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Abstract 

Motivation: Analytics tools are essential to identify informative molecular features about different 

phenotypic groups. Among the most fundamental tasks are missing value imputation, signature 

gene detection, and expression pattern visualization. However, most commonly used analytics 

tools may be problematic for characterizing biologically diverse samples when either signature 

genes possess uneven missing rates across different groups yet involving complex missing 

mechanisms, or multiple biological groups are simultaneously compared and visualized.  

Results: We develop ABDS tool suite tailored specifically to analyzing biologically diverse 

samples. Mechanism-integrated group-wise imputation is developed to recruit signature genes 

involving informative missingness, cosine-based one-sample test is extended to detect enumerated 

signature genes, and unified heatmap is designed to comparably display complex expression 

patterns. We discuss the methodological principles and demonstrate the conceptual advantages of 

the three software tools. We also showcase the biomedical applications of these individual tools. 

Implemented in open-source R scripts, ABDS tool suite complements rather than replaces the 

existing tools and will allow biologists to more accurately detect interpretable molecular signals 

among diverse phenotypic samples. 

Availability and implementation: The R Scripts of ABDS tool suite is freely available at 

https://github.com/niccolodpdu/ABDS. 

Contact: yuewang@vt.edu 

Supplementary information: Supplementary materials are available at Bioinformatics Advances 

online.  
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1. Introduction 

High-throughput molecular expression profiling technologies provide the ability to comparatively 

study many genes or proteins expressed in biologically diverse samples (samples belonging to 

different phenotypic groups) (Clarke, Ressom et al. 2008). An important but underappreciated 

issue in proteomics or single-cell analysis is how best to impute informative missing values that 

have uneven missing rates in different groups and often originate from a mix of different missing 

mechanisms (Shen, Chang et al. 2022). Expectedly, these missing values will have a negative 

impact on recruiting signature genes (Parker, Chen et al. 2020). Among many data-driven methods 

that have been developed to impute missing values, the categorical information associated with 

informative missingness is often ignored. Another essential and challenging task is to identify high 

quality signature genes that uniquely characterize the groups of interest against the rest. Ideally, a 

signature gene among molecularly distinct groups would be expressed uniquely in the individual 

groups of interest but in no others (Kuhn, Thu et al. 2011). However, test statistics used by most 

existing methods do not satisfy exactly this signature definition and are theoretically prone to 

detecting inaccurate signatures (Lu, Wu et al. 2022). Furthermore, while a typical heatmap design 

is visually effective, the common reference origin for expression measurements is altered 

thereafter, that is, zero-expression is replaced by floating negative values for different genes. As a 

result, the color coding does not rightly reflect the relative quality among signature genes.   

 Here we report ABDS tool suite tailored specifically to analyzing biologically diverse 

samples. The open-source R-script tools include mechanism-integrated group-wise missing value 

imputation (migImput), enumerated cosine-based one-sample test (eCOT), and unified heatmap 

(uniHM) design. Specifically, we propose a hybrid imputation strategy to impute informative 

missing values associated with signature genes, a cosine-score test on binary string references to 

detect enumerated signature genes, and an overall heatmap design to comparably display complex 

expression patterns (Fig. 1). We show the effectiveness and utility of these individual tools using 

either realistic simulations or real biomedical case studies. The ABDS tool suite will allow 

biologists to more accurately detect true molecular signals from biologically diverse samples.  

2. Methods 
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2.1 Mechanism-integrated group-wise missing value imputation 

Signature genes play important roles in characterizing and studying biologically diverse 

samples. Missing values associated with these genes are expected to have a group-specific mix of 

missing mechanisms and cross-group uneven missing rates. Thus, using the overall missing rate 

for quality control would be problematic and could adversely affect subsequent analyses including 

model-based missing value imputation (Shen, Chang et al. 2022). For example, missing values in 

the groups dominated by lower limit of detection (LLOD) are often conveniently imputed in the 

same way as in the groups dominated by missing at random (MAR/MCAR) mechanisms, ignoring 

the categorical information about biologically diverse samples (Li and Li 2018).     

