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ABSTRACT

Pulmonary inflammation can contribute to the development of lung cancer in humans. We investigated whether
pulmonary inflammation alters the genotoxicity of polycyclic aromatic hydrocarbons (PAHs) in the lungs of mice and
what mechanisms are involved. To model nonallergic acute inflammation, mice were exposed intranasally to
lipopolysaccharide (LPS; 20mg/mouse) and then instilled intratracheally with benzo[a]pyrene (BaP; 0.5 mg/mouse).
BaP-DNA adduct levels, measured by 32P-postlabeling analysis, were approximately 3-fold higher in the lungs of LPS/
BaP-treated mice than in mice treated with BaP alone. Pulmonary Cyp1a1 enzyme activity was decreased in LPS/BaP-treated
mice relative to BaP-treated mice suggesting that pulmonary inflammation impacted on BaP-induced Cyp1a1 activity in the
lung. Our results showed that Cyp1a1 appears to be important for BaP detoxification in vivo and that the decrease of
pulmonary Cyp1a1 activity in LPS/BaP-treated mice results in a decrease of pulmonary BaP detoxification, thereby
enhancing BaP genotoxicity (ie, DNA adduct formation) in the lung. Because less BaP was detoxified by Cyp1a1 in the lungs
of LPS/BaP-treated mice, more BaP circulated via the blood to extrapulmonary tissues relative to mice treated with BaP only.
Indeed, we observed higher BaP-DNA adduct levels in livers of LPS/BaP-treated mice compared with BaP-treated mice.
Our results indicate that pulmonary inflammation could be a critical determinant in the induction of genotoxicity in the
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lung by PAHs like BaP. Cyp1a1 appears to be involved in both BaP bioactivation and detoxification although the
contribution of other enzymes to BaP-DNA adduct formation in lung and liver under inflammatory conditions remains
to be explored.

Key words: benzo[a]pyrene; pulmonary inflammation; cytochrome P450; carcinogen metabolism; DNA adducts; bronchoal-
veolar lavage

Globally, lung cancer is the leading cause of cancer death.
Tobacco smoking is the overwhelming cause of lung cancer, al-
though vehicle engine exhaust (eg, diesel exhaust) and ambient
air pollution are also implicated (IARC, 2013; Loomis et al., 2013).
Inflammatory diseases of the lung, including fibrosis and
chronic obstructive pulmonary disease (COPD), are associated
with higher lung cancer risk (Brody and Spira, 2006;
Schottenfeld and Beebe-Dimmer, 2006). Lung cancer risk in
smokers with COPD is increased up to 10-fold in comparison to
smokers without COPD (Brody and Spira, 2006). Many inflam-
matory agents can contribute to the development of diseases
like COPD or asthma, including inhaled combustion-derived
particles such as cigarette smoke, ambient air particulate mat-
ter, and diesel exhaust particles (Kelly and Fussell, 2011).
Inhalation of such particles can cause a local pulmonary re-
sponse which is characterized by the influx of neutrophils into
the airways (Knaapen et al., 2006). In contrast to their innate
protective role in immunity, neutrophils contribute to the path-
ogenesis of inflammatory lung diseases like COPD and promote
tumor development (Grivennikov et al., 2010; Knaapen et al.,
2006).

A number of studies have found that occupational exposure
to diesel exhaust leads to increased risk of lung cancer (Attfield
et al., 2012; Silverman et al., 2012) and the International Agency
for Research on Cancer (IARC) has classified diesel engine ex-
haust as carcinogenic to humans (Group 1) (IARC, 2013).
However, the mechanism of diesel carcinogenesis and precise
identity of the carcinogenic components of diesel exhaust are
still incompletely understood, as is the magnitude of the carci-
nogenic risk from environmental exposure. Although exposure
to diesel exhaust material induces pulmonary inflammation
and exacerbates chronic respiratory inflammatory conditions
(Kelly and Fussell, 2011), the contribution of such inflammation
to diesel exhaust associated carcinogenic risk potential has
not been examined in any great detail. By analogy with the
causation of lung cancer by tobacco smoking (Walser et al.,
2008), it was therefore the aim of this study to examine how
inflammation in the lung alters the genotoxicity of polycyclic
aromatic hydrocarbons (PAHs), which occur in the particulate
phase of diesel exhaust, and what specific mechanisms are
involved.

