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As a leading cause of loss of functional movement, stroke often makes it difficult

for patients to walk. Interventions to aid motor recovery in stroke patients should be

carried out as a matter of urgency. However, muscle activity in the knee is usually

too weak to generate overt movements, which poses a challenge for early post-stroke

rehabilitation training. Although electromyography (EMG)-controlled exoskeletons have

the potential to solve this problem, most existing robotic devices in rehabilitation centers

are expensive, technologically complex, and allow only low training intensity. To address

these problems, we have developed an EMG-controlled knee exoskeleton for use at

home to assist stroke patients in their rehabilitation. EMG signals of the subject are

acquired by an easy-to-don EMG sensor and then processed by a Kalman filter to

control the exoskeleton autonomously. A newly-designed game is introduced to improve

rehabilitation by encouraging patients’ involvement in the training process. Six healthy

subjects took part in an initial test of this new training tool. The test showed that subjects

could use their EMG signals to control the exoskeleton to assist them in playing the game.

Subjects found the rehabilitation process interesting, and they improved their control

performance through 20-block training, with game scores increasing from 41.3± 15.19

to 78.5 ± 25.2. The setup process was simplified compared to traditional studies and

took only 72 s according to test on one healthy subject. The time lag of EMG signal

processing, which is an important aspect for real-time control, was significantly reduced

to about 64 ms by employing a Kalman filter, while the delay caused by the exoskeleton

was about 110 ms. This easy-to-use rehabilitation tool has a greatly simplified training

process and allows patients to undergo rehabilitation in a home environment without

the need for a therapist to be present. It has the potential to improve the intensity of

rehabilitation and the outcomes for stroke patients in the initial phase of rehabilitation.

Keywords: electromyography (EMG), game context, home rehabilitation, human-computer interaction, Kalman

filter, knee exoskeleton, stroke
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1. INTRODUCTION

Stroke is a major cause of chronic motor disability among adults
worldwide (Feigin et al., 2009; Langhorne et al., 2009, 2011).
Many stroke survivors suffer from hemiplegia, which makes
walking difficult or even impossible.

Neurorehabilitation training has been widely used to reduce
the handicap and disability caused by stroke (Langhorne et al.,
2011). Recent studies have shown that a unique time-limited
window of enhanced neuroplasticity for 1–3 months exists
after ischemic stroke (Zeiler and Krakauer, 2013), known as
the post-stroke sensitive period. Within this unique critical
period, both spontaneous and intervention-mediated recovery
from impairment are maximal (Murphy and Dale, 2009; Floor
et al., 2013; Zeiler and Krakauer, 2013). Motor training and
enriched rehabilitation during this period are especially effective
in enhancing muscle activity and improving neuromuscular
control. However, a crucial question remains regarding how to
take best advantage of this critical time-limited window. One
major problem is that patients cannot make overt movements,
although they may regain some muscular control ability early
after a stroke (Lyu et al., 2017). This barrier greatly limits the
delivery of motivational rehabilitation training to patients.

One possible way to overcome this obstacle is the use of a
“muscle–computer interface,” which tests the electromyographic
(EMG) activity of the patient and provides feedback. As an
easy-to-use tool, EMG signals have been successfully applied to
powered exoskeletons (Tucker et al., 2015; Long et al., 2016;
Lambelet et al., 2017). The critical advantage of EMG-based
methods is that even though the human subject is unable
to generate sufficient joint torque, their intention can still
be detected from residual EMG activity and consequently the
exoskeleton can be controlled (Peternel et al., 2016). It is therefore
possible to train patients during the post-stroke sensitive period.

Different EMG-based exoskeletons have been developed in
the past few decades. Several studies have estimated muscular
torques from EMG activity using a musculoskeletal model,
and this approach has been applied to the control of both
upper limb (Buongiorno et al., 2016) and lower limb (Long
et al., 2016; Ao et al., 2017) exoskeletons. As alternatives to a
musculoskeletal model, some researchers have proposed the use
of neural networks to learn the complex relation between EMG
and muscular torque (Song and Tong, 2005; Chen X. et al.,
2017) or of statistical learning algorithms to classify different
action modes or motion patterns from measured EMG signals
(Irastorza-Landa et al., 2017; Yun et al., 2017).

However, most of these approaches were designed for use in
rehabilitation centers or clinics with the assistance of therapists,
leading to greatly increased costs and limiting the intensity
of rehabilitation treatment (Chen J. et al., 2017). There are
several reasons for the limited application scenarios of these
exoskeletons. First, the high cost of traditional EMG acquisition
equipment and the complex electrode placement procedure
required make it unsuitable for home rehabilitation (Hakonen
et al., 2015). Since the signal-to-noise ratio can be improved
by placing the electrodes as close to the EMG source as
possible (Hakonen et al., 2015), the electrodes of standard EMG

laboratory equipment are designed to be placed separately on
the skin overlying specific muscles. However, the selections of
whichmuscles to use and the positioning of the electrodes usually
need to be done by the therapist. Besides, skin preparation, which
is usually needed for traditional EMG electrodes, and accurate
placement are time consuming as well (Cram and Rommen,
1989; Marquez et al., 2018). The cost of EMG equipment is
also too high for a patient undergoing home rehabilitation.
The second reason relates to the control methods. Both the
musculoskeletal model and the neural network method expend
most effort on increasing the accuracy of predicting muscle
torque or in classification, which are important with regard to
biomechanics and physiology (Lenzi et al., 2012). However, these
methods depend strongly on the subject’s anatomy as well as
on the placement of the electrodes and usually require a precise
calibration procedure, which may be unnecessary for effective
exoskeleton control (Lenzi et al., 2012). User-dependent and
session-dependent calibration procedures are time-consuming
and cannot be done by the subject alone, which limits their use to
a laboratory environment rather than a home setting. Moreover,
the inconvenience of donning and removing the EMG sensor
and exoskeleton, the complex setup procedure, and the boring
training process also make these exoskeletons unsuitable for
home-based rehabilitation. Thus, the development of an EMG-
controlled exoskeleton that is simple, acceptable, and effective
in improving lower limb function and is able to assist home
rehabilitation for patients in the post-stroke sensitive period is
an urgent task.

The challenges of home-based robotic therapy are to make
the rehabilitation robot system safe and easy to use in a home
setting (Sivan et al., 2014). The rehabilitation system should
be acceptable to the patient and enable them to complete
the training process independently, without the therapist being
present for each session. The technology also needs to match
general therapy principles (e.g., intensity, motivation) and
provide the patient with the relevant therapy (Sivan et al., 2014).
For an EMG-controlled exoskeleton, choosing the optimal way
to assemble the electrodes, making it easy to don and remove
the EMG sensor and exoskeleton, simplifying the calibration and
setup procedures, developing appropriate methods to process the
EMG signal, and maintaining motivation to participate in rehab
are all of significant importance.

