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Abstract

Background: Calorie restriction (CR) is one of the most conserved non-genetic interventions that extends
healthspan in evolutionarily distant species, ranging from yeast to mammals. The target of rapamycin (TOR) has been
shown to play a key role in mediating healthspan extension in response to CR by integrating different signals that
monitor nutrient-availability and orchestrating various components of cellular machinery in response. Both genetic
and pharmacological interventions that inhibit the TOR pathway exhibit a similar phenotype, which is not further
amplified by CR.

Results: In this paper, we present the first comprehensive, computationally derived map of TOR downstream
effectors, with the objective of discovering key lifespan mediators, their crosstalk, and high-level organization. We
adopt a systematic approach for tracing information flow from the TOR complex and use it to identify relevant
signaling elements. By constructing a high-level functional map of TOR downstream effectors, we show that our
approach is not only capable of recapturing previously known pathways, but also suggests potential targets for future
studies.
Information flow scores provide an aggregate ranking of relevance of proteins with respect to the TOR signaling
pathway. These rankings must be normalized for degree bias, appropriately interpreted, and mapped to associated
roles in pathways. We propose a novel statistical framework for integrating information flow scores, the set of
differentially expressed genes in response to rapamycin treatment, and the transcriptional regulatory network. We use
this framework to identify the most relevant transcription factors in mediating the observed transcriptional response,
and to construct the effective response network of the TOR pathway. This network is hypothesized to mediate life-span
extension in response to TOR inhibition.

Conclusions: Our approach, unlike experimental methods, is not limited to specific aspects of cellular response.
Rather, it predicts transcriptional changes and post-translational modifications in response to TOR inhibition. The
constructed effective response network greatly enhances understanding of the mechanisms underlying the aging
process and helps in identifying new targets for further investigation of anti-aging regimes. It also allows us to identify
potential network biomarkers for diagnosis and prognosis of age-related pathologies.
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Background
Cellular aging is a multi-factorial complex phenotype,
characterized by the accumulation of damaged cellular
components over the organism’s life-span [1]. The pro-
gression of aging depends on both the increasing rate of
damage to DNA, RNA, proteins, and cellular organelles,
as well as the gradual decline of cellular defense mecha-
nisms against stress. This can ultimately lead to a dysfunc-
tional cell with a higher risk factor for disease.
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Limiting caloric intake without causing malnutrition,
also known as calorie restriction (CR), is one of the
most conserved non-genetic interventions, which extends
life-span in evolutionarily distant species ranging from
yeast to mammals [1-3]. Inhibition of the nutrient-sensing
pathways, using either genetic or pharmacological inter-
vention, also results in a similar phenotype [1,2]. More
importantly, increased lifespan is accompanied by an
increased healthspan, which delays both the progression
and the increasing risk-factor for a wide range of age-
related diseases, including cancers [4-7], cardiovascular
disease [8-11], and multiple neurodegenerative disorders
[12-17]. The extent to which these pathologies share

© 2013 Mohammadi et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.



Mohammadi et al. BMC Systems Biology 2013, 7:84 Page 2 of 17
http://www.biomedcentral.com/1752-0509/7/84

their underlying biology is a topic of active investiga-
tion. Emerging evidence, however, supports the hypoth-
esis that large classes of age-related diseases are driven
by similar underlying mechanisms [18]. Understanding
and controlling these mechanisms, therefore, constitute
critical aspects of preventing or delaying the onset of
age-related pathologies. Motivated by these observations,
considerable effort has been invested in understanding the
downstream effectors of the nutrient-sensing pathways
that orchestrate CR-mediated life-span extension.

The budding yeast, Saccharomyces cerevisiae, has been
used extensively as a model organism in aging research,
due to its rapid growth and ease of manipulation [3,19].
Having two different aging paradigms – replicative life-
span (RLS), defined as “the number of buds a mother
cell can produce before senescence occurs”, and chrono-
logical life-span (CLS), defined as “the duration of viabil-
ity after entering the stationary-phase”, yeast provides a
unique opportunity for modeling both proliferating and
post-mitotic cells. Understanding the underlying mecha-
nisms driving RLS and CLS can ultimately be used to shed
light on the progression of cancers and neurodegenerative
diseases, respectively.

Yeast cells are typically cultured in growth media con-
taining 2% glucose. Reducing glucose concentration to
0.5% or less is one of the best characterized CR regi-
mens in yeast, which increases both CLS and RLS [20-22].
The target of rapamycin (TOR) has been shown to play
a key role in mediating the observed life-span exten-
sion in response to CR [23]. TOR is a serine/threonine
protein kinase, which belongs to the conserved family
of PI3K-related kinases (PIKKs). It was first identified
using genetic studies in yeast while searching for mutants
that confer rapamycin-resistance [24]. It was later discov-
ered that TOR protein kinases, encoded by TOR1 and
TOR2 genes in yeast, form two structurally and func-
tionally distinct multiprotein complexes [25-28]. TOR
Complex 1 (TORC1) is rapamycin-sensitive and con-
sists of both TOR proteins, TOR1 and TOR2, together
with KOG1, LST8, and TCO89. On the other hand,
TOR Complex 2 (TORC2) does not contain TOR1, is
not inhibited by rapamycin, and contains AVO1, AVO2,
AVO3, LST8, BIT2, and BIT61. These two complexes
correspond to two separate branches of the TOR sig-
naling network, controlling the spatial and temporal
aspects of cell growth, respectively, which are conserved
from yeast to humans [28]. Interestingly, TORC1 also
has a critical role in aging and age-related patholo-
gies [29,30]. Many of the known oncoproteins act as
upstream activators of TORC1, while several tumor
suppressor proteins inhibit its activity [31,32]. From a
systems point of view, TORC1 acts as a hub that inte-
grates various nutrient and stress-related signals and

regulates a variety of cellular responses [33-35]. Inhibit-
ing TOR signaling using rapamycin provides a unique
opportunity to identify its downstream effectors. How-
ever, these targets may be regulated in different ways,
including, but not limited to, transcription regulation,
translational control, and post-translational modifica-
tions. Capturing various changes that happen during
rapamycin treatment, in order to create a comprehen-
sive systems view of the cellular response, is a complex
task.

In this paper, we propose a complementary, compu-
tational approach to reconstruct a comprehensive map
of TOR downstream effectors. We develop a systematic
approach to couple random walk techniques with rigorous
statistical models, integrate different datasets, and iden-
tify key targets in calorie restriction that are mediated
by TOR pathway. Using GO enrichment analysis of high
scoring nodes, we show that information flow analysis
not only identifies previously known targets of TORC1,
but also predicts new functional roles for further studies.
We cross-validate our results with transcriptome profile
of yeast in response to rapamycin treatment and show
that our method can accurately predict transcriptional
changes in response to TORC1 inhibition. Information
flow scores provide an aggregate ranking of proteins, with
respect to their relevance to the TOR signaling path-
way, and are highly susceptible to degree bias. To remedy
this and to elucidate the roles of underlying signaling
elements, we propose a novel statistical framework for
integrating information flow scores, data on regulatory
relationships, and the expression profile in response to
rapamycin treatment.

Using our framework, we identify the most relevant
transcription factors and construct the effective response
network of TOR, which is responsible for the observed
transcriptional changes due to TOR inhibition. Our
approach, unlike experimental methods, is not limited to
specific aspects of cellular response. Rather, it predicts
transcriptional changes, as well as post-translational mod-
ifications in response to TOR signaling. The resulting
interaction map greatly enhances our understanding of
the mechanisms underlying the aging process and helps
identify novel targets for further investigation of anti-
aging regimes. It also reveals potential network biomark-
ers for diagnoses and prognoses of age-related pathologies
and identifies mechanisms for control of cellular aging
processes through multi-targeted and combinatorial ther-
apies [36,37].

Results and discussion
Computing information flow scores from TORC1
Given the yeast interactome, constructed using the pro-
cedure detailed in Methods Section and illustrated in
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Figure 1, we compute information flow scores using ran-
dom walks initiated at selected nodes in the interactome.
These nodes comprise members of the TORC1 complex,
each of which propagates a unit flow (normalized to 0.2
for each of the five member proteins). We use a dis-
crete random-walk process in which, at each step, every
protein aggregates incoming signals and distributes them
equally among outgoing neighbors. The final information
flow scores are computed as the steady-state distribution
of the random-walk process. One of the key parameters
in the random-walk process, which controls the depth of
propagation, is called the restart-probability. This is the
probability that a random walker continues the walk (as
opposed to teleporting to a node chosen from among a
set of preferred nodes). In order to give all nodes in the
interactome a chance of being visited, we use the relation-
ship between restart probability and the mean depth of
random-walks by setting parameter α to be equal to d

1+d ,
where d is the diameter of the interactome. For the yeast
interactome, we determine the diameter to be equal to 6
and set α = 6

7 ∼ 0.85, correspondingly (please see the
Methods section for details of information flow compu-
tations). Figure 2 illustrates the distribution of computed

information flow scores, starting from TORC1, as a func-
tion of node distance from TORC1. It is evident from the
figure that computed scores are functions of both dis-
tance from source nodes, as well as multiplicity of paths
between source and sink nodes. This can be verified from
the overlapping tails of distributions for nodes at differ-
ent distances, as well as the varied distribution of scores
among nodes at the same distance from TORC1. The final
list of computed information flow scores is available for
download as Additional file 1.