PAHs such as benzo[a]pyrene (BaP), also an IARC Group 1
carcinogen (IARC, 2010), exert their carcinogenic effects only af-
ter metabolic activation. As shown in Figure 1 BaP is activated
by cytochrome P450 (CYP) enzymes, CYP1A1 and CYP1B1 being
the most important isoenzymes (Baird et al., 2005), resulting in
highly reactive diol-epoxides capable of forming covalent DNA
adducts that can lead to mutations through errors in DNA repli-
cation (Phillips, 2005). Inflammatory reactions in vivo involve
the production and release of a range of signaling molecules in-
cluding cytokines and chemokines (Grivennikov et al., 2010;
Schwarze et al., 2013). In vitro experiments have shown that cy-
tokines like tumor necrosis factor-a (TNF-a) formed after envi-
ronmental exposures can alter the expression of metabolic
enzymes such as CYPs (eg, CYP1A1, CYP1B1) involved in BaP

bioactivation (Smerdova et al., 2014; Umannova et al., 2008).
Other in vitro studies have revealed that neutrophil-derived
myeloperoxidase can activate the BaP metabolite BaP-7,8-dihy-
drodiol to reactive species (ie, BaP-7,8-dihydrodiol-9,10-epoxide
[BPDE]) that form DNA adducts in lung cells (Borm et al., 1997;
Petruska et al., 1992).

In this study, we investigated whether lung inflammation al-
ters the capacity for diesel exhaust carcinogens like BaP to
cause DNA damage (eg, DNA adducts) in vivo and the
mechanisms involved. To model nonallergic acute inflamma-
tion, mice were exposed to lipopolysaccharide (LPS) and then
instilled with BaP. DNA adduct formation was determined by
32P-postlabeling analysis.

MATERIALS AND METHODS

Carcinogen. BaP (purity �96%) was obtained from Sigma Aldrich.

Animal treatment. C57B16 mice (male; approximately 8–10 weeks
old, 20-25 g) were obtained from Charles River Laboratories. All
animal experiments were carried out at King’s College London
under license according to protocols approved by the Home
Office under “The Animals (Scientific Procedures) Act (1986)”
after approval by the institutional ethics committee. Animals
were kept under controlled pathogen-free conditions and
allowed food and water ad libitum. In total, 4 groups of mice
(n¼ 4 per experiment; repeated in triplicate; n¼ 12 in total) were
used as follows (see Fig. 2): Group I: mice were instilled nasally
with saline and 24 h later instilled intratracheally with vehicle,
tricaprylin (25ml/mouse). Group II: to induce acute pulmonary
inflammation mice received an intranasal dose of 20 mg LPS
(Escherichia coli, serotype O55:B5; 1 mg/ml; Sigma), and 24 h later
they received tricaprylin (25 ml/mouse) by intratracheal instilla-
tion. Group III: mice were instilled nasally with saline and 24 h
later instilled intratracheally with BaP (0.5 mg BaP dissolved in
25 ml tricaprylin). Group IV: mice received an intranasal adminis-
tration of 20 mg LPS followed 24 h later with BaP (0.5 mg BaP/
mouse) by intratracheal instillation. In order to have sufficient
material available for histopathology and several biological
assays, experiments were performed in triplicate on separate
occasions (3�n¼4/group). All instillations were performed
under anesthesia with isoflurane (Sigma) following injection
with ketamine/zylazine (1 mg/0.166 mg per mouse, respectively;
Sigma). Mice were killed 3 days after exposure after anesthesia
with 2 g/kg body weight urethane (Sigma) by intraperitoneal
administration and a cannula was inserted into the exposed
trachea. For the collection of inflammatory cells by bronchoal-
veolar lavage (BAL) 3 0.5-ml aliquots of sterile saline were
injected into the lungs. Lung and liver tissue were also collected,
snap-frozen in liquid nitrogen and stored at �80�C until analy-
sis. For histopathology lung sections were fixed for 48 h in PBS
containing 4% paraformaldehyde.
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Assessment of the pulmonary inflammation by histopathology and
BAL analysis. Fixed lung sections were embedded in paraffin and
7-micron sections were cut and stained with hematoxylin–eosin
(H&E) (Arlt et al., 2011). Slides were randomized and analyzed at
�10 magnification for the number of fields with inflammation,
expressed as percentage of the total number of fields of lung tis-
sue on the section. At �40 magnification, inflammation was
qualified as either predominantly neutrophilic or predomi-
nantly monocytic.