There have been a few studies investigating simple solutions
for providing effective robotic assistance by exoskeletons (Lenzi
et al., 2012; Lince et al., 2017). Lenzi et al. (2012) modeled the
EMG–torque relationship by a second-order Butterworth filter
and applied an assistive torque proportional to the envelope of
the EMGs to an elbow exoskeleton. Their study showed that
subjects can compensate for the imprecision of torque estimates
and still benefit from robotic assistance. This approach has
the advantage that the proportional control greatly decreases
the complexity of setup, but it also suffers from the filtering
method used, which is unable to maintain smoothness and
responsiveness. Menegaldo (2017) found that the delay caused
by the Butterworth filter can be up to 320 ms, which is too
long to allow real-time control. Compared with a Butterworth
filter, a Kalman filter reduced both the delay and the computing
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demand remarkably (Menegaldo, 2017). Some passive training
devices like robots with continuous passive motion (CPM) were
also performed in the home setting (Lynch et al., 2005; Hu et al.,
2009; Mau-Moeller et al., 2014).

The study aims at improving the effectiveness of stroke
rehabilitation in the initial phase. Our efforts focus on
delivering intensive and motivational rehabilitation training to
these patients. To improve training intensity, realizing home
rehabilitationwith exoskeleton is definitely helpful, since it makes
rehabilitation easier to access. In order to motivate the patients,
we first choose EMG control to involve the patient’s neural system
into the rehabilitation. Second, biofeedback is provided to the
patient so that they can easily observe their muscle activities.
Third, a game is further developed to make the training process
more interesting and challenging. This study contributes to
making home rehabilitation accessible for the stroke patients at
the critical period, since most patients went home after 29–55
days in hospital (Jørgensen et al., 1995).

In the present study, we develop an EMG-controlled knee
exoskeleton to assist home rehabilitation and investigate whether
healthy subjects can use it to perform a challenging task
and further improve their control strategy after practicing a
visuomotor game. This user-friendly training system, which can
be applied to both stroke patients and healthy subjects, provides a
motivating and challenging training environment. Based on this
setup, we investigate whether training with an EMG-controlled
knee exoskeleton in a game context can provide significant motor
learning in healthy subjects.

As compared with passive training in the home setting like
a CPM device (Lynch et al., 2005; Hu et al., 2009; Mau-Moeller
et al., 2014), since training of the proposed system can be
performed actively, high effects should also be expected in the
functional recovery. Game contexts developed in this study are
also good for continuous training. Taking together, significant
differences are expected in the proposed system.

This paper describes the EMG sensor and the data processing
method, as well as the mechanical design and control strategy
of the exoskeleton for home-based therapy. A pilot experiment
on six healthy subjects establishes the feasibility of the training
system. Results concerning both the evaluation of the system and
the performance of the experimental subjects are presented and
discussed, and indicate that this home-used rehabilitation tool
shows promise for improving the outcomes for stroke patients
in the initial phase of rehabilitation.

2. MATERIALS AND METHODS

Six healthy subjects (four males and two females, mean age
24 years, range 22–26 years) who were naive to this training
systemwere recruited to the experiment. The study was approved
by the Biological and Medical Ethics Committee of the Beijing
University of Aeronautics and Astronautics in accordance with
the Declaration of Helsinki, and all subjects gave written
informed consent before participation.

EMG activity of the thigh muscles was recorded by a Myo
thigh-band (Figure 1) and then processed by a Kalman filter to

use in controlling an exoskeleton. The lower limb exoskeleton,
which has four active degrees of freedom (DOF), was seated on
a chair and used to assist the subject in knee rehabilitation. A
Flappy Bird game, which was implemented in Python 2.7 on
a standard computer with Ubuntu 14.04.03 operating system,
was used to motivate the subject to do active training, with the
bird stimulated by the knee joint of the exoskeleton. During the
training process, the subject was seated on the chair wearing
the Myo thigh-band and the exoskeleton. In the game context,
the subject needed to keep the flappy bird flying across a series
of pipes and obtain as high a score as possible by trying to
extend their shank against gravity to control the movement of
the knee exoskeleton. Multisensory simulation was provided to
the subject. This setup is intended to facilitate strengthening
of anti-gravity knee extensor muscles and improving knee joint
movement stability and accuracy.

2.1. The EMG Sensor
The Myo thigh-band (Figure 1), which was reassembled from
twoMyo armbands (Thalmic Labs Inc., www.myo.com), consists
of 16 dry surface EMG (sEMG) sensors and two nine-axis inertial
measurement units (IMUs) as well as two vibrating motors. The
thigh-band electrodes form an extendable cuff that is able to
adjust to the thigh in a flexible manner. A subject is able to don
and remove the thigh-band without the therapist needing to be
present. Vibrating motors are used to provide haptic feedback,
which is applied during the game play (described in more detail
below). With a sampling frequency of 200 Hz for raw sEMG
data, the Myo thigh-band communicates wirelessly with the host
computer via Bluetooth Low Energy (BLE).

2.2. Data Processing of the EMG
The “raw” EMG data from Myo thigh-band, which have been
rectified and low-pass filtered, are still quite noisy and cannot be
used directly. Traditional filtering methods like moving average
windowing (Lee et al., 2011; Chen and Wang, 2013) and the
Butterworth filter (Lenzi et al., 2012) have relatively long time lags
that make them unsuitable for real-time control, especially in the
challenging game context. Here a Kalman filter is used to process
the acquired raw EMG data.

Denoting the measured raw EMG by Yk and the filtered EMG
by Xk, we initialize the previous estimate Xk− 1 as X0 and its
estimated error Pk− 1 as P0. As depicted in Figure 2, the process
of using the Kalman filter to estimate EMG can be divided into
four steps. The first is the prediction step, in which the Kalman
filter produces an estimate of the current state variable Xkp , along
with its uncertainty or error in estimate Pkp according to the
previous states Xk− 1 and Pk− 1:

Xkp = Xk− 1 (1)

Pkp = Pk− 1 + Q (2)

Here we assume that the EMG estimate does not change for each
time step, so the prediction Xkp is the same as the previous state
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FIGURE 1 | Closed-loop rehabilitation process with the proposed training system.

FIGURE 2 | Block diagram of the Kalman filter, which involves four steps: (1) predicting current state; (2) calculating Kalman gain and producing current estimate;

(3) calculating estimate error; (4) updating state.

Xk− 1. In Equation (2), the process noise variance Q is added to
the estimate error Pkp .