Node rankings from the random walk process are sus-
ceptible to degree-bias, favoring high-degree nodes. To
remedy this bias and to gain a detailed mechanistic under-
standing of the roles of various proteins (and associated
signaling elements), random walk methods need to be
coupled with appropriate statistical tests. A key contri-
bution of our work is the development of such a test,
which yields a fine-grained understanding of key path-
ways involved in orchestrating cellular response to TOR
inhibition. To the best of our knowledge, this work rep-
resents the first application of information flow meth-
ods for reconstructing the effective response network of
TORC1.

Figure 1 Network integration process. Example of the network integration process around Sch9p. Protein-protein interactions (PPI) and
post-translational modifications (PTM) were extracted from BioGRID dataset.
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Figure 2 Distribution of random-walk scores. Information flow versus node distance from TORC1, showing that random-walk scores are a
function of distance, as well as multiplicity of paths.

Constructing a high-level functional map of TOR
downstream effectors
TORC1 is not only regulated by the quality and the
quantity of both carbon and nitrogen sources [34,38-40],
but also by noxious stressors, such as caffeine [41,42].
In response, TORC1 coordinately orchestrates various
aspects of cellular machinery to mediate cell growth
[32,40]. This includes autophagy [43], stress response
[42,44], and protein synthesis (by regulating ribosome
biogenesis [45], translation initiation [46], and nutrient
uptake [47,48]).

In order to systematically identify the functional aspects
relevant to TOR signaling, we first rank the proteins in
the yeast interactome based on their information flow
scores from the TORC1 complex. Given this ranked list,
we aim to identify functional terms that are highly over-
represented among top-ranked proteins. Gene Ontology
(GO) [49] enrichment analysis has been used extensively
for this purpose. We employ GOrilla [50] to find the
optimal cut for each GO term, together with its exact min-
imum hypergeometric (mHG) p-value. Next, we enforce
a threshold of p-value ≤ 10−3 to identify the signifi-
cant terms. The complete list of enriched terms for each
branch of GO is available for download as Additional
files 2.

GO provides a hierarchical vocabulary to annotate bio-
logical processes (BP), molecular functions (MF), and
cellular components (CC). This hierarchical structure,

represented using a directed acyclic graph (DAG), intro-
duces an inherent dependency among the significant
terms identified by GO enrichment analysis. Furthermore,
seemingly independent terms under different branches of
GO may be used to annotate the same set of genes. To
provide a compact, non-redundant representation of the
significant terms in our experiment, we follow a two-step
process. First, we extract the subset of enriched terms
that are marked by the Saccharomyces Genome Database
(SGD) [51] as GO slim. Yeast GO slim is a compact sub-
set of the entire GO, selected by SGD curators, which is
necessary and sufficient to describe different aspects of
yeast cellular biology. Next, we use EnrichmentMap (EM)
[52], a recent Cytoscape [53] plugin, to construct the net-
work (map) of the enriched terms. In this network, unlike
the original interactome, each node represents a signifi-
cant GO slim term and each weighted edge indicates the
extent of overlap between genesets of their correspond-
ing terms. We use a custom visualization style to illustrate
various network properties. GO terms under BP, MF, and
CC branches are color-coded red, green, and blue, respec-
tively. The p-value of each term determines the opacity
of both the node and its label; the bolder a term appears,
the more significant its enrichment score. Finally, the total
number of enriched genes for each GO term is shown
using the size of the corresponding node. The final map,
which is shown in Figure 3, is available for download as
Additional file 3. This map provides unique opportunities
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for studying TOR-dependent terms visually, since terms
(nodes) representing relevant sets of genes tend to cluster
together in this network.

First, we note that most of the previously known tar-
gets of TORC1 are also identified by our information
flow method, as represented in the enrichment map. For
example, all terms related to ribosome biogenesis, includ-
ing relevant cellular components (such as ribosome and
nucleolus), molecular functions (such as rRNA binding
and structural constitute of ribosome), and biological pro-
cesses (such as rRNA processing and ribosomal subunit
export from nucleus), are clustered in the bottom-left
corner of the map. These terms, interestingly, are also
clustered with other terms related to protein synthesis,
such as regulation of translation, translational initiation,
and cytoplasmic translation. Furthermore, many of the
terms related to stress-response, such as response to DNA
damage stimulus and DNA repair, are clustered in the

bottom-left corner of the map. Finally, many of the terms
related to TOR signaling, nutrient uptake, and cytoskel-
eton organization are grouped on the top section of
the map.

Additionally, we observe that there are terms in this
map that have not been adequately investigated in previ-
ous efforts. For example, even though translational control
is a well-known function of TORC1, transcriptional con-
trol is less-studied. Several terms related to transcription
initiation and elongation are enriched in our analysis, as
shown on the bottom-right of the map. In order to gain a
mechanistic understanding of these terms, we project the
geneset of each term (node) back to the original network
and construct the corresponding induced subgraph in the
yeast interactome. As a case study, we extract the set of
enriched genes represented by the transcription initiation
GO term and construct its induced subgraph, which is
shown in Figure 4. Here, nodes, representing proteins, are

Figure 3 Enrichment map of yeast GO slim terms. Enriched terms are identified by mHG p-value, computed for the ranked-list of genes based on
their information flow scores. Each node represents a significant GO term and edges represent the overlap between genesets of GO terms. Terms in
different branches of GO are color-coded with red, green, and blue. Color intensity of each node represents the significance of its p-value, while the
node size illustrates the size of its geneset. Thickness of edges is related to the extent of overlap among genesets.
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grouped and annotated based on their functional role in
forming the transcription pre-initiation complex (PIC), as
well as the RNA polymerase (RNAP). The basal level of
transcription in Eukaryotic cells by RNAP needs a family
of general transcription factors (GTF), prior to the forma-
tion of PIC. The TATA-binding protein (TBP), encoded by
the Spt15 gene in yeast, is a universal GTF that is involved
in transcription by all three types of nuclear RNAP. As a
component of TFIIIB complex, it forms the PIC complex
and recruits RNAPIII to the transcriptional start site(TSS)
of tRNAs, 5S rRNA, and most snRNAs. As a part of
TFIID, it forms a complex together with TBP-associated
factors (TAF) and binds to the core promoter region of
the protein-coding genes, as well as some snRNAs. The
correct assembly of PIC, required for directing RNAPII
to the TSS, needs additional GTFs, namely TFIIA, -B, -D,
-E, -F, and TFIIH, as well as the Mediator (MED) complex.
These components are assembled in an orderly fashion
to form the PIC and mediate the transcription initiation
by RNAPII (please see Hampsey [54] and Maston et al.

Figure 4 TOR-dependent control of transcription initiation.
Induced subgraph in the yeast interactome, constructed from the
top-ranked genes in the information flow analysis that are annotated
with the transcription initiation GO term. Different functional subunits
are marked and color-coded appropriately.

[55] for a review). These complex interactions are faith-
fully reconstructed in Figure 4, which provides a more
refined understanding of transcription initiation, under
TOR control, in the yeast cells.

Comparison of predicted targets to the set of differentially
expressed genes in response to Rapamycin treatment
Rapamycin, a lipophilic macrolide originally purified as an
antifungal agent and then re-discovered as an immuno-
suppressive drug, forms a toxic complex with its intra-
cellular receptor FKBP12, encoded by the Fpr1 gene in
yeast, and directly binds to TOR in order to perform
its inhibitory action [32]. We hypothesize that if the
information flow-based method agrees with the TORC1
signaling network, it should be able to predict transcrip-
tional changes due to rapamycin treatment, which inhibits
TORC1 in vivo. To validate this hypothesis, we used a
recent mRNA expression profile of yeast in response to
rapamycin treatment [56]. We extracted the set of dif-
ferentially expressed genes, at a minimum threshold of
2-fold change, and constructed a vector of true positives
from this set by filtering out genes that do not have a
corresponding vertex in the yeast interactome. The final
dataset includes 342 repressed and 237 induced genes in
our experiment.