From the collected BAL fluid, a 50-ml aliquot was added to
50 ml of hemolysis (Turk) solution. The total number of cells in
the BAL fluid was counted with an improved Neubauer hemocy-
tometer. For differential cell counts, cytospin preparations were
prepared from aliquots of BAL fluid (100 ml), centrifuged at
250� g for 1 min using a Shandon Cytospin 2 (Shandon
Southern Instruments, Sewickley, Pennsylvania) at room tem-
perature and stained with Diffquick. Two hundred cells were
counted to determine the proportion of neutrophils, eosino-
phils, and monocytes using standard morphological criteria
(Holand et al., 2014).

Detection of DNA adducts. DNA from tissue was isolated by a
standard phenol–chloroform extraction method. DNA adduct
analysis was performed by the nuclease P1 enrichment version
of the 32P-postlabeling method as described previously (Phillips
and Arlt, 2007, 2014) with minor modifications. DNA samples
(4 lg) were digested with micrococcal nuclease (288 mU; Sigma)
and calf spleen phosphodiesterase (1.2 mU; MP Biomedical), and
then enriched and labeled as reported. Resolution of 32P-labeled
adducts was performed by polyethyleneimine-cellulose thin-
layer chromatography (TLC) (Arlt et al., 2008). After chromatog-
raphy TLC plates were scanned using a Packard Instant Imager
(Dowers Grove, Illinois). DNA adduct levels (RAL, relative adduct
labeling) were calculated from adduct counts per minute, the
specific activity of [c-32P]ATP and the amount of DNA (pmol)
used. Results were expressed as DNA adducts/108 normal
nucleotides (nt). An external BPDE-modified DNA standard was
used to identify BaP-DNA adducts.

Preparation of pulmonary and hepatic microsomal and cytosolic sam-
ples. Pooled pulmonary and hepatic microsomal and cytosolic
fractions (n¼ 4) were isolated as described (Arlt et al., 2008;
Martin et al., 2010). Briefly, tissue samples were pulverized by
grinding snap-frozen pooled lung or liver specimens in a Teflon
container frozen in liquid nitrogen with a steel ball using a dis-
membrator (2600 UPM for 30 s; Braun Melsungen AG, Germany).
The frozen tissue powder was then homogenized by hand
in.067 M potassium phosphate buffer (pH 7.4) with 0.5% potas-
sium chloride in a Potter-Elvehjem glass-Teflon homogenizer.
The buffer volume (in ml) used was 3 times the weight (in mg) of
the organ. Nuclei and debris were removed by centrifugation at
18� g for 30 min at 4�C. From the supernatant, microsomal pel-
lets were obtained at 100 000 g after 1 h. Supernatant (cytosolic
fraction) was gently levered off the sediment into 200-ml ali-
quots and stored at �80�C until further analysis. The sediment
(microsomal fraction) was resuspended in phosphate buffer
(lung in approximately the same volume (in ml) as their weight
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(in mg), liver in twice their weight) and small aliquots (100 ml)
were stored at �80�C until further analysis. Protein concentra-
tions in cytosolic and microsomal fractions were measured
using the bicinchoninic acid protein assay with bovine serum
albumin as a standard.

Expression of pulmonary and hepatic Cyp1 protein.
Immunoquantitation of Cyp1a1 and Cyp1b1 in microsomal frac-
tions was carried out by sodium dodecyl sulfate-10% polyacryla-
mide gel electrophoresis of samples containing 30 lg
microsomal proteins. After migration, proteins were transferred
onto polyvinylidenedifluoride membranes. Mouse Cyp1a1 pro-
tein was probed with goat-anti rat CYP1A1 polyclonal antibod-
ies (1:2500, Antibodies-online GmbH, Aachen, Germany) as
reported elsewhere (Stiborova et al., 2014). The goat-anti rat
CYP1A1 antibodies recognize this enzyme in mouse pulmonary
and hepatic microsomes as 1 protein band. Rat recombinant
CYP1A1 (in Supersomes, Gentest Corp., Woburn,
Massachusetts) was used as positive controls to identify the
band of Cyp1a1 in murine microsomes. Mouse Cyp1b1 protein
was probed with rabbit-anti human CYP1B1 polyclonal antibod-
ies (G-25) (1:200, Santa Cruz Biotechnology, Dallas, Texas). The
goat-anti rabbit CYP1B1 antibodies recognize this enzyme as 1
protein band. Human recombinant CYP1B1 (in Supersomes) was
used as positive control. The antigen–antibody complex was

visualized with an alkaline phosphatase-conjugated rabbit anti-
chicken IgG antibody and 5-bromo-4-chloro-3-indolylphos-
phate/nitrobluetetrazolium as chromogenic substrate
(Stiborova et al., 2006). Glyceraldehyde phosphate dehydrogen-
ase was used as loading control and detected by its antibody
(1:750, Millipore, Massachusetts). Band intensity was quantified
using the GeneTools software.