Once the next measurement Yk, which is corrupted with
measurement noise variance R, has been observed, the estimate
is updated using a weighted average (Kalman gain KG):

KG = Pkp/(Pkp + R) (3)

Xk = Xkp + KG(Yk − Xkp ) (4)

The greater the certainty of the estimation, the larger is the
Kalman gain. Xk is the output of the Kalman filter, namely, the
filtered EMG.

Then the estimate error Pk needs to be updated too, as follows:

Pk = (1− KG)Pkp (5)

By changing the current state to the previous state, the algorithm
is recursive to the next round:

Xk− 1 = Xk (6)

Pk− 1 = Pk (7)

The Kalman filter assumes that all errors are Gaussian-
distributed. In the flowchart in Figure 2, for each measured raw
EMG Yk, there is an output filtered EMG Xk.
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Even though Kalman filter has been applied in EMG
processing (Menegaldo, 2017), the EMG model used here is
different. As described above, the prediction step (Equations 1, 2)
is based on ourmodeling on EMG. Since we aim to obtain a stable
output from the noisy raw EMG, we model the real or filtered
EMG signal as a constant signal. That is why the prediction of
the next state Xkp is the same as the previous state Xk− 1; this
model makes the computation cost lower and the output of the
filter smoother.

The Q and R values, which affect the filtering effect, were
obtained by trial and error. By comparing a list of Q and R
on variable raw EMG signals, we decided the Q and R with
sufficient output signals, which were neither too noisy nor too
delayed. In this study, the process noise variance Q = 0.0001,
and measurement noise variance R = 0.59948; the same values
were applied to all subjects and all channels. The control signal of
the exoskeleton is obtained from the mean over eight channels
of a filtered EMG signal related to the extensors of the knee
(quadriceps femoris).

2.3. Powered Lower Limb Exoskeleton
2.3.1. Actuation Design and Range of Motion
As shown in Figure 3, the powered lower limb exoskeleton
provides active assistance at both hip and knee joints in the
sagittal plane. Each active joint is driven by a brushless motor
(Maxon EC 90 flat, Maxon Motor AG, Switzerland) through a
harmonic reducer. The harmonic reducer (CSD-25-160-2UH,
Harmonic Drive Systems, Inc., Japan) of the hip joint has a
reduction ratio of 160:1 and provides a nominal joint torque
of 89.6 Nm, while the harmonic reducer (CSD-25-100-2UH,
Harmonic Drive Systems, Inc., Japan) of the knee joint has a
reduction ratio of 100:1 and provides a nominal joint torque of
56 Nm. The range of motion at the hip joint is 100◦ in extension
and 40◦ in flexion, while that at the knee joint is 110◦ in flexion
and 10◦ in hyperextension. The ankle joint, which is in parallel
with two linear springs, is a negatively adaptive joint with a range
of motion from 25◦ in flexion to 25◦ in extension.

FIGURE 3 | Lower limb exoskeleton without and with shell.

2.3.2. Structure and Weight
Most supporting parts of the exoskeleton are made of aluminum,
while its shell is 3D-printed. The lengths of both thigh and shank
can be changed and adjusted to take account of the wearer’s
leg length. As shown in Figure 3, the exoskeleton is attached to
the waist, thighs, shanks, and feet of the wearer. The fixation
system consists of flexible bandages together with supporting
connection parts on the exoskeleton, thus allowing for quick
and easy fastening. The total weight of the exoskeleton is 20 kg
(including the electronic components and battery), while the
weight of the exoskeleton’s lower leg is 0.92 kg.

2.3.3. Sensing and Electronics Design
The joint position is measured by an absolute encoder mounted
at the rotational shaft of each joint (Figure 3), whereas the joint
velocity is derived from the incremental encoder that is attached
to each motor. As depicted in Figure 4, real-time control is
performed by a digital signal processor (DSP) and three field
programmable gate arrays (FPGAs). The DSP acts as the main
controller, communicating with the host computer through a
serial port and sending control signals through a control area
network (CAN) bus to the motor drivers. The FPGAs collect
positional data from the absolute encoders through a BiSS-C
interface and communicate with the DSP by parallel ports in
real time.

The exoskeleton (motors and electronics) is powered by a 36V,
6800 mAh lithium-ion polymer battery, which weighs about
0.9 kg. In this experiment, since only one knee joint was activated
at one time, the exoskeleton could work for more than 3 h with
this battery, which was sufficient for our experiment.

2.3.4. Safety
To ensure the safety of the exoskeleton wearer, protection at
three levels is implemented. The first is at the software level,
limiting the moving range and moving speed of each joint in
the program. The second level is electronic protection, achieved
by mounting an overtravel-limit switch on each side of each
active joint (Figures 3, 4). If one of these switches is pressed,
i.e., if the exoskeleton has reached its limit of movement, the
power is cut off. In order to prevent too much force exerted to
the leg so as to hurt the user, maximum output torque of each
motor is limited by the motor driver. In addition, there is an
emergency switch handled by the experimenter to protect the
wearer in case of emergency. The third level of protection is
mechanical, preventing any joint from overtravel by means of
stops (Figure 3).

2.3.5. Control Algorithm
As shown in Figure 5, the real-time control algorithm of the
exoskeleton is based on position control with an inner velocity
control loop. Proportional (P) to the filtered EMG, the desired
knee joint position θd is sent to a proportional-derivative (PD)
controller, which works as the position controller. This position
controller generates the desired angular velocity ωd according to
the error between the desired joint position θd and the actual joint
position θa, and sends it to the velocity controller. The velocity
controller using a proportional-integral-derivative (PID) control
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strategy is implemented in the motor driver, which acquires the
motor velocity ωmeas from the incremental encoder and sends a
control commend ωcom to the motor.

2.4. Performing the Visuomotor Training
Game
The visuomotor training game requires the subject to sit on a
chair wearing the Myo thigh-band and exoskeleton to perform
knee extension movement against gravity. Before performing

FIGURE 4 | Schematic representation of the control system and the sensing

and electronics design of the exoskeleton.

FIGURE 5 | Block diagram of the control algorithm. The joint positions of the

exoskeleton are proportionally controlled by the filtered sEMG signal of the

subject.

the training task, some preparation and calibration need to be
done. The general testing procedure is depicted in Figure 6

and includes (i) donning the Myo thigh-band, (ii) donning the
lower limb exoskeleton, (iii) determining the maximal-voluntary
EMG range achievable by the subject, and (iv) performing the
visuomotor training task. The user is provided with guidance and
also visual feedback for each step. The user is allowed to repeat
the procedure if necessary.