Using this set of true-positives, we computed the enrich-
ment plot of information flow scores by ranking all
proteins and computing the hypergeometric score as
a function of the protein rank, which is illustrated in
Figure 5. The peak of the plot, corresponding to the min-
imum hypergeometric (mHG) score, occurs at the index
l = 906 from the top, which covers approximately the
top 15% of scores. There are 181 positive genes in this
partition, from a total of 579 positives, yielding a mHG
score of 1.11 ∗ 10−22. We computed the exact p-value
corresponding to this mHG score, using the dynamic-
programming method of Eden et al. [57], resulting in the
significant enrichment p-value of 3.25 ∗ 10−19. This in
turn supports our hypothesis that the random-walk neigh-
borhood of TORC1 is highly enriched with the set of genes
that are differentially expressed in response to rapamycin
treatment.

Post-translational modifications among top-ranked
proteins: a case study on Gap1 regulation
An interesting observation from Figure 5 is that the
highest-ranked genes (approximately the top 150 genes),
marked with a red box, are not enriched in terms
of rapamycin-induced genes. This can be explained by
the fact that regulatory elements in the TOR signal-
ing pathway, including TFs, do not typically change
their expression level in response to TOR signaling.
Instead, they are targeted for post-translational modi-
fications (typically, phosphorylation). We consequently
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Figure 5 Enrichment plot for rapamycin-treatment dataset. Enrichment score as a function of the score percentage. Computations are based
on the set of differentially expressed genes in response to rapamycin treatment. The peak of plot occurs at around top 15% of scores, with the
corresponding exact p-value of 3.3*10-19.

hypothesize that the top genes should also be enriched
in terms of phosphorylation events. To further inves-
tigate this hypothesis, we focus on a case study of
Gap1 regulation, a general amino acid permease reg-
ulated by NCR. We choose Gap1 since its regula-
tory pathway, originating from TORC1, is well-studied
in literature. Moreover, data from phosphoproteomic
experiments, which measures phosphorylation events
among elements of this pathway, is readily available.
Specifically, Gap1 is positively regulated via Gln3 and
Gat1, while it is repressed by Gzf3 and Dal80 [34,40].
Interestingly, all four of these regulators are among
top-ranked transcription factors, yet none of them are dif-
ferentially expressed in response to rapamycin treatment.
Using a recent phosphoproteome of yeast in response
to rapamycin treatment [58], we validated that both
of the transcriptional activators of Gap1, namely Gln3
and Gat1, are highly phosphorylated in response to
rapamycin treatment. Moreover, Tap42-Sit4, which is the
upstream regulator of Gcn4, is indirectly regulated by
TORC1.

Figure 6 illustrates this signaling pathway, with each
element annotated using its information flow rank. All sig-
naling elements upstream of Gap1 are present among top-
ranked scores, yet none of them change their expression
levels in response to rapamycin treatment. This partially
supports our hypothesis that the top-ranked genes in the
random-walk are primarily targets of post-translational

modifications. However, a more thorough experimental
analysis of the the top-ranked proteins potentially may
reveal currently unknown mechanisms by which yeast
cells respond to TOR signaling. To this end, our com-
putational studies motivate and provide data for future
experimental investigations.

Sensitivity and specificity of information flow scores in
predicting key transcription factors
Top-ranked proteins in information flow analysis are
highly enriched in terms of differentially expressed genes
under rapamycin treatment. However, TORC1 does not
directly regulate expression of these genes. This observa-
tion raises the question: which transcription factors are
responsible and which intermediary elements are involved
in these regulations? We answer the first question here,
while deferring the latter to subsequent sections.

To find the key transcription factors that modulate
the observed transcriptional response, we use two sepa-
rate statistical predictors, one based on the information
flow scores and the other based on the set of differen-
tially expressed genes. These predictors allow us to assess
the significance of TFs with respect to their computa-
tionally computed, top-ranked and experimentally vali-
dated targets, respectively. In the first method, we call
a transcription factor relevant if a significant fraction of
its target genes are highly-ranked in information flow
method. Conversely, in the second method we define
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Figure 6 TORC1-dependent regulation of Gap1. The schematic
diagram is based on literature evidence for the known interactions.
Each node in the signaling pathway is annotated with the rank of its
information flow score from TORC1 and colored with its functional
classification. Yellow nodes represent kinase associated proteins, red
nodes are transcription factors, and blue node (Sit4) is a phosphatase.
The rest of nodes have a default color of grey. Ranking of nodes
based on their information flow scores coincides with our prior
knowledge on the structure of this pathway. Top/bottom ranked
nodes are discriminated using the computed cutoff value (l) based on
differentially expressed genes. The “?” indicates an unknown
underlying mechanism, yet to be discovered, that connects TORC1 to
the rest of transcription factors.

the relevance in terms of the portion of its differentially
expressed targets (please see Equations 6-8 for details).

We use p-value(X = kT ) and p-value(Y = kP) and
apply a cutoff value of ε = 0.01 to identify significant p-
values computed for computational and experimental pre-
dictions, respectively. At this threshold, we compute the
sensitivity and specificity of information flow methods as
0.2245 and 0.9846, respectively. The observed high speci-
ficity value suggests that if targets of a given TF are not

differentially expressed, with high probability, our compu-
tational model also reports it as a negative (it will not have
significant number of top-ranked targets). In other words,
transcription factors that are identified as significant using
information flow scores are highly precise. On the other
hand, the lower sensitivity score implies that even if a TF
has many differentially expressed targets, our computa-
tional method may miss it. From this, we can conclude
that transcription factors that have significant numbers
of top-ranked targets are high-confidence candidate(s) as
downstream effectors of TORC1. However, there are cases
where we may miss relevant transcription factors with
a significant number of differentially expressed genes by
this approach. In the next section, we propose a statisti-
cal framework to integrate information flow scores and
expression profiles to reliably identify the most relevant
subset of transcription factors that are involved in medi-
ating the transcriptional response to TOR inhibition, and
consequently construct the effective response network of
TORC1.

Identifying the most relevant transcription factors
We now seek to integrate experimental measurements
from rapamycin treatment, information flow scores, and
the transcription regulatory network into a unified frame-
work to identify the most relevant transcription factors.
To this end, we introduce the notion of relevance score.
Let random variable Z denote the number of top-ranked
positive targets, and kTP denote the number of top-ranked
positive targets of a given TF. We define the relevance
score as − log(p-value(Z = kTP)). The relevance score
assesses both positivity and rank of the targets for a
given TF (please see Equation 10 for details). Using this
approach, we identify 17 TFs with high relevance scores,
which are hypothesized to be responsible for the tran-
scriptional changes in a TORC1-dependent manner. The
complete list of computed statistics for all transcription
factors is summarized in Additional file 4.

The top five transcription factors are listed in Table 1.
Among these top-ranked, high confidence, transcrip-
tion factors, Sfp1, Gln3, and Gcn4 are well-documented
downstream effectors of TORC1 [48,59-61] (please see
Zaman et al. [34], Smets et al. [40], and Loewith and Hall
[32] for a more comprehensive review). Sfp1 is a stress-
and nutrient-sensitive regulator of cell growth, respon-
sible for mediating the expression of genes involved in
ribosome biogenesis, such as RP genes and RiBi factors
[62,63]. TORC1 mediates Sfp1-related genes by phos-
phorylating Sfp1 and regulating its nuclear localization
[59]. Gln3, a GATA-family transcription factor, positively
regulates the expression of nitrogen catabolite repres-
sion (NCR)-sensitive genes [60,64]. TORC1-dependent
regulation of Gln3 is mediated by promoting its associ-
ation with its cytoplasmic anchor protein Ure2 [32,65].
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Table 1 Top-ranked transcription factors with high
confidence scores

TF ORF TF name TF rank TF confidence

YLR403W SFP1 22 43.5048

YER040W GLN3 148 57.7734

YML007W YAP1 618 24.3672

YEL009C GCN4 638 4.822

YHR084W STE12 825 2.9668

Gcn4 is a nutrient-responsive transcription factor, which
is activated upon amino acid starvation [66]. TORC1
regulates Gcn4 by mediating its translation level in a
eIF2α-dependent manner [32]. Interestingly, Steffen et al.
[61] also proposed a critical role for Gcn4 in mediating
life-span in yeast.