Measurement of pulmonary and hepatic Cyp1a enzyme activity.
Microsomal Cyp1a enzyme activity (measured as relative fluores-
cence unit [RFU]/minute) was determined by following the con-
version of 7-ethoxyresorufin into resorufin (EROD assay) using
fluorescent measurement on a Synergy HT Plate Reader (Bio-TEK
Instruments; 530 nm excitation, 580 nm emission) (Mizerovska
et al., 2011). Cyp1a enzyme activity (measured as RFU/minute)
was also measured with 3-cyano-7-ethoxycoumarin (CEC)
as substrate (Martin et al., 2010). Briefly, in a 96-well plate
the incubation mixture (200ml) contained 67 mM potassium
phosphate buffer (pH 7.4), 9 mM glucose-6-phosphate, 0.9 U
glucose-6-phosphate dehydrogenase, 4.5 mM magnesium chlor-
ide, 0.9 mM NADP, 5mM CEC (dissolved in DMSO (dimethyl-
sulfoxide)), and 50mg of microsomal fraction. The reaction was
initiated by the addition of CEC and the formation of 3-cyano-7-
hydroxycoumarin was measured every 2 min for 30 min (409 nm
excitation, 460 nm emission).

A1 – 10×× A2 – 40×

U t t dUntreated
(control)

B 10 B 40B1 – 10× B2 – 40×

1) LPS1) LPS
2) BaP
3) LPS+BaP

FIG. 3. Histological analysis of pulmonary inflammation. Representative photomicrographs of lung tissue section stained with H&E. A, Control mice: small sense foci of

predominantly neutrophils; B, LPS-, BaP-, or LPSþBaP-treated lung: large loose foci of predominantly monocytes. Original magnification �10, left panel; �40, right

panel. Semiquantitative assessment of pulmonary inflammation is summarized in Table 1.

TABLE 1. Semiquantitative Assessment of Pulmonary Inflammation From H&E Staining of Lung Sections

Treatment Group
(n¼ 4 per group)

Percentage of Fields with
Inflammation (median)

Size of Inflammatory
Foci

Predominant
Cell Type

Controls (Group I) 5-14 (6.5) Small dense Neutrophils
LPS (Group II) 26-92 (79) Large loose Monocytes
BaP (Group III) 4-32 (12.5) Large loose Monocytes
LPSþBaP (Group IV) 4-41 (18.5) Large loose Monocytes
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Measurement of pulmonary and hepatic Nqo1 enzyme activity. Nqo1
enzyme activity in cytosolic samples was measured with mena-
dione (2-methyl-1,4-naphthoquinone) as substrate essentially as
described previously (Mizerovska et al., 2011). The standard assay
system in a 24-well plate contained in 1 ml (final concentration)
25 mM Tris-HCl (pH 7.5), 0.12 % bovine serum albumin, 200 lM
NADH, 10 lM menadione (dissolved in methanol), 77 lM cyto-
chrome c, and 50mg of cytosolic fraction. The reaction was initi-
ated by the addition of the cytosolic fraction. Enzyme activity
(measured as RFU/min) was determined by following the conver-
sion of cytochrome c at 550 nm on a Synergy HT Plate Reader.

Expression of Cyp1b1 gene expression in the lung. Gene expression
analysis was essentially performed as described (Krais et al.,

2015). Briefly, RNA was isolated from lung samples using the
GenElute Mammalian Total RNA Mini Prep Kit (Sigma, UK)
according to the manufacturer’s instruction. Reserve transcrip-
tion was performed using random primers and SuperScript III
Reserve Transcriptase (Life Technologies, UK) RNA expression
was analyzed by quantitative real-time polymerase chain reac-
tion (qRT-PCR) using TaqMan Universal PCR Master Mix (Life
Technologies) and TaqMan gene expression primers according
to the manufacturer’s protocol with a 7500HT Fast Real Time
PCR System (Applied Biosystems, UK). Probe (Life Technologies)
Cyp1b1-Mm00487229_m1 was used and expression levels were
normalized to housekeeping gene Gapdh (4352341E). Relative
gene expression was calculated using the comparative thresh-
old cycle (CT) method (Kucab et al., 2012).
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Measurement of nucleotide excision repair capacity. The ability of
nucleotide excision repair (NER)-related enzymes present in iso-
lated tissue extracts to detect and incise substrate DNA contain-
ing BPDE-DNA adducts was measured using a modified comet
assay (Langie et al., 2006). Tissue protein extracts were prepared
as described previously (Gungor et al., 2010a), and protein con-
centrations were optimized for analysis of lung and liver sam-
ples (0.2 mg/ml). The ex vivo repair incubation and
electrophoresis were performed according to the published pro-
tocol (Langie et al., 2006). Dried slides stained with ethidium bro-
mide (10 mg/ml) were viewed with a Zeiss Axioskop fluorescence
microscope. Comets were scored using the Comet III system
(Perceptive Instruments, UK). Fifty nucleoids were assessed per