2.4.1. Donning the Myo Thigh-band
The extensors of the knee (quadriceps femoris muscle, etc.) are
the muscles most significantly involved in knee extension against
gravity, whereas the activation level of the flexors (biceps femoris
muscle, etc.) is very low (Chen X. et al., 2017). This is because
in such voluntary movements, the subject can flex his or her
knee joint under the force of gravity without activating the flexor
muscles (Chen X. et al., 2017). Therefore, we collected EMG data
only for the knee extensors. The subject was instructed to put
the Myo thigh-band on the middle of right or left thigh (around
200 mm relative to the knee joint, where the rectus femoris
located; Figure 7). During the test, only half of the electrodes
of the thigh-band were activated, namely, eight channels on the
quadriceps femoris side of the thigh. Therefore, when donning
the Myo thigh-band, the activated part (with a blue flashing
light) was placed on the quadriceps femoris side (front side) of
the thigh.

FIGURE 6 | Procedure for performing the visuomotor training game.
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FIGURE 7 | Subject with Myo thigh-band on the left or right thigh. Eight

activated electrodes/channels (Ch1, …, Ch8) of the Myo thigh-band were

placed on the front side of the thigh by adjusting channel 4 (Ch 4) with a blue

flashing light in the middle of the front thigh.

2.4.2. Donning the Knee Exoskeleton
The exoskeleton was placed on a comfortable chair with the hip
joints fixed at 90◦ in extension and the knee joints initialized
at 90◦ in flexion (Figure 6). The subject just needed to sit
on the chair and fix their shanks, thighs, and waist to the
supporting parts of the exoskeleton. The experimenter provided
any necessary assistance to the subject. In this setup, only
one knee joint of the exoskeleton was activated and could be
controlled by the sEMG of the subject (Figure 5), whereas the
other three active joints were fixed at the initial joint angles.

In the following description, a knee joint angle of 0◦ represents
the sitting posture, i.e., with the thigh perpendicular to the shank,
while a knee joint angle of 90◦ means that the thigh and shank are
in the same line.

2.4.3. Determining Maximal EMG Activity
After the subject had donned the Myo thigh-band and the
exoskeleton, their maximal EMG activity was determined
(Figure 6). The signal using here was the mean over eight
channels of the filtered EMG related to knee extensors. During
this process, the subject first relaxed for 5 s and then performed
knee isometric contraction for 5 s with the exoskeleton on. We
determined the maximal-voluntary EMG (MVE) that could be
maintained for at least 1 s with maximal voluntary contraction
of knee extensors. Similarly, the bias (Bias) was obtained from
the measured EMG signal when the muscles were relaxed.
Since patients in the post-stroke sensitive period are also
unable to produce overt movement, testing MVE with isometric
contraction is meaningful for both stroke patients and healthy
subjects. The value obtained was used to adapt the knee

exoskeleton movement individually to the EMG range of the
subject. In other words, the knee joint angle was proportional
to the filtered EMG, with Bias and MVE being related to
the minimum (0◦) and maximum (90◦) knee joint angles
respectively. To avoid fatigue, only 60% of the maximal EMG
activity was applied for the below training task, which means that
the knee joint movement range was from 0◦ to 54◦.

2.4.4. Flappy Bird Visuomotor Training Task
Previous studies shows that task-oriented intense training in
an environment that provides timely feedback, motivation,
stimulation and confidence significantly improves rehabilitation
outcome (Johansson, 2011). Videogame-based intervention
with these features has attracted attention. Figure 6 shows
a screenshot of the Flappy Bird visuomotor training task,
which depicts a bird flying in the sky with some pipes as
obstacles. The task aims at improving knee joint movement
stability and accuracy, as well as thigh extensor muscle strength
against gravity. It also has potential to facilitate motor recovery
and provide new possibilities for cortical reorganization and
enhancement of functionalmobility (Santos et al., 2016). The goal
of this task is to control the bird’s flight across the pipes. The
position of the flappy bird in the vertical direction on the screen
is proportional to the knee joint angle of the exoskeleton, which
means that the lowest and highest positions of the bird in the
sky correspond to knee joint angles of 0◦ and 54◦, respectively.
All subjects were explained and guided how to use their muscles
(or EMG) to control the exoskeleton or the bird. Extension
movement or bird flying up can be achieved by activating their
thigh extensors; flexion movement or bird flying down can be
achieved by relaxing their thigh extensors.

In each block, the subject had four bird lives (or trials). If
the bird flew across a pair of pipes (upper and lower pipes), the
subject gained one point as a reward. However, if the bird hit the
pipes, the subject would lose one bird life and the bird would
hover on the sky and stop moving forward. When the subject
was ready for the next flight, he or she could press the space key
to start the next bird life and move forward again. The subject’s
aim was to obtain as many points as possible with four bird lives.
Once all four lives had finished, the game stopped and the subject
could choose either to exit or to replay the game. To prevent
fatigue, subjects were provided with rest intervals throughout
the experiment (Video S1).

Multisensory (vision, audio, touch) feedback to the subject
about the movement performance was achieved (Figure 1).
Different sounds indicating gaining one point or losing one
bird life were played along the game. Haptic feedback generated
from the vibrating motor of the Myo thigh-band worked as
a punishment when the bird hit the pipes. Such enriched
game experiences have been demonstrated to increase patients’
motivation and facilitate functional recovery by engaging
appropriate neural circuits in the motor system (Perez-Marcos
et al., 2017).

To make the game more interesting and challenging, some
of its parameters were adjusted during the process. The pairs
of pipes appeared randomly at different heights, and the gap
between the pipes in each pair became narrower as the score
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increased. At the same time, the bird’s flying speed in the
horizontal direction also increased with the score. Both the
narrowing gap and increasing flying speed made the game
become more and more difficult, which meant that the subject
needed not only to move the knee joint in a more stable
manner, but also to respond to the changes in the pipes
more quickly. Neurorehabilitation programs should include
activities or tasks that enable patients to float in their Flow
Zone, defined as where the person is at a high level of
enjoyment with a balance between the difficulty of the task
and the abilities of the person (Perez-Marcos et al., 2018).
Following this principle, the Flappy Bird game tried to make
the subject feel comfortably challenged and highly engaged by
the task. Maintaining a state of flow is important for promoting
patients adherence to treatment, especially for home-based
rehabilitation (Perez-Marcos et al., 2018).

Figure 8 shows how the difficulty of the game changed, as
represented by the increasing bird velocity and decreasing gap
size between pipes, as the score increased. The velocity of the
bird in the horizontal direction was low at first and increased
gradually to 2.5 times its initial value. At the same time, the
gap size decreased from 300 pixels to 190 pixels (the size of the
bird remained at 48 pixels throughout). Once the score exceeded
100, the level of difficulty ceased to change. The low initial speed
and relatively wide gap between pipes allowed the subject to
practice and learn the game at the beginning. Once the subject
had become familiar with the control, the game becamemore and
more challenging, which also provided some motivation for the
subject to continue to play.