However, to the best of our knowledge, Ste12 and
Yap1 have not been previously positioned downstream
of TORC1. Ste12 is best known as a downstream tar-
get of mitogen-activated protein kinase (MAPK) sig-
naling cascade and is responsible for regulating genes
involved in mating or pseudohyphal/invasive growth [67].
Rutherford et al. [68] show that over-expression of the
ammonium permease Mep2 induces the transcription of
known targets of Ste12. A more recent study by Santos
et al. [69] additionally positions TORC1 downstream of
Mep2, which, taken together with the link between Mep2-
Ste12, suggests Ste12 as a potential downstream effector
of TORC1. Yap1 is an AP-1 family transcription factor
required for inducing oxidative [70,71] and carbon [72]
stress responses, the latter is proposed to be independent
of TORC1. Additionally, Yap1 expression has been shown
to increase significantly during replicative aging [73]. It
has been suggested that spermidine, a conserved longevity
factor [74], mediates macroautophagy in a Yap1 and Gcn4
dependent manner [75]. Finally, there is a diverse set of
age-related functions associated with Yap1, many of which
are also attributed to TORC1. These observations sug-
gest Yap1 as a potential candidate downstream effector of
TORC1.

Constructing the effective response network of TORC1
To uncover the regulatory mechanisms that mediate the
response to TOR inhibition, we construct the effective
response network (ERN) of TORC1, which is illustrated
in Figure 7 and is available for download as Additional
file 5. Node attributes for this network are available for
download separately as Additional file 6. This network
consists of the most relevant TFs, together with their top-
ranked positive targets, with a total of 1,288 regulatory
interactions between 17 transcription factors and 181
target genes.

In order to better understand the functional roles of
the predicted targets, we use FIDEA [76] to identify
enriched GO terms under the biological process (BP)
branch. Figure 8 illustrates the static word cloud of
the enriched terms, as generated by FIDEA, the com-
plete list of which is available for download as Addi-
tional file 7. Unlike the enrichment map of TORC1,
which spans a variety of different functions, targets in
the effective response network (ERN) are almost exclu-
sively involved in ribosome biogenesis and the cellular
translation process. Ribosome biogenesis is one of the
most energy-consuming tasks in the cell that is directly
linked to the rate of translation and is required for cell
growth [77]. Calorie restriction, or alternatively inhibiting
TORC1 by Rapamycin treatment, is known to coordi-
nately regulate this process via a complex set of path-
ways involving transcription factors Ifh1, Sfp1, Fhl1, and
Rap1 [77]. Interestingly, all four of these transcription
factors are identified by our method among the top 6
TFs with the highest relevance scores (together with
Gcn3 and Met4). The effective response network pro-
vides a refined view of how yeast cells re-wire various
aspects of ribosome biogenesis in order to modulate cell
growth. This network can be used to gain a detailed
understanding of the regulatory mechanisms that are
responsible for TOR-dependent transcriptional changes
in yeast.

Conclusions
Understanding various processes associated with aging
has important implications for the diagnosis, prog-
nosis, and treatment of age-related pathologies. Cur-
rent methods for constructing aging pathways rely on
detailed experiments that study cellular response to care-
fully controlled signals. This process is expensive, time-
consuming, and typically restricted to specific aspects of
cellular response. In this study, we presented a comple-
mentary, computational approach that aims to construct
detailed aging pathways using the yeast interactome by
initiating random walks at proteins that are key play-
ers in the aging process (the target of rapamycin or
TOR, in this study). At the heart of our method is a
rigorous statistical and computational framework that
identifies significant effector proteins and provides infor-
mation about the specific mechanisms associated with
them.

We present comprehensive validation of our computa-
tional results through GO enrichment studies and man-
ual curation to show that our method identifies most
of the known proteins downstream from TOR, while
identifying several new proteins for future experimental
investigations. Additionally, we showed that information
flow scores faithfully predict transcriptional changes in
response to rapamycin-treatment, which validates accu-
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Figure 7 Effective response network (ERN) of TORC1. The effective response network is computed for most relevant transcription factors,
yielding a network of 1,288 transcription regulations between 17 TFs and 181 target genes. Green nodes represent TFs while blue nodes are the
target genes. The size and and color intensity of TFs and target genes represent their relevance score and information flow score, respectively.

racy of predicted effectors. Furthermore, we show that
the predicted targets are also enriched with proteins that
are post-translationally modified (i.e., phosphorylated)
in response to TOR inhibition. Finally, we constructed
the effective response network of the TOR pathway.
This network is hypothesized to mediate transcriptional
changes in response to TOR inhibition. A direct out-
come of our study is a complete dataset of proteins down-

stream of TOR, their interactions, functional roles, and
organization.

Methods
Constructing yeast interactome
We obtained the yeast protein-protein interactions (PPI)
from the BioGRID [78] database, update 2011 [79], ver-
sion 3.1.83, by extracting all physical interactions, except
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Figure 8 Enrichment analysis of the ERN. Static word cloud for the enriched BP terms in the effective response network (ERN).

for protein-RNA interactions, and excluding interspecies
and self interactions. This dataset consists of 103,619
(63,395 non-redundant) physical interactions among
5,691 proteins, and is available for download as Additional
file 8. We then identified the subset of interactions associ-
ated with post-translational modification (PTM), marked
with the “biochemical activity” evidence code in BioGRID,
resulting in 5,791 (5,443 non-redundant) biochemical
activities among proteins in yeast. These are available for
download as Additional file 9. Each of these interactions
represents a directional enzymatic activity, where the bait
protein executes the activity on the substrate hit protein.
After integrating different modifications among similar
pairs of proteins, we obtained 5,421 directional edges
among 2,002 proteins in the yeast interactome. The bulk
of these interactions (over 4,000) are the phosphorylation
events identified by Ptacek et al. [80] using proteome chip
technology.

We constructed the integrated network of yeast inter-
actions, the yeast interactome, by integrating protein-
protein interactions(PPIs) and post-translational modifi-
cations(PTMs). For pairs of proteins that have both PPI
and PTM, we give higher priority to PTM, since it pro-
vides a more refined description of the type of interaction.

Figure 1 illustrates an example of the integration process
around the Sch9 protein, which is a well-documented sub-
strate of TORC1. The final constructed interactome is
available for download as Additional file 10. This network
consists of 5,287 uni-directional and 58,108 bi-directional
edges (58,041 PPIs and 134 bi-directional PTMs) among
5,691 nodes. The node attributes and alternative labels for
each node in the yeast interactome are also available for
download as Additional file 11.

Transcriptional regulatory network (TRN) of yeast
We constructed the yeast transcriptional regulatory net-
work (TRN) from the documented regulations in YEAS-
TRACT [81], consisting of 48,082 interactions between
183 transcription factors (TF) and 6,403 target genes
(TG). Among these 183 TFs, 179 of them have a corre-
sponding node in the yeast interactome.

Tracing information flow in the interactome
We use a computational approach, based on a discrete-
time random walk process, to track directional informa-
tion flow in the interactome. Similar formulations have
been previously used to prioritize candidate disease genes
[82,83], discover network bio-markers for cancer [84], and
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identify protein complexes [85,86]. Additionally, there is
a known correspondence between random-walk methods
on undirected graphs and formulations based on circuit
network models [87]. Our formulation takes into account
both network distances, as well as multiplicity of paths
between pairs of proteins. It also benefits from using
edge directions (when available) to discriminate between
upstream regulators and downstream effectors.

Let G = (V , E) be a mixed graph, having both directed
and undirected edges. Each node in V corresponds to a
protein and edge (u, v) ∈ E iff protein u interacts with
protein v in the integrated network. Graph G can be repre-
sented using its adjacency matrix A, where Aij = 1, if node
i has a directed edge to node j, and is 0 otherwise. Undi-
rected edges are replaced by a pair of directed edges in
each direction. A random walk on G, initiated from vertex
v, is defined as a sequence of transitions among vertices,
starting from v. At each step, the random walker randomly
chooses the next vertex from among the neighbors of the
current node. The sequence of visited vertices generated
by this random process is a Markov chain, since the choice
of next vertex depends only on the current node. We can
represent the transition matrix of this Markov process as
a column-stochastic matrix, P, where pij = Pr(St+1 =
vi|St = vj), and random variable St represents the state of
the random walk at the time step t.