We propose a mechanism-integrated group-wise imputation (migImput) strategy that 

explicitly considers the varying mixture of missing mechanisms across different phenotypic groups. 

First, with an initial data normalization based on a subset of genes with no missingness, a common 

yet overall minimum value 𝜖 associated with LLOD is determined in log-space. Second, for each 

gene i and for each group k, group-specific mean value 𝑥𝑘(𝑖) and standard deviation 𝜎𝑘(𝑖) are 

calculated. Third, within each group k, a missing value is imputed by (Fig. 1A) 

�̃�𝑘(𝑖) = 𝛼𝑘(𝑖) 𝜖 2⁄ + [1 − 𝛼𝑘(𝑖)]𝑥𝑘(𝑖), (1) 

where 𝛼𝑘(𝑖) is the estimated probability of the LLOD missing mechanism. The value of 𝛼𝑘(𝑖) is 

determined by 𝜖  and the approximated normal distribution specified by 𝑥𝑘(𝑖) and 𝜎𝑘(𝑖). This 

imputation scheme adopts ‘min/2’ for imputing LLOD missing values and ‘mean’ for imputing 

MAR/MCAR missing values (Shen, Chang et al. 2022) (Supplementary Information). 

2.2 Extended cosine-based one-sample test on enumerated signature genes 

Mathematically, an ideal enumerated signature gene (eSG) associated with groups l,m,n is 

defined as a gene that is expressed only in groups l,m,n but not in any other groups (Kuhn, Thu et 

al. 2011, Dai, Pei et al. 2022, Lu, Wu et al. 2022), approximately 

{
𝑥𝑘(𝑖eSG,k) ≫ 0, 𝑘 = 𝑙,𝑚, 𝑛

𝑥𝑗≠𝑘(𝑖eSG,k) ≈ 0,
(2) 

where 𝑥𝑘(𝑖eSG,k) and 𝑥𝑗≠𝑘(𝑖eSG,k) are the average expressions of enumerated signature gene 𝑖eSG,k 

in groups k and 𝑗, respectively. For simplicity we focus our discussion on only three groups of 

interest but our formulation holds for more than three groups. We emphasize that eSG as defined 
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here are uniquely and sufficiently expressed in individual groups of interest, regardless of their 

actual expression level(s).  

Accordingly, the cross-group expression reference of an ideal eSG can be enumerated 

concisely by tailored binary string 𝒃𝑘 = [0, . . . ; 𝑏𝑙 = 1; 0, . . . ; 𝑏𝑚 = 1; 0, . . . ; 𝑏𝑛 = 1; 0, . . . ] , 

readily for scoring de novo eSGs. Conceptually, the null hypothesis for non-eSG, and the 

alternative hypothesis for eSG, can be described as 

𝐻non-eSG
null :       𝒙(𝑖) ≠ 𝒃𝑘;

𝐻eSG
alternative:   𝒙(𝑖) = 𝒃𝑘;

(3) 

where 𝒙(𝑖) = [𝑥1(𝑖), 𝑥2(𝑖),… , 𝑥𝐾(𝑖)] is the sample-averaged cross-group expression vector of 

gene i. Fundamental to the success of eCOT is the magnitude-invariant test statistic cos(𝒙(𝑖), 𝒃𝑘) 

that measures directly the similarity between the cross-group expression pattern 𝒙(𝑖) of gene i and 

the ideal eSG expression pattern of constituent groups in scatter space (Fig. 1B) 

𝑡eCOT(𝑖eSG,k) = cos(𝒙(𝑖), 𝒃𝑘) , (4) 

where K is the total number of groups. Note that two special cases of eSG are the conventional 

signature genes (SGs) and down-regulated signature gene (DSGs) (Kuhn, Thu et al. 2011), where 

SG reference is simply the Cartesian unit vectors �̂�𝑘 and DSG reference is �̂�𝑘 ⊕ �⃗⃗�  with ⊕ being 

the exclusive disjunction XOR operation (Supplement Information).  

