed, if the decoders are based
on the peripheral responses in a consistent manner across
participants, the NCC identified using a no-report paradigm
might also reflect the neural responses related to the common
peripheral responses. For example, if the “yes” trials are
associated with more frequent microsaccades, the difference
between the “yes” and “no” trials might include not only the
neural responses that reflect the perceptual decisions but also
those related to the microsaccades. However, we found that the
decoder of each participant is based on different features of the
microsaccade rate and pupil size (Figure 5). Therefore, if we
average the difference in the neural responses between the “yes”
and “no” trials across participants, the responses related to eye
movements will be canceled out, and the average difference will
mostly reflect the pure NCC.

Recent studies have already reported successful task-set
decoding based on eye movements: A Naïve Bayes classifier
with simple statistical features of eye fixation and saccades was
able to recognize whether the participants were performing a
picture memorization, searching, pseudo-reading, or reading
task (Henderson et al., 2013). In a related study, the saccade
amplitude and fixation features were measured in three different
scene-viewing tasks (memorization, searching, or aesthetic
preference; Kardan et al., 2015). While these procedures are
highly useful, our current procedure should further advance
the potential use of eye movements in neuroscience studies by
enabling the trial-by-trial assessments of visual awareness for
stationary targets in addition to moving targets (Frässle et al.,
2014; Kapoor et al., 2022).

Since our decoder does not have perfect accuracy, in the
context of a neuroimaging experiment, the inaccurately decoded
trials could affect the average neural response of the perceptual
decisions classes. As a result, the signal-to-noise ratio, namely

the difference in the average neural response between the
decisions, will be smaller in the current no-report paradigm
than in a conventional report paradigm. To compensate for
such a relatively low signal-to-noise ratio, the number of trials
can be increased or the decoding accuracy can be improved by
including other physiological responses, such as heartbeat rate
and skin conductance response.

One concern associated with the use of this decoder in a
neuroimaging experiment is that reporting itself might affect eye
movements. That is, eye movements may change depending on
whether the participants are required to report their percepts.
In such cases, the accuracy of the decoder could drop during
an applied neuroimaging session where participants do not
engage in reporting. One way to validate whether the decoder
is achieving sufficient accuracy during the neuroimaging session
under the no-report paradigm is to compare the difference in
the neural responses between the visible and invisible trials in
both report and no-report paradigms. If the activation difference
in the no-report paradigm is a subregion of that in the report
paradigm (Frässle et al., 2014), we can claim that the decoder
is reliable. In any case, a combination of report and no-report
paradigms will be helpful for finding the true NCC (Tsuchiya
et al., 2015) in future studies (e.g., Kapoor et al., 2022).

In the current study, we succeeded in inferring perceptual
decisions during AIB by building sparse logistic regression
classifiers based on microsaccade rate and pupil size. The
important features for the decoder were not consistent
across participants, which is advantageous in neuroimaging
experiments because the neural response differences are
not contaminated by the differences in eye movements.
Nevertheless, the limitations of this study include the fact
that the decoding accuracy was only moderately high and
that the number of participants was limited; however, our
decoding method is a valuable starting point for the design
of a no-report paradigm for isolating the neural activities that
facilitate perceptual awareness per se. Although we tested this
method with AIB because of the advantages mentioned in the
“Introduction” section, we believe it can be easily adapted to a
variety of situations, such as binocular rivalry, bistable figures,
or near-threshold stimuli. Certain critical points, including the
generalization of the decoder across different recording sessions,
should be addressed in future studies before using this decoder
to identify the NCC in the no-report paradigm.

Materials and methods

Participants

Ten participants (three females) with normal or corrected-
to-normal vision volunteered to take part in the experiment.
Three participants were removed from the analysis because
there were too many blink periods to reliably detect the
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microsaccade rate and pupil size (see below). All participants
provided written informed consent to participate in this study,
which was conducted in accordance with the ethical standards
stated in the Declaration of Helsinki (2003) and approved by the
local ethics and safety committees at the Center for Information
and Neural Networks (CiNet), National Institute of Information
and Communications Technology.

Apparatus

The experiment was conducted in a dark room. A headrest
was placed 50 cm away from the screen that displayed the visual
stimuli to restrain head movements. As a result, the screen
area was 40 deg in width and 30 deg in height with respect to
the visual angle. The gaze position, eye velocity, acceleration,
and pupil size of both eyes were recorded at a frequency of
500 Hz during the experiment using Eyelink 1000 (SR Research)
placed 40 cm away from the participants. The display of the
stimulus and control of the eye tracker were implemented using
MATLAB Psychtoolbox (Brainard, 1997; Kleiner et al., 2007)
and Eyelink Toolbox (Cornelissen et al., 2002).