Random walk with restart (RWR) is a modified Markov
chain in which, at each step, a random walker has the
choice of either continuing along its path, with probability
α, or jump (teleport) back to the initial vertex, with prob-
ability 1 − α. Given the transition matrix of the original
random walk process, P, the transition matrix of the mod-
ified chain, M, can be computed as M = αP+(1−α)ev1T ,
where ev is a stochastic vector of size n having zeros
everywhere, except at index v, and 1 is a vector of all
ones. The stationary distribution of the modified chain,
πv(α), defines the portion of time spent on each node
in an infinite random walk with restart initiated at node
v, with parameter α. This stationary distribution can be
computed as follows:

πv(α) = Mπv(α)

= (αP + (1 − α)ev1T )πv(α)
(1)

Enforcing a unit norm on the dominant eigenvector to
ensure its stochastic property, ‖ πv(α) ‖1= 1Tπv = 1, we
will have the following iterative form:

πv(α) = αPπv(α) + (1 − α)ev, (2)

which is a special case of the personalized PageRank
[88-91], with preference vector ev. Alternatively, we can

compute πv directly by solving the following linear
system:

πv(α) = (1 − α)(I − αP)−1
︸ ︷︷ ︸

Q

ev, (3)

where the right-multiplication with ev simply selects col-
umn v of the matrix Q. The factor 1 − α can be viewed
as the decay factor of the signal; the higher the parameter
α, the further the signal can propagate. Let us denote by
random variable R the number of hops taken by random
walker before it jumps back to source node v. Then, R fol-
lows a geometric distribution with probability of success
(1 − α) and the expected (mean) length of paths taken by
random walker can be computed as E(R) = α

1−α
. In other

words, if we let α = d
1+d , for a given value of d, we expect

the average length of paths taken by such a random walk to
be equivalent to d, thus we call d the depth of the random
walk.

Cross-validating information flow scores with the set of
differentially expressed genes in response to TOR
inhibition
Given the list of gene products ranked by their informa-
tion flow scores, we want to assess the enrichment of
differentially expressed genes, in response to rapamycin
treatment, among top-ranked proteins.

The classical approach to this problem is to select a pre-
defined cutoff on ranks, denoted by l, which separates the
top-ranked genes (target set) from the rest (background
set), and then compute the enrichment p-value using
the hypergeometric distribution. Let us denote the total
number of gene products by N and the total number of
differentially expressed genes (true positives) by A. Using
a similar notation as Eden et al. [57], we encode these
annotations using a binary vector, λ = λ1, λ2, . . . λN ∈
{0, 1}N , having exactly A ones and N − A zeros. Let the
random variable T denote the number of positive genes
in the target set, if we distribute genes randomly. In this
formulation, the hypergeometric p-value is defined as:

p-value(T = bl(λ)) = Prob(bl(λ) ≤ T)

= HGT(bl(λ)|N , A, l)

=
min(A,l)∑

t=bl(λ)

C(A, t)C(N − A, l − t)
C(N , l)

,

(4)

where HGT is the tail of hypergeometric distribution, and
bl(λ) = ∑l

i=1 λi, is the number of observed positives in
the target set. The drawback of this approach is that we
need a predefined cutoff value, l. To remedy this, Eden
et al. [57] propose a two-step method for computing the
exact enrichment p-value, called mHG p-value, without
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the need for a predefined cutoff value of l. In the first
step of this process, we identify an optimal cut, over all
possible cuts, which minimizes the hypergeometric score.
The value computed in this manner is called the minimum
hypergeometric (mHG) score, and is defined as:

mHG(λ) = min1≤l≤N HGT(bl(λ)|N , A, l) (5)

Next, we use a dynamic programming (DP) method to
compute the exact p-value of the observed mHG score, in
the state space of all possible λ vectors with size N hav-
ing exactly A ones (please refer to Eden et al. [57] for
algorithmic details, and Eden [92] for an efficient imple-
mentation). We adopt this strategy to cross-validate our
results with the transcriptome profile of yeast cells in
response to rapamycin treatment. We subsequently define
the enrichment plot, which illustrates the absolute value of
the logarithm of the HG score as a function of cutoff per-
centage. The minimum hypergeometric (mHG) score can
be viewed as the peak of this plot, and the correspond-
ing exact p-value can be computed for this peak using the
aforementioned DP algorithm.

Assessing the sensitivity and the specificity of information
flow scores
Given an optimal cutoff length l (computed for differ-
entially expressed genes in response to TOR inhibition),
which partitions nodes into top/bottom ranked proteins,
together with a transcription factor (TF) of interest, pi,
we are interested in assessing the importance of pi in
mediating the observed transcriptional response. In other
words, given that pi has a significant number of top-
ranked targets, how confident are we that it will also have
a significant number of differentially expressed targets?
Conversely, if pi has many differentially expressed targets,
how likely is it to see its targets among top-ranked genes?

Let us denote the total number of targets of TF pi by
k, and the number of its positive (differentially expressed)
and top-ranked (in information flow) targets by kP and
kT , respectively. Let the random variable X be the number
of top-ranked targets, if we were uniformly distributing k
targets of pi among all genes in the yeast interactome. Sim-
ilarly, let Y be the number of positive targets of pi, if we
distribute positive targets uniformly. Then, we can com-
pute the following p-values for top-ranked and positive
targets, respectively:

p-value(X = kT ) = Prob(kT ≤ X)

= HGT(kT |N , l, k)

=
min(l,k)∑

x=kT

C(l, x)C(N − l, k − x)

C(N , k)

(6)

p-value(Y = kP) = Prob(kP ≤ Y )

= HGT(kP|N , A, k)

=
min(A,k)∑

y=kP

C(A, y)C(N − A, k − y)
C(N , k)

(7)

After correcting for multiple hypothesis testing using
Bonferroni method, we use a given threshold value of ε

and define the sensitivity and specificity for the entire set
of transcription factors as:

sensitivity = Prob(p-value(X = kT )

≤ ε|p-value(Y = kP) ≤ ε)

specificity = Prob(ε < p-value(X = kT )|ε
< p-value(Y = kP))

(8)

The motivation behind our approach is that the set of
transcription factors with a significant number of differ-
entially expressed targets provides us with an experimen-
tally validated set of key factors, whereas transcription
factors that have a significant number of top-ranked tar-
gets act as computational predictions for identifying the
most relevant TFs. Let TP be the number of identified
true positives, P be the total number of positives, and
FN be the number of false negatives. The sensitivity of a
method, defined as TP

P = TP
TP+FN , measures the fraction

of positive instances (transcription factors having a signif-
icant number of differentially expressed targets) that are
also predicted using the information flow method (com-
putational predictions). Conversely, let TN be the number
of true negatives identified by the method and N be the
total number of negatives. Specificity, formally defined as
TN
N = TN

TN+FP , corresponds to the fraction of irrelevant
TFs, computed based on the experimental dataset, that are
also identified as irrelevant by our computational predic-
tions. These two measures are closely related to type I and
II errors as follows:

Type I error(α) = False-positive-rate(FPR)

= 1 − specificity
Type II error(β) = False-negative-rate(FNR)

= 1 − sensitivity

(9)

Integrating computational predictions with experimental
datasets
Given the set of differentially expressed genes in response
to rapamycin treatment, the computed information flow
scores, and the transcriptional regulatory network (TRN)
of yeast, we aim to construct an integrative statisti-
cal framework to identify the most relevant transcrip-
tion factors with respect to mediating the transcriptional
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response to TOR inhibition, and decipher the underlying
effective response network.

Let us denote the number of top-ranked positive tar-
gets of a given TF by kTP. If we compute the probability of
observing kTP or more positive targets among top-ranked
genes, entirely by chance, we can subsequently identify the
associated subset of relevant transcription factors. Let the
random variable Z denote the number of top-ranked posi-
tive targets, if we were randomly distributing all targets for
the given TF. We can compute the p-value of Z by condi-
tioning it on the number of top-ranked targets as follows:

p-value(Z = kTP) = Prob(kTP ≤ Z)

=
min(l,k)∑

x=kTP

Prob(kTP ≤ Z|X = x)

× Prob(X = x)

=
min(l,k)∑

x=kTP

min(x,bl(λ))∑

z=kTP

Prob(Z = z|X = x)

× Prob(X = x)

=
min(l,k)∑

x=kTP

HG(x|N , l, k)

×
min(x,bl(λ))∑

z=kTP

HG(z|l, bl(λ), x)

(10)

After correcting for multiple hypothesis testing using
Bonferroni method, we define the relevance score of each
TF as − log10(p-value(Z = kTP)), and construct the
effective response network of TORC1 using the most rel-
evant TFs, together with their top-ranked positive targets,
correspondingly.