slide and each sample was analyzed in duplicate. All samples
were measured blindly. Tail intensity (% tail DNA) was used to
calculate repair capacity of the tissue extracts (Langie et al.,
2006).

Statistical analysis. Statistical analyses were performed with
Prism GraphPad Software and P< .05 was considered
significant.

RESULTS

Pulmonary histopathology. Pulmonary inflammation 3 days after
exposure to LPS was assessed by H&E staining (Fig. 3). The semi-
quantitative assessment is summarized in Table 1. The bronchi
and vessels in all groups appeared unaffected. In all 4 groups,
there were foci of alveolar inflammation (pneumonia), but the
size of the foci and the composition of inflammatory cells were
different. Controls (Group I) showed few inflammatory foci (5%–
14% of fields), which were small in size and composed predomi-
nantly of neutrophils. LPS-treated animals (Group II) showed an
increase in inflammatory foci (26%–92% of fields) as loose col-
lections mainly of macrophages extending over a larger area.
BaP and LPSþBaP treated animals (Groups III and IV) showed
an intermediate number of inflammatory foci (4%–32% and 4%–
41% respectively), roughly of the same composition and size as
seen in the LPS-treated animals (Group II).

Inflammatory response in BAL. Using morphological criteria the
number of monocytes, eosinophils, and neutrophils were
counted in BAL fluid (Fig. 4). LPS treatment (Group II) caused sig-
nificant increases in neutrophils (Fig. 4B) and mononuclear leu-
cocytes (Fig. 4C) recruitment to the lung relative to control mice
(Group I). No such effect was seen for eosinophils (Fig. 4D). The
recruitment of neutrophils, used as a measure of pulmonary
inflammation, in mice treated with LPS and LPS/BaPwas high
(Fig. 4B). In LPS-treated mice (Group II) the number of neutro-
phils was approximately 22-fold higher than in control mice
(Group I) and BaP-treated mice (Group III), however, additional
treatment with BaP (Group IV) had no additional effect on
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neutrophil recruitment. More specifically, 2-way ANOVA
showed a statistically significant effect of LPS-induced inflam-
mation on neutrophil recruitment [F(1,41)¼ 31.11, P< .0001] but
was not affected by BaP treatment. There was no significant
interaction effect.

DNA adduct formation in lung and liver. The DNA adduct pattern
observed by TLC 32P-postlabeling in BaP-treated mice (Groups III
and IV) consisted of a single adduct spot, in both lung and liver.
Although the 32P-postlabeling method does not provide any
structural information of the BaP-derived DNA adduct formed,
using mass spectrometry the adduct formed in vivo was
previously identified (Arlt et al., 2008) as 10-(deoxyguanosin-
N2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-BaP (dG-N2-BPDE)

(Fig. 1; inserts). DNA adducts were not detected either in
control (Group I) or in LPS-treated animals (Group II). BaP-DNA
adduct levels ranged from 10 to 30 adducts per 108 nt (Fig. 5).
Adduct levels were significantly higher in both lung (approxi-
mately 2.5-fold) and liver (approximately 3.5-fold) of LPS/BaP-
treated mice (Group IV) than in mice treated with BaP alone
(Group III).

Expression of BaP-metabolizing enzymes in lung and liver. Cyp1a1
protein levels measured by Western blotting showed a approxi-
mately 5-fold induction in the lungs after BaP treatment (Group
III) (Fig. 6A). Similarly pulmonary Cyp1a1 protein levels
increased approximately 5-fold in LPS/BaP-treated mice (Group
IV) relative to mice treated with LPS alone (Group II). Even
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though intensities of the Cyp1a1 protein bands in control
(untreated) and LPS-treated mice were weak, a clear increase in
Cyp1a1 protein levels was detectable in BaP- and LPS/BaP-
treated mice. In accordance with these findings treatment of
mice with BaP led to a strong increase in EROD (Fig. 7A) and CEC
activity (Fig. 7B) in pulmonary microsomes. Interestingly, pul-
monary Cyp1a enzyme activity was significantly lower (approxi-
mately 2-fold) in LPS/BaP-treated mice (Group IV) than in mice
treated with BaP alone (Group III).