2.3 Unified heatmap design for comparative display 

A popular heatmap design for displaying differentially expressed genes is to standardize 

each gene separately – the expression levels are first centered and then normalized by standard 

deviation. To address the aforementioned drawbacks, we propose an alternative heatmap design 

that can display both the differential pattern and referenced quality of eSGs. Specifically, for each 

gene i, the sum of group-specific mean values is calculated and used to normalize the expression 

level 𝑥(𝑖) in individual samples in linear space 

�̂�(𝑖) = 𝐶𝑥(𝑖) ∑ 𝑥𝑘(𝑖)
𝐾

𝑘=1
⁄ , (5) 

where �̂�(𝑖) is the perspective projection of 𝑥(𝑖) onto a scatter simplex scaled by a relatively large 

common constant 𝐶 . The proximity of normalized cross-group expression vectors �̂�(𝑖) to the 

vertices of the scatter simplex (signature references) reflects the quality of CSGs, measured by the 
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corresponding cosine values (Lu, Wu et al. 2022). Group-specific mean value �̂�𝑘(𝑖) and standard 

deviation �̂�𝑘(𝑖) are then calculated in log-space and used to standardize the expressions of eSGs 

for display purpose (Supplementary Information). Furthermore, we may order sample or gene 

based on their sample/gene-averaged cosine values with respect to enumerated references (Fig. 

1C) (Supplementary Information). 

2.4 ABDS software package 

The ABDS software package consists of five major analytics steps (Fig. 1), implemented 

in R scripts. The three individual tools were evaluated by community-trial software test. The R 

script is open-source at GitHub, and is distributed under the MIT license. The ABDS software 

tools are easy to use and applicable to multi-omics data. Group label on each sample is required. 

The output file contains the cosine scores for individual genes with respect to the ideal-pattern 

references of various eSGs. 

3. Results 

We conducted realistic simulation studies to evaluate the performance of three analytics tools in 

the ABDS package. We also conducted biomedical case studies to demonstrate the effectiveness 

of these tools in real-world applications.            

3.1 migImput to recruit signature genes  

We conducted simulation studies involving mixed missing mechanisms to evaluate the 

effectiveness of migImput tool. Our studies focused on SGs because typically these genes exhibit 

the highest yet most uneven missing rates or mechanisms across different groups. Group-specific 

SGs were generated from the truncated normal distributions centered at their ideal references (Lu, 

Wu et al. 2022). Missing values introduced are dominated by the random missing mechanism in 

the group where the SGs are highly expressed while dominated by LLOD in the groups where the 

SGs are lowly expressed (Fig. 1A). Some of the SGs were masked out according to their high 

overall or group-specific missing rates, and used to mimic often prematurely eliminated SGs 

(Supplementary Information).  

We imputed missing values based on equation #1. We used both the root mean squared 

error (RMSE) and normalized RMSE (NRMSE) between the imputed value �̃�(𝑖SG) and the ground 

truth 𝒙(𝑖SG) to assess the imputation accuracy (Shen, Chang et al. 2022). In the comparative 
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experiments, migImput was compared with Min/2 and Mean, the two most relevant peer methods. 

The experimental results are summarized in Fig. 2 and Table S1. It can be seen that migImput 

significantly and consistently outperformed both Min/2 and Mean, in terms of both lower RMSE 

and NRMSE. 

3.2 Detecting eSGs by eCOT 

We conducted biomedical case studies to demonstrate the utility of eCOT tool. We first 

applied eCOT to a proteomics dataset acquired from human artery samples enriched by the tissue 

types associated with atherosclerosis (Parker, Chen et al. 2020). Samples were divided into three 

phenotypic groups based on the severity of atherosclerosis pathogenesis (fibrous plaque -FP, fatty 

streak - FS, normal - NL). We surveyed all cosine scores and reported top SGs and DSGs (Fig. 