Availability of supporting data
The data sets supporting the results of this arti-
cle are included within the article (and its additional
files). They are also available for download from http://
compbio.soihub.org/projects/torc1. All necessary codes
and datasets to reproduce the results in this paper are
bundled as Additional file 12.
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Additional file 2: GO Enrichment of information flow scores. Excel
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Additional file 3: Enrichment map of the significant GO terms.
Cytoscape file (*.zip) containing the final enrichment map. Each node
represents a GO term and the corresponding geneset and enrichment
p-value are encoded in its attributes. Edges are computed based on the
geneset overlap among GO terms (please see www.cytoscape.org for
more information about loading the file).

Additional file 4: Statistical analysis of the most relevant
transcription factors (TF). Excel table file (*.xls) illustrating the computed
statistics for different transcription factors, sorted based on their proximity
to TORC1.

Additional file 5: Effective response network (ERN) of TORC1. Tab
separated file (*.txt) representing the edge list of the effective response
network of TORC1 (corresponding nodes are marked by their systematic
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Additional file 6: Node attributes for the effective response network.
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nodes in the ERN.

Additional file 7: Functional enrichment of the targets in the
effective response network. Tab-separated table file (*.txt) file containing
the enriched BP terms in the ERN, identified by FIDEA.

Additional file 8: Yeast protein-protein interactions. Tab-separated
table file (*.txt) containing the non-redundant PPI edge list (corresponding
nodes are represented using their Entrez Gene ID).

Additional file 9: Yeast biochemical activities. Tab-separated table file
(*.txt) containing the list of non-redundant PTM interactions
(corresponding nodes are represented using their Entrez Gene ID).

Additional file 10: Yeast interactome. Simple interaction file (*.txt)
containing the integrated network of the yeast interactome
(corresponding nodes are represented using their Entrez Gene ID).
Protein-protein interactions (marked with pp) are undirected while the rest
of edges are directed.

Additional file 11: Node attributes for the yeast interactome.
Tab-separated table file (*.txt) file containing various ID(s) for each node in
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containing all codes and datasets used in this experiment.

Abbreviations
TOR: Target of rapamycin; PPI: Protein-Protein Interaction; GO: Gene Ontology.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SM conceived the study, designed and implemented methods, performed the
experiments, and prepared the manuscript. SS helped with the experimental
design, as well as analyzing and interpreting the biological implications of the
results. AG provided guidance relative to the theoretical and practical aspects
of the algorithms, and design of proper statistical model(s) to validate the
results. All authors participated in designing the structure and organization of
final manuscript. All authors read and approved the final manuscript.

Acknowledgements
This work is supported by the Center for Science of Information (CSoI), an NSF
Science and Technology Center, under grant agreement CCF-0939370, and by
NSF grants DBI 0835677 and 0800568.

Author details
1Department of Computer Science, Purdue University, West Lafayette, Indiana,
USA. 2Department of Bioengineering, University of California at San Diego, La
Jolla, California, USA.

Received: 23 April 2013 Accepted: 28 August 2013
Published: 30 August 2013

http://compbio.soihub.org/projects/torc1
http://compbio.soihub.org/projects/torc1
http://www.biomedcentral.com/content/supplementary/1752-0509-7-84-S1.xls
http://www.biomedcentral.com/content/supplementary/1752-0509-7-84-S2.zip
http://www.biomedcentral.com/content/supplementary/1752-0509-7-84-S3.zip
www.cytoscape.org
http://www.biomedcentral.com/content/supplementary/1752-0509-7-84-S4.xls
http://www.biomedcentral.com/content/supplementary/1752-0509-7-84-S5.txt
http://www.biomedcentral.com/content/supplementary/1752-0509-7-84-S6.txt
http://www.biomedcentral.com/content/supplementary/1752-0509-7-84-S7.txt
http://www.biomedcentral.com/content/supplementary/1752-0509-7-84-S8.txt
http://www.biomedcentral.com/content/supplementary/1752-0509-7-84-S9.txt
http://www.biomedcentral.com/content/supplementary/1752-0509-7-84-S10.txt
http://www.biomedcentral.com/content/supplementary/1752-0509-7-84-S11.txt
http://www.biomedcentral.com/content/supplementary/1752-0509-7-84-S12.zip


Mohammadi et al. BMC Systems Biology 2013, 7:84 Page 15 of 17
http://www.biomedcentral.com/1752-0509/7/84

References
1. Fontana L, Partridge L, Longo VD: Extending healthy life span–from

yeast to humans. Science (New York, N.Y.) 2010, 328(5976):321–326.
2. Bishop NA, Guarente L: Genetic links between diet and lifespan:

shared mechanisms from yeast to humans. Nat Rev Genet 2007,
8(11):835–844.

3. Kaeberlein M: Lessons on longevity from budding yeast. Nature 2010,
464(7288):513–519.

4. Campisi J: Aging, cellular senescence, and cancer. Annu Rev Physiol
2013, 75:685–705.

5. Provinciali M, Cardelli M, Marchegiani F, Pierpaoli E: Impact of cellular
senescence in aging and cancer. Curr Pharm Des 2013, 19(9):1699–709.

6. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley
TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R: Caloric
restriction delays disease onset and mortality in rhesus monkeys.
Science (New York, N.Y.) 2009, 325(5937):201–204.

7. Finkel T, Serrano M, Blasco MA: The common biology of cancer and
ageing. Nature 2007, 448(7155):767–774.

8. North BJ, Sinclair DA: The intersection between aging and
cardiovascular disease. Circ Res 2012, 110(8):1097–108.

9. Leritz EC, McGlinchey RE, Kellison I, Rudolph JL, Milberg WP:
Cardiovascular disease risk factors and cognition in the elderly. Curr
Cardiovasc Risk Rep 2011, 5(5):407–412.

10. Cruzen C, Colman RJ: Effects of caloric restriction on cardiovascular
aging in non-human primates and humans. Clin Geriatr Med 2009,
25(4):733–43, ix–x.

11. Mattson MP, Wan R: Beneficial effects of intermittent fasting and
caloric restriction on the cardiovascular and cerebrovascular
systems. J Nutr Biochem 2005, 16(3):129–137.

12. Collier TJ, Kanaan NM, Kordower JH: Ageing as a primary risk factor for
Parkinson’s disease: evidence from studies of non-human primates.
Nat Rev Neurosci 2011, 12(6):359–366.

13. Dartigues JF, Féart C: Risk factors for Alzheimer disease: aging beyond
age? Neurology 2011, 77(3):206–207.

14. Duan W, Ross CA: Potential therapeutic targets for
neurodegenerative diseases: lessons learned from calorie
restriction. Curr Drug Targets 2010, 11(10):1281–1292.

15. Noorbakhsh F, Overall CM, Power C: Deciphering complex mechanisms
in neurodegenerative diseases: the advent of systems biology.
Trends Neurosci 2009, 32(2):88–100.

16. Maswood N, Young J, Tilmont E, Zhang Z, Gash DM, Gerhardt GA,
Grondin R, Roth GS, Mattison J, Lane MA, Carson RE, Cohen RM, Mouton
PR, Quigley C, Mattson MP, Ingram DK: Caloric restriction increases
neurotrophic factor levels and attenuates neurochemical and
behavioral deficits in a primate model of Parkinson’s disease. Proc
Natl Acad Sci USA 2004, 101(52):18171–18176.

17. Wu P, Shen Q, Dong S, Xu Z, Tsien JZ, Hu Y: Calorie restriction
ameliorates neurodegenerative phenotypes in forebrain-specific
presenilin-1 and presenilin-2 double knockout mice. Neurobiol Aging
2008, 29(10):1502–1511.

18. Campisi J, Andersen JK, Kapahi P, Melov S: Cellular senescence: a link
between cancer and age-related degenerative disease? Semin Cancer
Biol 2011, 21(6):354–359.

19. Kaeberlein M, Burtner CR, Kennedy BK: Recent developments in yeast
aging. PLoS Genet 2007, 3(5):e84.

20. Lin SJ, Defossez PA, Guarente L: Requirement of NAD and SIR2 for
life-span extension by calorie restriction in Saccharomyces
cerevisiae. Science (New York, N.Y.) 2000, 289(5487):2126–2128.

21. Kaeberlein M, Kirkland KT, Fields S, Kennedy BK: Sir2-independent life
span extension by calorie restriction in yeast. PLoS Biol 2004, 2(9):E296.

22. Smith DL, McClure JM, Matecic M, Smith JS: Calorie restriction extends
the chronological lifespan of Saccharomyces cerevisiae
independently of the Sirtuins. Aging cell 2007, 6(5):649–662.

23. Kaeberlein M, Powers RW, Steffen KK, Westman EA, Hu D, Dang N, Kerr EO,
Kirkland KT, Fields S, Kennedy BK: Regulation of yeast replicative life
span by TOR and Sch9 in response to nutrients. Science (New York,
N.Y.) 2005, 310(5751):1193–1196.