Using Western blotting, we found only a slight increase
(approximately 1.5-fold) in Cyp1a1 protein levels in the liver
after BaP treatment (Group III) (Fig. 6B). Hepatic Cyp1a1 protein
levels increased further in the LPS/BaP-treated mice (Group IV)
relative to mice treated with BaP only (Group III). Similarly, hep-
atic EROD (Fig. 7C) and CEC activity (Fig. 7D) was up to approxi-
mately 2-fold higher in LPS/BaP-treated mice (Group IV)
compared with mice treated with BaP only (Group III). In addi-
tion, LPS exposure alone let to a detectable Cyp1a1 activity in
the liver with both substrates (Group II).

As BaP derivates can also be partly metabolized by NQO1, we
also determined the activity of Nqo1 in mice exposed to BaP.
Nqo1 activity was detected in both lung and liver cytosolic sam-
ples of all groups (Fig. 8). Nqo1 enzyme activity was higher after
LPS (Group II), BaP (Group III) and LPS/BaP exposure (Group IV)
relative to controls (Group I), in both lung (Fig. 8A) and liver (Fig.
8B). Interestingly, pulmonary Nqo1 enzyme activity was signifi-
cantly lower in LPS/BaP-treated mice (Group IV) than mice
treated with BaP alone (Group III), although the magnitude of
the effect was modest (1.2-fold) (Fig. 8A). No difference in Nqo1
enzyme activity between the BaP (Group III) and LPS/BaP group
(Group IV) was observed in the liver (Fig. 8B).

As previous studies have indicated that CYP1B1 may play a
role in the metabolic activation of BaP within inflamed tissue
(Smerdova et al., 2013, 2014; Umannova et al., 2008), expression
of Cyp1b1 mRNA in the lung was determined by qRT-PCR.
However, as shown in Figure 9A no difference in Cyp1b1

expression was observed between treatment groups. These
results were in line with Cyp1b1 protein expression determined
in pulmonary microsomes (Fig. 9B). Only very faint Cyp1b1 pro-
tein bands were detectable by Western blotting in all treatment
groups (Groups I–IV) which could not be accurately quantified.

DNA repair capacity in lung and liver. We assessed whether pul-
monary inflammation had an influence on NER activity. We
found that in the lung the repair capacity was higher (approxi-
mately 4-fold) in LPS-treated mice (Group II) than in controls
(Group I) (Fig. 10A). More specifically, 2-way ANOVA of the log-
transformed data indicated that pulmonary repair capacity was
significantly increased following LPS-induced inflammation
[F(1,8)¼ 10.9, P¼ .0131] (Group II) but was not further affected by
BaP treatment (Groups III and IV). There was no significant
interaction effect.

BaP treatment alone (Group III) had no effect on NER activity.
Pulmonary repair capacities in the LPS (Group II) and LPS/BaP
(Group IV) groups were similar to each other but not signifi-
cantly different in the LPS/BaP group (Group IV) relative to con-
trols (Group I) due to large interindividual variability (Fig. 10A).
In the liver no significant changes in NER capacity were
observed between groups (Fig. 10B).

DISCUSSION

In this study, we have shown that pulmonary inflammation
modulates the bioactivation of BaP and the concomitant respi-
ratory tract DNA damage induced by it. To induce pulmonary
inflammation we treated mice with LPS which is an established
model to study non-allergic inflammation (Gungor et al., 2010a;
Medan et al., 2002; Moriya et al., 2012). The BaP dose used in this
study (0.5 mg/mouse) has been shown to induce mutagenicity
in the lung of gpt delta mice after a single intratracheal instilla-
tion (Hashimoto et al., 2005). We found that BaP-induced DNA
adduct formation in the lung was approximately 3-fold higher
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in LPS/BaP-treated mice compared with mice treated with BaP
alone. Considering that inhaled combustion-derived particles
such as cigarette smoke, ambient air particulate matter, and
diesel exhaust particles contribute to pulmonary inflammation
in humans (Kelly and Fussell, 2011) our results demonstrate
that pulmonary inflammation could be a critical determinant in
the induction of genotoxicity in the lung by particle-bound
PAHs like BaP.