2.5. Experimental Design
Six healthy subjects were recruited to take part in the experiment
to investigate whether they could use the EMG-controlled knee
exoskeleton to assist them in home rehabilitation and to further
improve the EMG control strategy with repetitive task training.
Each subject performed a 10-block visuomotor training game
with each leg, with interblock rest intervals of 30 s. In order
to control for leg dominance, subjects were randomly assigned
to two groups. Half of the subjects started with the left leg and
the other half with the right leg. After finishing the game with
one leg, they transferred the Myo thigh-band to the other leg
and continued.

The experimental protocol is shown in Figure 9. Since all the
subjects were naive to the game, the experimenter first explained
the game to them and then guided them in donning the Myo
thigh-band and exoskeleton. After the MVE had been detected,
the subjects played the game themselves. The experimenter sat
beside the subject during the whole testing procedure with the
emergency switch in hand in case of emergency and also to
provide any guidance needed. One session test, which included
10 blocks training on the left leg and 10 blocks training on the
right leg, lasted around 75 min.

2.6. Evaluation Metrics
2.6.1. Score
The score is the points obtained by the subject within one block.
As the main evaluation variable of this visuomotor game, we

further calculated the mean and standard deviation (SD) of the
score across six subjects for both the first and the second legs.

2.6.2. Muscle Activation Level
In order to quantify how much the subjects actually activated
their muscles, we defined the muscle activation level (MAL) at
each time step as

0 ≤ MAL(t) =
EMG(t)− Bias

MVE− Bias
≤ 1, (8)

where EMG(t) was the processed EMG signal extracted from the
thigh extensors. The parameters MVE and Bias were measured
during the calibration process. Then, we can obtain mean muscle
activation level (mMAL) in each block via

mMAL =

∑T
t= 0MAL(t)

T
, (9)

where T was the total time steps in one block. Similarly, we also
calculated the mean and SD ofmMAL across six subjects for both
the first and the second legs.

2.6.3. Block Activation Time
The block activation time (BAT) is the time taken for the
subject to actively play one block of the Flappy Bird game. Block
activation time represents active therapy duration provided to
the subject. As an important metric reflecting the therapy dose
or intensity, it is a critical factor to achieve a positive outcome.
The mean and SD of block activation time across six subjects for
the each leg were calculated.

2.6.4. Statistical Analysis
A one-way analysis of variance (one-way ANOVA) was
performed when appropriate for the above metrics.

3. RESULTS

To evaluate the performance of the training system as well as
the subjects, we analyzed the data from the experiment, with the
following results.

3.1. Time to Set Up the Training
For home rehabilitation, it is important to simplify the setup
process, since the therapist cannot be present at each session.
With the Myo thigh-band, the electrodes do not need to be
placed precisely over specific muscles. The subject just needs to
don the thigh-band with the activated part on the front of the
thigh by themselves or with the assistance of anyone around.
The only calibration procedure required is to determine the
MVE automatically with the participant performing according
to onscreen guidance. One participant was asked to set up
the training independently 10 times, and the time spent was
measured. According to this test, the entire setup process,
including donning theMyo thigh-band and knee exoskeleton and
determining MVE, took 73.2± 10.7 s.
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FIGURE 8 | The game becomes more challenging as the score increases. (A) Change in the velocity of the bird. (B) Change in the gap between the upper and lower

pipes in each pair.

FIGURE 9 | Experimental protocol. Subjects were assigned to two groups, with one group (three subjects) starting with the left leg and the other group (three

subjects) with the right leg. All subjects performed the training task with both legs. For each leg test, after determining MVE, 10 blocks training game was performed,

with each block consisted of four bird lives.

3.2. Performance of the Kalman Filter
To quantify the performance of the Kalman filter, one subject
was asked to activate the muscle extensors three times in 30 s.
The raw Myo EMG data from one channel measuring the
extensors and the corresponding EMG data filtered using the
Kalman filter are shown in Figure 10, from which it can be seen
that the filtered EMG is much smoother than the raw EMG.
As shown in the inset of Figure 10, a fast Fourier transform
(FFT) was performed to analyze the frequencies of the raw
and filtered EMG data. The FFT analysis demonstrated that
the Kalman filter attenuated signal noise at frequencies above
1 Hz in the raw EMG. We implemented a cross-correlation
analysis (Cohen, 2014) on the raw and filtered EMG data, and
the result showed that the delay caused by the Kalman filter
was 64 ms.

3.3. Performance of the Knee Exoskeleton
Since the control strategy of the knee exoskeleton is based on
position control, the most important evaluation criterion is its
tracking ability (Jia, 2000), which can be quantified by the root

mean square error (RMSE) between the desired joint angle and
the actual joint angle.

Figure 11 shows the typical knee joint angle tracking
performance of the exoskeleton, based on data obtained from one
subject in this experiment. The desired joint angle is proportional
to the filtered EMG signal (the mean over the eight channels
of the filtered EMG) and the actual joint angle is measured by
the absolute encoder at the knee joint. In this figure, the lower
values (< 10◦) are the relaxed phase, while the higher values
(> 20◦) indicate how the participant controlled the bird to cross
the pipes in the game.We can see that the actual joint angle of the
exoskeleton generally moved along the desired joint angle.

We analyzed the data (10 blocks for left legs and 10 blocks
for right legs) from all six subjects performing the Flappy Bird
game, considering two legs separately or both together, and
the results are shown in Table 1. As can be seen, the RMSE
between the desired and actual joint angles was 1.56◦ ± 0.21◦

when we considered both legs together. A one-way analysis
of variance (one-way ANOVA) was performed in Python and
further indicated that there was no significant difference between
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FIGURE 10 | Comparison between raw EMG and filtered EMG. The inset shows the FFT analysis on a logarithmic scale up to 5 Hz.

FIGURE 11 | (A,B) Left and right knee joint angle tracking performance of the exoskeleton from one subject in one typical trial of the experiment. Blue dash lines

show the desired joint angles (DJAng), and red solid lines represent the actual joint angles (AJAng).

TABLE 1 | RMSE and time lag of the exoskeleton across subjects.

Leg RMSE (deg) Time lag (ms)

Both legs 1.56± 0.21 110± 32

Left legs 1.54± 0.22 108± 28

Right legs 1.59± 0.19 122± 36

This table displays the mean and standard deviation of RMSE and time lag of the

exoskeleton across subjects. All six subjects, using either left legs or right legs, were

analyzed.

left (1.54◦ ± 0.22◦) and right (1.59◦ ± 0.19◦) legs on the RMSE
metrics (p = 0.706 > 0.05).