24. Heitman J, Movva NR, Hall MN: Targets for cell cycle arrest by the
immunosuppressant rapamycin in yeast. Science (New York, N.Y.) 1991,
253(5022):905–909.

25. Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D,
Oppliger W, Jenoe P, Hall MN: Two TOR complexes, only one of which
is rapamycin sensitive, have distinct roles in cell growth control. Mol
Cell 2002, 10(3):457–468.

26. Wedaman KP, Reinke A, Anderson S, Yates J, McCaffery JM,
Powers T: Tor kinases are in distinct membrane-associated protein
complexes in Saccharomyces cerevisiae. Mol Biol Cell 2003,
14(3):1204–1220.

27. Reinke A, Anderson S, McCaffery JM, Yates J, Aronova S, Chu S, Fairclough
S, Iverson C, Wedaman KP, Powers T: TOR complex 1 includes a novel
component, Tco89p (YPL180w), and cooperates with Ssd1p to
maintain cellular integrity in Saccharomyces cerevisiae. J Biol Chem
2004, 279(15):14752–14762.

28. Wullschleger S, Loewith R, Hall MN: TOR signaling in growth and
metabolism. Cell 2006, 124(3):471–484.

29. Kapahi P, Chen D, Rogers AN, Katewa SD, Li PWL, Thomas EL, Kockel L:
With TOR, less is more: a key role for the conserved nutrient-sensing
TOR pathway in aging. Cell Metab 2010, 11(6):453–465.

30. McCormick MA, Tsai SY, Kennedy BK: TOR and ageing: a complex
pathway for a complex process. Philos Trans R Soc Lond B Biol Sci 2011,
366(1561):17–27.

31. De Virgilio C, Loewith R: Cell growth control: little eukaryotes make
big contributions. Oncogene 2006, 25(48):6392–6415.

32. Loewith R, Hall MN: Target of rapamycin (TOR) in nutrient signaling
and growth control. Genetics 2011, 189(4):1177–1201.

33. De Virgilio C, Loewith R: The TOR signalling network from yeast to
man. Int J Biochem Cell Biol 2006, 38(9):1476–1481.

34. Zaman S, Lippman SI, Zhao X, Broach JR: How Saccharomyces responds
to nutrients. Annu Rev Genet 2008, 42:27–81.

35. Wei Y, Zheng XFS: Nutritional control of cell growth via TOR signaling
in budding yeast. Methods Mol Biol (Clifton, N.J.) 2011, 759:307–319.

36. Le Couteur DG, McLachlan AJ, Quinn RJ, Simpson SJ, de Cabo R: Aging
biology and novel targets for drug discovery. J Gerontol A Biol Sci Med
Sci 2012, 67(2):168–174.

37. Naylor RM, Baker DJ, van Deursen JM: Senescent cells: a novel
therapeutic target for aging and age-related diseases. Clin Pharmacol
Ther 2013, 93:105–116.

38. Binda M, Péli-Gulli MP, Bonfils G, Panchaud N, Urban J, Sturgill TW,
Loewith R, De Virgilio C: The Vam6 GEF controls TORC1 by activating
the EGO complex. Mol Cell 2009, 35(5):563–573.

39. Neklesa TK, Davis RW: A genome-wide screen for regulators of TORC1
in response to amino acid starvation reveals a conserved Npr2/3
complex. PLoS Genet 2009, 5(6):e1000515.

40. Smets B, Ghillebert R, De Snijder P, Binda M, Swinnen E, De Virgilio C,
Winderickx J: Life in the midst of scarcity: adaptations to nutrient
availability in Saccharomyces cerevisiae. Curr Genet 2010, 56:1–32.

41. Kuranda K, Leberre V, Sokol S, Palamarczyk G, François J: Investigating
the caffeine effects in the yeast Saccharomyces cerevisiae brings
new insights into the connection between TOR , PKC and Ras/cAMP
signalling pathways. Mol Microbiol 2006, 61(5):1147–1166.

42. Wanke V, Cameroni E, Uotila A, Piccolis M, Urban J, Loewith R, De Virgilio
C: Caffeine extends yeast lifespan by targeting TORC1. Mol Microbiol
2008, 69:277–285.

43. Chang YY, Juhász G, Goraksha-Hicks P, Arsham AM, Mallin DR, Muller LK,
Neufeld TP: Nutrient-dependent regulation of autophagy through
the target of rapamycin pathway. Biochem Soc Trans 2009,
37(Pt 1):232–236.

44. Gasch AP, Werner-Washburne M: The genomics of yeast responses to
environmental stress and starvation. Funct Integr Genomics 2002,
2(4–5):181–192.

45. Jorgensen P, Rupes I, Sharom JR, Schneper L, Broach JR, Tyers M: A
dynamic transcriptional network communicates growth potential
to ribosome synthesis and critical cell size. Genes Dev 2004,
18(20):2491–2505.

46. Barbet NC, Schneider U, Helliwell SB, Stansfield I, Tuite MF, Hall MN: TOR
controls translation initiation and early G1 progression in yeast. Mol
Biol Cell 1996, 7:25–42.

47. Schmidt A, Beck T, Koller A, Kunz J, Hall MN: The TOR nutrient signalling
pathway phosphorylates NPR1 and inhibits turnover of the
tryptophan permease. EMBO J 1998, 17(23):6924–6931.



Mohammadi et al. BMC Systems Biology 2013, 7:84 Page 16 of 17
http://www.biomedcentral.com/1752-0509/7/84

48. Beck T, Hall MN: The TOR signalling pathway controls nuclear
localization of nutrient-regulated transcription factors. Nature 1999,
402(6762):689–692.

49. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,
Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis
A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G:
Gene ontology: tool for the unification of biology. The Gene
Ontology Consortium. Nat Genet 2000, 25:25–29.

50. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z: GOrilla: a tool for
discovery and visualization of enriched GO terms in ranked gene
lists. BMC Bioinformatics 2009, 10:48.

51. Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET,
Christie KR, Costanzo MC, Dwight SS, Engel SR, Fisk DG, Hirschman JE, Hitz
BC, Karra K, Krieger CJ, Miyasato SR, Nash RS, Park J, Skrzypek MS, Simison
M, Weng S, Wong ED: Saccharomyces Genome Database: the
genomics resource of budding yeast. Nucleic Acids Res 2012,
40(Database issue):D700–D705.

52. Merico D, Isserlin R, Stueker O, Emili A, Bader GD: Enrichment map: a
network-based method for gene-set enrichment visualization and
interpretation. PloS one 2010, 5(11):e13984.

53. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T: Cytoscape 2.8: new
features for data integration and network visualization.
Bioinformatics (Oxford, England) 2011, 27(3):431–432.

54. Hampsey M: Molecular genetics of the RNA polymerase II general
transcriptional machinery. Microbiol Mol Biol Rev 1998, 62(2):465–503.

55. Maston GA, Evans SK, Green MR: Transcriptional regulatory elements
in the human genome. Annu Rev Genomics Hum Genet 2006, 7:29–59.

56. Fournier ML, Paulson A, Pavelka N, Mosley AL, Gaudenz K, Bradford WD,
Glynn E, Li H, Sardiu ME, Fleharty B, Seidel C, Florens L, Washburn MP:
Delayed correlation of mRNA and protein expression in
rapamycin-treated cells and a role for Ggc1 in cellular sensitivity to
rapamycin. Mol Cell Proteomics 2010, 9(2):271–284.

57. Eden E, Lipson D, Yogev S, Yakhini Z: Discovering motifs in ranked lists
of DNA sequences. PLoS Comput Biol 2007, 3(3):e39.

58. Huber A, Bodenmiller B, Uotila A, Stahl M, Wanka S, Gerrits B, Aebersold R,
Loewith R: Characterization of the rapamycin-sensitive
phosphoproteome reveals that Sch9 is a central coordinator of
protein synthesis. Genes Dev 2009, 23(16):1929–1943.

59. Lempiäinen H, Uotila A, Urban J, Dohnal I, Ammerer G, Loewith R, Shore
D: Sfp1 interaction with TORC1 and Mrs6 reveals feedback
regulation on TOR signaling. Mol cell 2009, 33(6):704–716.

60. Bertram PG, Choi JH, Carvalho J, Ai W, Zeng C, Chan TF, Zheng XF:
Tripartite regulation of Gln3p by TOR , Ure2p, and phosphatases.
J Biol Chem 2000, 275(46):35727–35733.