Stimulus and task

The recording session was divided into different blocks as
described in the following “Procedure” section of the “Materials
and methods.” In the first trial of each block, an adaptation
stimulus was presented for 60 s. After an inter-stimulus interval
of 0.5 s, the target stimulus was presented for 1 s (target
period). Then, the response screen showing the key assignments
was displayed until the participant pressed a button. In the
subsequent trials, the adaptation stimulus was presented for only
6 s (adaptation period). An example of a trial timeline is shown
in Figure 1.

The adaptation stimulus was composed of eight drifting
Gabor patches; their centers were evenly spaced on a circle with
a radius of 12.4 deg, each of which was on the cardinal and
diagonal axes, respectively. Each grating contrast was filtered
through a Gaussian envelope with standard deviation of 0.8
deg. During the adaptation period, the spatial phase of a
flickering sinusoidal grating changed with a triangular wave. The
spatial and flickering frequencies were 1.6 cycle/deg and 9.2 Hz,
respectively. The fundamental frequency of the triangular wave
was 0.83 Hz, which yielded grating drifting at 0.52 deg/s. The
contrast of the sinusoidal grating was set to 200%; further, the
luminance values smaller than 0 were set to be 0, while those
larger than 255 were set to be 255. The four gratings on the
horizontal and vertical axes moved in the opposite direction of
the four gratings on the diagonals.

The target stimulus consisted of a static Gabor patch
in which the contrast slowly increased and then decreased

with a temporal Gaussian (SD = 166 ms) function. The
peak contrast of the target stimulus was determined during
a calibration experiment (see the “Procedure” section). If the
target location is predictable, participants will pay attention
to the target stimulus, which makes it difficult to make the
target invisible. To make the prediction of the target location
difficult, the target stimulus was presented in one of the
eight locations where the adaptation stimulus was presented.
In a pilot study where the target contrast was kept constant
across all positions at around a threshold level, the reported
visibility was not consistent across positions (e.g., 70% visible
in one position, and 30% visible in another position). Because
the visible and invisible responses appeared to have almost
equal probability at the top-left and bottom-right positions
consistently across participants in the pilot study, the target
stimulus was presented at these positions (positions of interest)
in 65% of the trials and at other locations in 15% of the trials
in the main experiment. The remaining 20% of the trials were
catch trials, where the target stimulus was absent. Although
it was ideal to present stimuli in eight locations with equal
probability, we presented the target more frequently at the two
positions of interest to obtain enough data for training the
decoders.

The participants were instructed to maintain fixation on
a bullseye at the center of the screen and report if they saw
the stimulus, along with their confidence level (“sure yes,”
“sure no,” “maybe yes,” or “maybe no”) by pressing a button.
They were asked to distribute their responses between the
two levels of confidence. The key response assignments were
displayed 0.5 s after the end of the target presentation around
the fixation point in a 2 × 2 pattern (Figure 1). Four different
colors (proximal to red, green, yellow, and purple) appeared
in the quadrants around the fixation point to help participants
recognize the locations of the assigned keys with the same color
labels. The answers in the same row shared the same perceptual
decision (“yes” or “no”), while those in the same column shared
the same confidence level (“sure” or “maybe”). There were
four possible arrangements, and these were used in a random
order for each block.

Procedure

The experiment was divided into two parts: the calibration
and the main experiment. In the calibration part, the contrast
threshold of the target stimulus (peak of the temporal Gaussian)
was determined using a fixed-step staircase method (one up and
one down rule, 0.05 log unit steps). Calibration was stopped after
15 inversions of the staircase or 65 trials. The contrast threshold
was defined by the average of all the reversal values except the
first two, which can bias the estimate (García-Pérez, 1998). Only
responses to the positions of interest were taken into account
during the calibration.
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In the main part of the experiment, the target stimulus
contrast was fixed at the threshold estimated during calibration.
The main experiment consisted of four blocks of 43 trials.
Between each block, the participants could rest if they wanted.
The key assignment for the behavioral response was fixed within
each block, and all participants went through every four-key
arrangement in a random order. Because the decoders were
built from the data across all four blocks with different key
assignments, they were insensitive to a specific key assignment
for the combination of perceptual decisions and confidence
ratings. The calibration of the eye-tracker was conducted
before each block.

Preprocessing

To assess the quality of the recordings, the blink events
contaminating the data were identified. These events were
defined as the periods from 200 ms before to 200 ms after the
time point when the pupil size measurements for both eyes
were missing. Partial blink events, where the pupil was not fully
occluded, were identified as the period from 200 ms before to
200 ms after the time point when the pupil size varied more
than 20 arbitrary units per sample (approximately 0.5 mm2;
Troncoso et al., 2008).