The time lag between the desired and actual joint angles was
calculated using a cross-correlation analysis (Cohen, 2014), and
the results are also presented in Table 1. The time lag caused by
the exoskeleton was around 110 ms and there was no significant
difference between left and right legs in terms of time lag (p =

0.864 > 0.05) according to one-way ANOVA.

3.4. Performance of the Subjects
3.4.1. Score
We quantified the performance of the subjects by the scores
they obtained in each block. Since each subject took part in the
game using both legs in turn (either left and then right or vice
versa), we analyzed the performance of the first and second legs
to be tested. As can be seen in Figures 12A,B, for the first leg,
the performance generally became better and better (score from
41.3± 15.2 to 67.0± 17.4) and reached its highest level at the end
of the game. However, for the second leg, the performance was
initially better (a starting score of 53.8 ± 26.7), and rose quickly
to give the highest score (78.5 ± 25.2) at block 5, after which it
deteriorated and then generally kept stable until the end of the
game (61.7 ± 28.7). It can be seen that for both the first and
second legs, the score improved after 10 blocks training, even
though no significant difference was found (p > 0.05). This may
be because the game becamemore andmore challenging with the
score increasing, which means gaining one more point at the end
is much harder than at the beginning.
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FIGURE 12 | (A) Block score averaged across the first leg of subjects. (B) Block score averaged across the second leg of subjects. Filled points show the mean

scores, and error bars represent the standard deviation.

3.4.2. Muscle Activation Level
Muscle activation level analysis showed that mMAL generally
kept stable between 20% and 30% during the whole training
process (Figure 13). One-way ANOVA indicated that there was
no significant difference between each block (p > 0.05) for
both legs.

3.4.3. Block Activation Time
The block activation time of the first and second legs is depicted
in Figure 14. For the first leg, the block activation time increased
from 111.8± 22.8 to 152.4± 32.2 s. For the second leg, the block
activation time increased from 129.0 ± 41.5 to 139.1 ± 48.89 s.
No significant improvement was found at the end of the training
for both legs (p > 0.05).

4. DISCUSSION

The observation or imagination of body movements facilitates
motor recovery and provides new possibilities for cortical
reorganization and enhancement of functional mobility (Santos
et al., 2016). Thus, it appears that movement visualization may
play an important role in motor rehabilitation (Santos et al.,
2016). Motor recovery of stroke patients who are too weak
to make overt movements is a big challenge, since voluntary
muscular contractions do not lead to significant sensory
feedback, which makes rehabilitation training less effective in
motivating and enhancing motor skill learning gains (Pereira
et al., 2015). The use of EMG-controlled exoskeletons together
with visuomotor training tasks might provide a new opportunity
for this group of patients. Nevertheless, previous studies of EMG
control found low predictability and high variability, which may
impair motor learning.

In the present paper, a preliminary study was conducted
and we found that healthy subjects could learn to control
a user-friendly knee exoskeleton to perform an interesting
visually guided game using EMG signals in a simulated home
setting. The setup was significantly simplified by improving the
system in a number of ways, such as reassembling the EMG
electrodes and introducing a new signal processing method,
thereby making it possible to assist patients undergoing home

rehabilitation. The proposed home-based rehabilitation system
should allow improvements in the intensity of training and make
rehabilitationmore convenient for the patient. The results further
indicated that all subjects had better task performance through
training. Initial feedback from voluntary subjects confirmed that
this interesting and challenging training system is not only easy
to use but also provides motivation for the patient, making it
a promising strategy for active training of patients in the early
rehabilitation phase.

4.1. EMG Controller and Knee Exoskeleton:
System Characteristics
By combining two Myo armbands, the Myo thigh-band used
here provides a more convenient instrument to acquire EMG
data online compared with traditional EMG systems (see, e.g.,
Wolf and Binder-Macleod, 1983; Armagan and Oner, 2003; Song
and Tong, 2005; Crow et al., 2009; Buongiorno et al., 2016;
Peternel et al., 2016; Ao et al., 2017; Chen X. et al., 2017;
Irastorza-Landa et al., 2017; Yun et al., 2017). In particular,
both patients and healthy subjects could don and remove the
device easily without the therapist being present because of
its use of dry electrodes and expandable flex. By guiding the
subject to perform one-knee isometric extending contraction at a
maximum level through a calibration routine, the training system
is individualized, which provides an intrinsically adaptive aspect
when the training lasts several days or even weeks. The short
setup time, with a calibration process taking only about 73.2 s,
makes this system greatly appreciated by users.

Another challenge facing EMG-based control systems is the
need to transform highly variable raw EMG into a smooth,
rapid response control signal. Since delays can impair visuomotor
control and learning (Honda et al., 2012), here we used a Kalman
filter to remove signal noise above 1.2 Hz with a time lag of 64ms.
Because the knee extension involved almost all the muscles on
the quadriceps femoris side, our control signal used the mean
over eight channels of the filtered EMG on the extensor side of
the thigh.

The knee exoskeleton here acts like a therapist, providing
assistance to patients in their rehabilitation by performing a
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FIGURE 13 | (A) Mean muscle activation level averaged across the first leg of subjects. (B) Mean muscle activation level averaged across the second leg of subjects.

Filled points show the mean mMAL, and error bars represent the standard deviation.

FIGURE 14 | (A) Block activation time averaged across the first leg of subjects. (B) Block activation time averaged across the second leg of subjects. Filled points

show the mean block activation time, and error bars represent the standard deviation.

specific task, but with control and intention provided by the
patients themselves. The exoskeleton has the potential to assist
stroke patients to move their lower legs as they wish so that
movement visualization can be achieved. The time lag caused by
the exoskeleton was about 110 ms.

Previous studies have shown that electromechanical delay
(EMD), which is typically defined as the time lag between
electrical activation of a muscle and the onset of the exerted force
(Cavanagh and Komi, 1979), is between 30 and 150 ms (Zhou
et al., 1995; Blackburn et al., 2009; Nordez et al., 2009; Yavuz et al.,
2010). Úbeda et al. (2017) even found EMDs ranging from 112 to
361 ms. Considering that EMG appeared about 125 ms before
force generation (Blackburn et al., 2009), the 170 ms time lag in
our training system (which was caused by both the filter and the
exoskeleton) is very short and acceptable. Most subjects in our
experiment said that they did not feel any time lag in the system.