61. Steffen KK, MacKay VL, Kerr EO, Tsuchiya M, Hu D, Fox LA, Dang N,
Johnston ED, Oakes JA, Tchao BN, Pak DN, Fields S, Kennedy BK,
Kaeberlein M: Yeast life span extension by depletion of 60s
ribosomal subunits is mediated by Gcn4. Cell 2008, 133(2):292–302.

62. Jorgensen P, Nishikawa JL, Breitkreutz BJ, Tyers M: Systematic
identification of pathways that couple cell growth and division in
yeast. Science (New York, N.Y.) 2002, 297(5580):395–400.

63. Marion RM, Regev A, Segal E, Barash Y, Koller D, Friedman N, O’Shea EK:
Sfp1 is a stress- and nutrient-sensitive regulator of ribosomal
protein gene expression. Proc Natl Acad Sci U S A 2004,
101(40):14315–14322.

64. Courchesne WE, Magasanik B: Regulation of nitrogen assimilation in
Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes.
J Bacteriol 1988, 170(2):708–713.

65. Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O,
Wanke V, Anrather D, Ammerer G, Riezman H, Broach JR, De Virgilio C, Hall
MN, Loewith R: Sch9 is a major target of TORC1 in Saccharomyces
cerevisiae. Mol cell 2007, 26(5):663–674.

66. Hinnebusch AG: Translational regulation of GCN4 and the general
amino acid control of yeast. Annu Rev Microbiol 2005, 59:407–450.

67. Madhani HD, Fink GR: Combinatorial control required for the
specificity of yeast MAPK signaling. Science (New York, N.Y.) 1997,
275(5304):1314–1317.

68. Rutherford JC, Chua G, Hughes T, Cardenas ME, Heitman J: A
Mep2-dependent transcriptional profile links permease function to
gene expression during pseudohyphal growth in Saccharomyces
cerevisiae. Mol Biol Cell 2008, 19(7):3028–3039.

69. Santos J, MJa Sousa, Leão C: Ammonium is toxic for aging yeast cells,
inducing death and shortening of the chronological lifespan. PloS
one 2012, 7(5):e37090.

70. Stephen DW, Rivers SL, Jamieson DJ: The role of the YAP1 and YAP2
genes in the regulation of the adaptive oxidative stress responses
of Saccharomyces cerevisiae. Mol Microbiol 1995, 16(3):415–423.

71. Temple MD, Perrone GG, Dawes IW: Complex cellular responses to
reactive oxygen species. Trends Cell Biol 2005, 15(6):319–326.

72. Wiatrowski HA, Carlson M: Yap1 accumulates in the nucleus in
response to carbon stress in Saccharomyces cerevisiae. Eukaryot Cell
2003, 2:19–26.

73. Yiu G, McCord A, Wise A, Jindal R, Hardee J, Kuo A, Shimogawa MY,
Cahoon L, Wu M, Kloke J, Hardin J, Mays Hoopes LL: Pathways change in
expression during replicative aging in Saccharomyces cerevisiae.
J Gerontol A Biol Sci Med Sci 2008, 63:21–34.

74. Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C,
Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, Fussi H,
Deszcz L, Hartl R, Schraml E, Criollo A, Megalou E, Weiskopf D, Laun P,
Heeren G, Breitenbach M, Grubeck-Loebenstein B, Herker E, Fahrenkrog B,
Fröhlich KU, Sinner F, Tavernarakis N, Minois N, Kroemer G, Madeo F:
Induction of autophagy by spermidine promotes longevity. Nat Cell
Biol 2009, 11(11):1305–1314.

75. Teixeira MC, Cabrito TR, Hanif ZM, Vargas RC, Tenreiro S, Sá-Correia I:
Yeast response and tolerance to polyamine toxicity involving the
drug : H+ antiporter Qdr3 and the transcription factors Yap1 and
Gcn4. Microbiology 2011, 157(Pt 4):945–956.

76. D’Andrea D, Grassi L, Mazzapioda M, Tramontano A: FIDEA: a server for the
functional interpretation of differential expression analysis; 2013.
http://www.nar.oxfordjournals.org/cgi/doi/10.1093/nar/gkt516

77. Lempiäinen H, Shore D: Growth control and ribosome biogenesis. Curr
Opin Cell Biol 2009, 21(6):855–863. http://www.ncbi.nlm.nih.gov/
pubmed/19796927

78. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M:
BioGRID: a general repository for interaction datasets. Nucleic Acids
Res 2006, 34(Database issue):D535–D539.

79. Stark C, Breitkreutz BJ, Chatr-Aryamontri A, Boucher L, Oughtred R,
Livstone MS, Nixon J, Van Auken K, Wang X, Shi X, Reguly T, Rust JM,
Winter A, Dolinski K, Tyers M: The BioGRID interaction database: 2011
update. Nucleic Acids Res 2011, 39(Database issue):D698–D704.

80. Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J, Guo H, Jona G,
Breitkreutz A, Sopko R, McCartney RR, Schmidt MC, Rachidi N, Lee SJ, Mah
AS, Meng L, Stark MJR, Stern DF, De Virgilio C, Tyers M, Andrews B,
Gerstein M, Schweitzer B, Predki PF, Snyder M: Global analysis of
protein phosphorylation in yeast. Nature 2005, 438(7068):679–684.

81. Abdulrehman D, Monteiro PT, Teixeira MC, Mira NP, Lourenço AB, dos
Santos, S C, Cabrito TR, Francisco AP, Madeira SC, Aires RS, Oliveira AL,
Sá-Correia I, Freitas AT: YEASTRACT: providing a programmatic access
to curated transcriptional regulatory associations in Saccharomyces
cerevisiae through a web services interface. Nucleic Acids Res 2011,
39(Database issue):D136–D140.

82. Köhler S, Bauer S, Horn D, Robinson PN: Walking the interactome for
prioritization of candidate disease genes. Am J Hum Genet 2008,
82(4):949–958.

83. Navlakha S, Kingsford C: The power of protein interaction
networks for associating genes with diseases. Bioinformatics 2010,
26(8):1057–1063.

84. Nibbe RK, Koyutürk M, Chance MR: An integrative -omics approach to
identify functional sub-networks in human colorectal cancer. PLoS
Comput Biol 2010, 6:e1000639.

85. Macropol K, Can T, Singh AK: RRW: repeated random walks on
genome-scale protein networks for local cluster discovery. BMC
Bioinformatics 2009, 10:283.

86. Maruyama O, Chihara A: NWE: Node-weighted expansion for protein
complex prediction using random walk distances. Proteome Sci 2011,
9(Suppl 1):S14.

87. Doyle P, Snell L: Random walks and electric networks. Carus mathematical
monographs. Washington: DC: Mathematical Association of America;
1984.

88. Brin S, Page L: The anatomy of a large-scale hypertextual Web search
engine. Comput Netw ISDN Syst 1998, 30(1–7):107–117.



Mohammadi et al. BMC Systems Biology 2013, 7:84 Page 17 of 17
http://www.biomedcentral.com/1752-0509/7/84

89. Page L, Brin S, Motwani R, Winograd T: The PageRank citation ranking:
bringing order to the web. Technical Report 1999-66, Stanford InfoLab
1999.

90. Jeh G, Widom J: Scaling personalized web search. Technical Report
2002–12, Stanford InfoLab 2002.

91. Haveliwala TH: Proceedings of the 11th International Conference on
World Wide Web, WWW ’02. 2002:517–526.

92. Eden E: Discovering motifs in ranked lists of DNA sequences. PhD
thesis. Technion - Israel Institute of Technology 2007.

doi:10.1186/1752-0509-7-84
Cite this article as: Mohammadi et al.: Inferring the effective TOR-dependent
network: a computational study in yeast. BMC Systems Biology 2013 7:84.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Results and discussion
	Computing information flow scores from TORC1
	Constructing a high-level functional map of TOR downstream effectors
	Comparison of predicted targets to the set of differentially expressed genes in response to Rapamycin treatment
	Post-translational modifications among top-ranked proteins: a case study on Gap1 regulation
	Sensitivity and specificity of information flow scores in predicting key transcription factors
	Identifying the most relevant transcription factors
	Constructing the effective response network of TORC1

	Conclusions
	Methods
	Constructing yeast interactome
	Transcriptional regulatory network (TRN) of yeast
	Tracing information flow in the interactome
	Cross-validating information flow scores with the set of differentially expressed genes in response to TOR inhibition
	Assessing the sensitivity and the specificity of information flow scores
	Integrating computational predictions with experimental datasets

	Availability of supporting data
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5
	Additional file 6
	Additional file 7
	Additional file 8
	Additional file 9
	Additional file 10
	Additional file 11
	Additional file 12

	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.440 793.440]
>> setpagedevice