The pupil size at each time point was calculated in the
following way: If the pupil size for both eyes was available,
they were averaged. If the pupil size data from only one
eye were available, they were used directly as the pupil size
measure. Finally, if no pupil data were available, they were
estimated by linear interpolation. Three participants were
removed from the experiment because more than 45% of their
data were interpolated (Smallwood et al., 2011); thus, their pupil
size estimation was not very reliable, and the microsaccade
data were missing for this period. Finally, the data from
the remaining seven participants were filtered by a low-pass
filter (10 Hz cutoff), and the pupil size was z-transformed
within participants over the adaptation, ISI, and target periods
(Smallwood et al., 2011).

Microsaccade detection was performed using an
unsupervised clustering method, which has been fully
described in a previous study (Otero-Millan et al., 2014).
Briefly, for each eye, velocity was computed from the horizontal
and vertical instantaneous eye velocity v =

√
v2

x + v2
y and

averaged for the two eyes, and acceleration was processed
similarly. The microsaccade instances were identified by
selecting the six highest velocity peaks per second to include
all the true microsaccades. The maximum velocity peak,
initial acceleration, and final acceleration of each candidate
were extracted and z-transformed across the microsaccade
instances. A principal component analysis was performed,
and the components with eigenvalues larger than 5% of the
maximum were kept. Next, K-mean clustering (K = 2) was
applied to separate the noise from the microsaccades. The

cluster with the largest average peak velocity was identified
as the cluster of microsaccades. Finally, we checked whether
the microsaccades satisfied the following conditions: a
minimum duration of 8 ms (Leopold and Logothetis,
1998), amplitude between 10 and 120 min of arc, and
mean velocity between 3 deg/s and 120 deg/s (Martinez-
Conde et al., 2004). As a quality check, the correlation
coefficient between the peak velocity and the amplitude of
the microsaccades was computed. A correlation of higher
than 0.6 was found for every participant, which satisfied
the “main sequence” criterion (Zuber et al., 1965). The
microsaccade rate was defined by the number of detected
microsaccades divided by the duration of each period
(adaptation, ISI, and target). All the preprocessing procedures
were implemented in Python 2.

Perceptual-decision decoding

To test whether the perceptual decisions regarding target
presence can be determined from the extracted features, a sparse
logistic regression decoder was trained for each participant.

The decoding was performed using data from the two
target positions of interest (56 trials per position). From each
trial, six features were extracted corresponding to the mean
of the microsaccade rate and the pupil size calculated for
each period of the trial (the adaptation, inter-stimulus interval,
and target period).

Given the small number of trials per participant, the
decoding performance was estimated using a 10-fold stratified
cross-validation (sCV). The data were standardized, and the
reported decision (“yes” vs. “no”) of the test fold was decoded.
Automatic pruning of the decoder weights was performed with
L1-regularization. The sparsing parameter (C) was optimized
using a grid search (31 values between 1 and 103 that are
evenly spaced on a logarithmic scale). In our case, a small
value of C resulted in a sparser weights matrix. The decoding
performance was assessed by computing the accuracy and the
AUC over the 100 folds.

For the statistical analysis, we performed decoding
assessments with 1,000 permutations of the dataset. For each
permutation, the decoding accuracy for each participant was
calculated after the trials corresponding to a “yes” response
were selected randomly, and the accuracy was averaged across
participants. The statistical significance against the chance level
was evaluated by comparing the original averaged decoding
accuracy with the permutation distribution of the averaged
decoding accuracy.

For the corroborating analysis, we also tested the null
hypotheses that accuracy, AUC, and weight are not different
from the chance levels, with the Bayesian paired samples
t-test provided in the JASP statistical software (JASP Team,
2019). BF10 is the ratio of the likelihood of the data
under the alternative hypothesis divided by that under the
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null hypothesis. Values larger than 1 indicate that the data
favor the alternative hypothesis over the null hypothesis (1–3:
anecdotal, 3–10: moderate, over 10: strong evidence in support
of the alternative hypothesis), while values smaller than 1
indicate the opposite (e.g., Wagenmakers et al., 2016).

For the decoding using the data from all the participants,
we used all four-block data (including all four-key assignments)
of six participants as a training set and all four-block data of
one other participant as a test set, which were repeated for all
seven combinations.

All the machine learning computations were carried out in
Python using the scikit-learn module (Pedregosa et al., 2011).

Confidence decoding

We also built the confidence decoder. The procedure was
the same as the perceptual-decision decoder, except that the
label to be classified was a confidence rating (low vs. high). The
confidence decoding was performed for the only “yes” trials,
only “no” trials, and both “yes” and “no” trials. The statistical
significance was evaluated by the permutation test and the
Bayesian paired samples t-test, which were also used for the
perceptual-decision decoding.
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