4.2. Flappy Bird Game
For stroke rehabilitation, motivation is especially important.
Studies shows that motivation influence on the effectiveness on
rehabilitation (Rapoliene, 2018). Activating patient participation
in the therapy is a guiding principle of rehabilitation (Sitaram

et al., 2016). The Flappy Bird game not only makes the
rehabilitation process more interesting, but also motivates the
patient to take an active part in the training. Making the game
neither too easy nor too difficult for patients is key: that is to
say, the game should be fitted to the patients, rather than the
other way round. By adjusting the difficulty to the patient’s pace of
recovery not only maximizes training potential, but also prevents
habituation and frustration (Perez-Marcos et al., 2018). Enable
patients to float in their Flow Zone facilitates keeping patient
motivation at an optimal level during the long rehabilitation
process (Perez-Marcos et al., 2018). In our experiment, we started
the task with a low level of difficulty and gradually made the task
become ever more challenging. This allowed the subjects to learn
and adjust to the task at the beginning and then improve their
skill gradually as the difficulty increased.

Rehabilitation dose, which might be a critical factor to achieve
a positive outcome, can be also increased since this challenging
game can motivate subjects to continue with rehabilitation with
the aim of improving their scores in the game. Appropriate
and timely feedback (e.g., reward and punishment) together
with adaptation of difficulty levels can boost and maintain
patients’ motivation as long as possible (Perez-Marcos et al.,
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2018). Besides positively affecting motivation and enjoyment
of training, videogames also impact cognition. In particular,
playing action videogames (i.e., games that emphasize physical
challenges) has been shown to robustly enhance attention and
spatial cognition (Perez-Marcos et al., 2018).

Brain plasticity is the base of rehabilitation (Johansson, 2000).
Closed-loop neurofeedback and real-time training is good for
brain plasticity (Sitaram et al., 2016). As shown in Figure 1,
the flappy bird in the game, the EMG controller, and the knee
exoskeleton together with the subject form a closed control loop.
In this loop, playing the game to obtain as many points as
possible becomes the objective of the patient. This makes the
patient generate intentional movement. The Myo thigh-band
records the EMG signals, and the EMG controller decodes these
to produce the intended knee movement. By actuating the motor,
the patient can perform the desiredmovement with the assistance
of the knee exoskeleton. With this complete loop, we actually
change the objective of stroke patients from doing rehabilitation
exercises to playing an interesting game. All the movements in
the loop are actively performed by the patients themselves. By
involving the corticomotor system in the training process, we
may make rehabilitation more effective.

There is substantial evidence that the post-operative
environment can influence the outcome after stroke (Jess
and Hannan, 2006). Enriched environment and rehabilitation
augments neuroplastic processes and compensates neuronal
growth, which ultimately contributes to improved motor
function and cognitive skills (Biernaskie and Corbett, 2001).
Multisensory simulation from the videogame provides patients
with enriched rehabilitation, which is able to evoke the mirror
neuron system and mechanisms of action observation (Perez-
Marcos et al., 2018). In the Flappy Bird game, not only visual, but
also auditory and haptic feedbacks were implemented. It involves
subject’s auditory nervous system and haptic perceptual system
into the training process. Multisensory stimulation, challenging
gaming environment, incorporating closed-loop mechanics can
boost the rehabilitation effect (Perez-Marcos et al., 2018).

4.3. Skill Acquisition by the Subjects
In the visuomotor training task, the randomized pipe height
requires the subjects to voluntarily activate and maintain their
levels of muscle excitement, while the variation in the gap
between pipes demands that the subjects actively control their
level of muscular accuracy. An improved final score in each block
indicated that subjects improved their control skill during one
training session. The performance with the second leg, which
exhibited not only a higher starting score and but also the highest
overall score, was generally better than the performance with
the first leg. This indicated that healthy subjects could shift their
learned skill from one leg to another. However, it remains to be
seen if the same would be true in stroke.

The activation level of the muscles did not change too much
during training. This is because the game setting is similar for
each block. By changing the knee joint movement range, the
muscle activity can be affected. However, in order to quantify
the score in the same difficulty level, we did not change it
in this experiment. The block activation time relating to the

rehabilitation dose, was improved. However, no significant effect
was found, which might be caused by the short training period.
By increasing the training sessions, the block activation time has
potential to improve more.

In this study, we quantified how much the participants
actually activated their muscles, and the timing of that activation.
Task performance and training dose were improved even though
the training period was quite short. By increasing the training
period, significant improvement is possible.

4.4. Limitations and Future Directions
Even though we believe that the proposed EMG-controlled
exoskeleton training system has the potential to enhance stroke
rehabilitation outcomes, several potential problems still need to
be considered before it can be adopted for use with patients.
First, although the sample rate of the Myo thigh-band and the
filtered EMG signal quality were adequate for healthy subjects,
more test needs to be done to decide whether this device and
the filter method are appropriate for stroke patients. By applying
this device and filter method to visual feedback tasks like EMG
based target tracking, we may be able to collect EMG data
from stroke patients. We can further prove whether the filtering
method working on them. Second, adapting the difficulty of
the game individually to keep patients motivated may increase
the acceptability of the system by patients. Since gamified
tasks can also help strengthen brain modulation, adapting
the training based on the patient’s needs and performance
can make the rehabilitation program more effective (Perez-
Marcos et al., 2018). Third, the range of motion, which also
influences the muscle activation level during training, will also
be individualized for stroke patients. In addition, although the
knee exoskeleton could be proportionally controlled by healthy
subjects, there is still concern regarding whether this will be
the case for stroke patients, especially given the possible risk
of additional injury during training. For example, patients’
unwanted muscle activity like spasticity may also cause the
exoskeleton tomove proportionally, whichmay hurt the patients.
More safety measures should be taken and tested. Finally, given
the knee flexion movement also involved knee flexors, it is worth
to test whether collecting knee flexors EMG and introducing it
to the control could lead to a better performance. Whether the
proposed training system can be realized in stroke patients with
very weak muscle activity is something that will be tested in
the future.

5. CONCLUSION

This paper has described the development and evaluation
of a rehabilitation system for home use that combines an
EMG-controlled exoskeleton driven by knee extensors and
an interesting visuomotor game that provides motivation for
patients. By overcoming a number of difficulties, we have made
it possible for the system to be used without the need for
a therapist to be present at each session, thus significantly
decreasing the cost of training and increasing the intensity and
outcome of the rehabilitation process. Initial testing in healthy
subjects suggests that using the EMG-controlled exoskeleton in
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a game context to carry out rehabilitation is possible and that
the training system facilitates learning of motor skills. Further
tests need to be done on stroke patients with low muscle
activity to determine whether the EMG-controlled exoskeleton
and visuomotor training task implemented here are suitable for
them. A user-friendly home rehabilitation tool like this may
improve the outcomes of rehabilitation for patients in the initial
rehabilitation phase.
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(2016). Adaptive control of exoskeleton robots for periodic assistive
behaviours based on EMG feedback minimisation. PLoS ONE 11:e0148942.
doi: 10.1371/journal.pone.0148942