Pulmonary inflammation induced by LPS initiates the syn-
thesis of proinflammatory cytokines (Gungor et al., 2010b;
Holand et al., 2014). It has been shown that LPS-induced expres-
sion of cytokines like TNF-a and interleukin-1b in the liver is
associated with altered CYP gene expression and CYP enzymes
activities during inflammation (Warren et al., 1999). In particu-
lar, it has been observed that Cyp1a1 gene expression is sup-
pressed by LPS and TNF-a in mouse liver and that activation of
the nuclear factor-jB (NF-jB) plays an important role in Cyp1a1
suppression (Ke et al., 2001; Zordoky and El-Kadi, 2009). LPS-
mediated decrease of hepatic Cyp1a1 was enhanced and accel-
erated in mice that lack the aryl hydrocarbon receptor (AhR) (ie,
AhR(�/�) mice) compared with AhR(þ/þ) mice (Wu et al., 2011).

Others have shown that enhanced expression of AhR in the thy-
mus of LPS-treated mice was accompanied by increased Cyp1a1
expression which could be repressed by inhibition of NF-jB
(Vogel et al., 2014). Further, induction of Cyp1a1 by LPS in the
thymus depended on functional AhR as shown in AhR(�/�)
mice (Vogel et al., 2014). Together these data show that there is a
cross-talk between AhR and inflammatory response that can be
critical for the expression of CYP1A1 (Vondracek et al., 2011).
However, the observed responses are complex and tissue-spe-
cific, but it is noteworthy that PAHs like BaP can induce Cyp1a1
transcription through binding to AhR (Shimizu et al., 2000; Wang
et al., 2011).

In this study, we found a clear induction of Cyp1a1 protein
in the lungs after BaP treatment both alone and in combination
with LPS. In contrast no change of pulmonary Cyp1a1 protein
was observed after LPS treatment alone. Interestingly, pulmo-
nary Cyp1a1 enzyme activity was lower in LPS/BaP-treated mice
than in mice treated with BaP alone suggesting that pulmonary
inflammation impacted on BaP-induced Cyp1a1 enzyme activ-
ity in the lung. Because BaP-DNA adduct levels in the lung were
increased in LPS/BaP-treated mice compared with BaP-treated
mice this observation may appear puzzling at first. However,
previous studies (Arlt et al., 2008, 2012; Nebert et al., 2013) have
revealed a paradox, whereby CYP enzymes (particularly
CYP1A1) appear to be more important for detoxification of BaP
in vivo, despite being involved in its metabolic activation in vitro.
Therefore, the decrease in pulmonary Cyp1a1 enzyme activity
in LPS/BaP-treated mice relative to BaP-treated mice, as meas-
ured in pulmonary microsomes, led to a decrease in BaP detoxi-
fication, thereby enhancing BaP genotoxicity (ie, DNA adduct
formation) in the lung. It remains to be investigated how pul-
monary inflammation really impacts on Cyp1a1 enzyme activ-
ity but not Cyp1a1 protein expression (see below). Some other
studies have suggested that CYP1B1 could play a role in the
bioactivation of BaP within inflamed tissue as CYP1B1 can be
up-regulated by proinflammatory cytokines (ie, TNF-a) in
BaP-treated cells in vitro and thus may redirect BaP
metabolism to form higher amounts of BPDE and to potentiate
DNA adduct formation (Smerdova et al., 2013, 2014; Umannova
et al., 2008). However, Cyp1b1 gene expression and Cyp1b1 pro-
tein analysis in the lung provided no evidence for an impact of
pulmonary inflammation on Cyp1b1-mediated BaP bioactiva-
tion in vivo.

One mediator that may be involved in the suppression of
pulmonary Cyp1a1 enzyme activity after LPS challenge could be
the formation of reactive oxygen species (ROS; Morel and
Barouki, 1999). In this context it is noteworthy that CYP1A1 can
produce ROS during its catalytic cycle (Morel and Barouki, 1999).
It has been shown not only that LPS results in increased ROS
production but also that ROS suppresses CYP1A1 expression in
cultured human cells in vitro (Morel and Barouki, 1998).
Therefore, it has been proposed that ROS such as hydrogen per-
oxide are involved in hemoprotein inactivation followed by
heme loss (Karuzina and Archakov, 1994a,b). Similarly, BaP
o-quinones formed during BaP metabolism have been shown to
generate ROS (Park et al., 2009). Other potential mechanisms
might involve the modification of certain amino acids at or near
the active centre of the CYP1A1 enzyme by hydrogen peroxide
(Karuzina and Archakov, 1994b). Importantly, inactivated
Cyp1a1 protein will retain the epitope for its recognition when
assayed by Western blot analysis (El-Kadi et al., 2000) but
Cyp1a1 enzyme activity will be lost. Therefore, despite the
induction of pulmonary Cyp1a1 protein, as measured by
Western blotting in the LPS/BaP-treated mice, we propose that
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ROS formation leads to an inhibition of Cyp1a1 enzyme activity
under the present experimental conditions.

If BaP is detoxified more slowly by Cyp1a1 in the lungs of
LPS/BaP-treated mice, it would be predicted that more BaP circu-
lates via the blood to extra-pulmonary tissues in these mice rel-
ative to mice treated with BaP alone. Indeed, we observed
higher BaP-DNA adduct levels in the livers of LPS/BaP-treated
mice compared with BaP-treated mice. Further, it would be pre-
dicted that if in LPS/BaP-treated mice more BaP is transported
from the lung via the blood to the liver than in BaP-treated
mice, induction of Cyp1a1 protein and Cyp1a1 enzyme activity
should be higher in the livers of LPS/BaP-treated mice relative to
mice treated with BaP alone. Indeed, we found Cyp1a1 protein
induction as well as an increase in Cyp1a1 enzyme activity in
the livers of LPS/BaP-treated mice compared with BaP-treated
mice, as measured in hepatic microsomes. Thus it would
appear that a higher circulation of BaP to the liver results in
higher DNA adduct levels, overriding the tendency of increased
Cyp1a1 enzyme activity to result in a greater capacity to detox-
ify BaP. Our results suggest a dual role of Cyp1a1 in both bioacti-
vation and detoxification of BaP in vivo. Similarly, a dual role of
CYP1A1 has been shown in the metabolism of the plant carcino-
gen aristolochic acid I (AAI) where CYP1A1 is able to catalyze
the reductive activation of AAI to N-hydroxyaristolactam I and
the oxidative detoxification to 8-hydroxyaristolochic acid
(Stiborova et al., 2012, 2014). These results in the liver also indi-
cate that the presence of acute inflammation in 1 organ (ie,
lung) can influence the bioavailability of PAHs like BaP in other
organs (ie, liver) suggesting a systemic effect.

LPS-induced pulmonary inflammation also impacted on the
expression of other xenobiotic-metabolizing enzymes such as
Nqo1 which may be important as BaP derivatives can be metab-
olized by NQO1 (Joseph and Jaiswal, 1994, 1998; Shen et al.,
2010). We found that Nqo1 enzyme activity was increased in the
lung, after LPS and BaP treatment both alone and in combina-
tion. This may be critical for the bioactivation of diesel exhaust

particle-bound nitro-PAHs as NQO1 has been shown to be a key
enzyme in the metabolic activation of nitro-PAHs (Purohit and
Basu, 2000; Stiborova et al., 2010). Interestingly, pulmonary Nqo1
enzyme activity was decreased in LPS/BaP-treated mice relative
to BaP-treated mice suggesting that the bioactivation of nitro-
PAHs would be suppressed in these animals.

NER is considered to be the main DNA repair pathway for
bulky DNA adducts (Friedberg, 2001). Using a modified comet
assay, we showed that tissue-specific NER capacity did not con-
tribute to the higher BaP-DNA adduct levels observed in LPS/
BaP-treated mice than in BaP-treated mice in either lung or
liver. LPS treatment led to a significant increase (approximately
4-fold) in NER capacity in the lung. In contrast, Gungor et al.
(2010a) found that LPS exposure reduced NER capacity in lung
tissue homogenate by approximately 50%. Although the LPS
dose used was the same in both studies the discrepancy
between the 2 studies might be attributable to the different LPS
administration regimes (intratracheal instillation vs intranasal
administration) but otherwise it remains unexplained at
present.

In summary we found that pulmonary inflammation can
impact on enzymes (eg, CYPs) involved the activation and
detoxification of PAHs. Our findings suggest that inflammatory
signals and carcinogenic PAHs like BaP may interact and that
LPS-induced pulmonary inflammation inhibits Cyp1a1 enzyme
activity, which leads to increased DNA damage through the
enhanced formation of covalent BaP-DNA adducts in the lungs
in vivo. Thus pulmonary inflammation could be a critical con-
tributor to the induction of genotoxicity by particle-bound PAHs
in the lung.
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