Rapoliene, J. (2018). Stroke patients motivation influence on the effectiveness of
occupational therapy. Rehabil. Res. Pract. 2018, 1–7. doi: 10.1155/2018/9367942

Santos, L. F. D., Christ, O., Mate, K., Schmidt, H., Krüger, J., and Dohle,
C. (2016). Movement visualisation in virtual reality rehabilitation of the
lower limb: a systematic review. Biomed. Eng. Online 15(Suppl. 3), 75–88.
doi: 10.1186/s12938-016-0289-4

Sitaram, R., Ros, T., Stoeckel, L., Haller, S., Scharnowski, F., Lewispeacock, J., et al.
(2016). Closed-loop brain training: the science of neurofeedback. Nat. Rev.
Neurosci. 18:86. doi: 10.1038/nrn.2016.164

Sivan, M., Gallagher, J., Makower, S., Keeling, D., Bhakta, B., O’Connor, R. J.,
et al. (2014). Home-based computer assisted arm rehabilitation (hCAAR)
robotic device for upper limb exercise after stroke: results of a feasibility
study in home setting. J. Neuroeng. Rehabil. 11:163. doi: 10.1186/1743-000
3-11-163

Song, R., and Tong, D. K. Y. (2005). Using recurrent artificial neural network
model to estimate voluntary elbow torque in dynamic situations. Med. Biol.

Eng. Comput. 43, 473–480. doi: 10.1007/BF02344728
Tucker, M. R., Olivier, J., Pagel, A., Bleuler, H., Bouri, M., Lambercy, O., et al.

(2015). Control strategies for active lower extremity prosthetics and orthotics:
a review. J. Neuroeng. Rehabil. 12:1. doi: 10.1186/1743-0003-12-1

Úbeda, A., Vecchio, A. D., Sartori, M., Puente, S. T., Torres, F., Azorín, J. M.,
et al. (2017). “Electromechanical delay in the tibialis anterior muscle during
time-varying ankle dorsiflexion,” in International Conference on Rehabilitation

Robotics (ICORR) (London), 68–71.
Wolf, S. L., and Binder-Macleod, S. A. (1983). Electromyographic biofeedback

applications to the hemiplegic patient. changes in upper extremity
neuromuscular and functional status. Phys. Ther. 63, 1393–403.
doi: 10.1093/ptj/63.9.1393

Yavuz, S. U., Sendemir Urkmez, A., and Türker, K. S. (2010). Effect of gender, age,
fatigue and contraction level on electromechanical delay. Clin. Neurophysiol.
121, 1700–1706. doi: 10.1016/j.clinph.2009.10.039

Yun, Y., Dancausse, S., Esmatloo, P., Serrato, A., Merring, C. A., and Deshpande,
A. D. (2017). “An EMG-driven assistive hand exoskeleton for spinal cord
injury patients: Maestro,” in IEEE International Conference on Robotics and

Automation (ICRA) (Singapore).
Zeiler, S. R., and Krakauer, J. W. (2013). The interaction between training

and plasticity in the poststroke brain. Curr. Opin. Neurol. 26, 609–16.
doi: 10.1097/WCO.0000000000000025

Zhou, S., Lawson, D. L., Morrison, W. E., and Fairweather, I. (1995).
Electromechanical delay in isometric muscle contractions evoked by voluntary,
reflex and electrical stimulation. Eur. J. Appl. Physiol. Occup. Physiol. 70,
138–145. doi: 10.1007/BF00361541

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Lyu, Chen, Ding, Wang, Pei and Zhang. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 15 August 2019 | Volume 13 | Article 67

https://doi.org/10.1038/nrn1970
https://doi.org/10.1109/87.845885
https://doi.org/10.1161/01.STR.31.1.223
https://doi.org/10.1111/j.1600-0404.2010.01417.x
https://doi.org/10.1161/01.STR.26.7.1178
https://doi.org/10.1016/S0140-6736(11)60325-5
https://doi.org/10.1016/S1474-4422(09)70150-4
https://doi.org/10.1109/TNSRE.2010.2079334
https://doi.org/10.1109/TBME.2012.2198821
https://doi.org/10.1191/0269215505cr901oa
https://doi.org/10.1371/journal.pone.0206871
https://doi.org/10.1186/1477-7525-12-68
https://doi.org/10.1007/s00422-017-0724-z
https://doi.org/10.1038/nrn2735
https://doi.org/10.1152/japplphysiol.00221.2009
https://doi.org/10.1310/tsr1902-122
https://doi.org/10.3389/fpsyg.2018.02120
https://doi.org/10.1186/s12984-017-0328-9
https://doi.org/10.1371/journal.pone.0148942
https://doi.org/10.1155/2018/9367942
https://doi.org/10.1186/s12938-016-0289-4
https://doi.org/10.1038/nrn.2016.164
https://doi.org/10.1186/1743-0003-11-163
https://doi.org/10.1007/BF02344728
https://doi.org/10.1186/1743-0003-12-1
https://doi.org/10.1093/ptj/63.9.1393
https://doi.org/10.1016/j.clinph.2009.10.039
https://doi.org/10.1097/WCO.0000000000000025
https://doi.org/10.1007/BF00361541
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	Development of an EMG-Controlled Knee Exoskeleton to Assist Home Rehabilitation in a Game Context
	1. Introduction
	2. Materials and Methods
	2.1. The EMG Sensor
	2.2. Data Processing of the EMG
	2.3. Powered Lower Limb Exoskeleton
	2.3.1. Actuation Design and Range of Motion
	2.3.2. Structure and Weight
	2.3.3. Sensing and Electronics Design
	2.3.4. Safety
	2.3.5. Control Algorithm

	2.4. Performing the Visuomotor Training Game
	2.4.1. Donning the Myo Thigh-band
	2.4.2. Donning the Knee Exoskeleton
	2.4.3. Determining Maximal EMG Activity
	2.4.4. Flappy Bird Visuomotor Training Task

	2.5. Experimental Design
	2.6. Evaluation Metrics
	2.6.1. Score
	2.6.2. Muscle Activation Level
	2.6.3. Block Activation Time
	2.6.4. Statistical Analysis


	3. Results
	3.1. Time to Set Up the Training
	3.2. Performance of the Kalman Filter
	3.3. Performance of the Knee Exoskeleton
	3.4. Performance of the Subjects
	3.4.1. Score
	3.4.2. Muscle Activation Level
	3.4.3. Block Activation Time


	4. Discussion
	4.1. EMG Controller and Knee Exoskeleton: System Characteristics
	4.2. Flappy Bird Game
	4.3. Skill Acquisition by the Subjects
	4.4. Limitations and Future Directions

	5. Conclusion
	Data Availability
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