1C, Table S2-S3). Functional pathway analysis of tissue type-specific signature genes produced 

results consistent with known pathogenesis in atherogenesis. Network analysis of the top enriched 

functional pathways associated with FP indicated SGs were enriched for complement and 

coagulation functions, whereas DSGs were enriched for Myogenesis and EMT (Fig. 3). Together, 

this pattern is consistent with increased inflammation and decreased smooth muscle cell contractile 

phenotype composition within atherosclerotic lesions. Pathway analysis also indicated association 

with mTORC1 signaling and reactive oxygen species pathway enriched in FS and myogenesis, 

EMT, hypoxia and IL2/STAT5 signaling in NL (Fig. S1), all previously been linked to 

atherogenesis. Since IL2-related DSGs were enriched in the NL, this finding could reflect that 

lower IL2 signaling is protective against atherosclerotic plaque development.  

We then applied eCOT to the Edinburgh breast cancer gene expression data that were 

acquired prior to standard treatment. Samples were divided into four roughly equal-sized 

phenotypic groups based on the follow-up sample-wise recurrence times (Supplementary 

Information). We again surveyed all possible forms of eSGs and reported top eSGs (Figs. S2-S4, 

Tables S4-S6). Signaling activated downstream of EGFR family members is a central feature of 

breast cancer. HER2/ERBB2 is the most widely studied, where protein overexpression or gene 

amplification defines one of the three primary breast cancer groups and targeting the HER2 protein 

and/or blocking its kinase function greatly improves overall survival is now standard of care for 

patients with HER2+ breast tumors. When applied to transcriptome data from breast cancer 

patients, the eCOT identified EGFR/ERBB2 and multiple EGFR-related downstream targets as 
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enriched in estrogen-receptor positive (ER+) breast cancers likely to recur late (≥ 5 years after 

initial diagnosis). Most of these tumors were treated with the antiestrogen Tamoxifen and many 

patients would experience an overall survival benefit from Tamoxifen. However, consistent with 

the eCOT prediction, higher expression of EGFR (ERBB) or HER2 (ERBB2) would be expected 

to reduce Tamoxifen responsiveness and increase the likelihood of a subsequent recurrence. 

3.3 Visualizing eSGs by uniHM 

We used the newly designed heatmap to display the differential expression patterns of the 

eSGs reported in section 3.2 (Fig. 1C, Figs. S2-S4), in comparison with the classically designed 

heatmap (Fig. S5). Using this newly implemented heatmap function, eSGs are arranged based on 

their sample-averaged cosine scores with respect to hypothesis-enumerated references. The new 

heatmap visually reflects the idealness of eSGs where the common origin remains the same across 

all genes and the contrast is consistent with the corresponding cosine scoring. 

4. Discussion 

The ABDS tool suite provides three data analytics tools tailored for analyzing biologically diverse 

samples across many groups. The newly introduced tools complement the existing tools for 

imputing mechanism-mixed informative missing values, detecting group-enumerated signature 

genes, and visualizing complex differential expression patterns. Specifically, migImput will help 

recruit critical SGs that are often prematurely eliminated due to high overall missing rates. 

Moreover, the detected eSGs will allow scientists to test more and specific hypotheses, potentially 

providing an informative subspace for disease progression mapping. Note that eSGs are different 

from regrouped differentially expressed genes (Kuhn, Thu et al. 2011). For readers interested in 

the algorithmic workflows and comparative evaluations of these tools versus peer methods, we 

highly recommend the relevant reports (Dai, Pei et al. 2022, Shen, Chang et al. 2022). 

 We emphasize that the ABDS tool suite complements rather than replaces existing tools. 

For example, within each group, migImput imputes potentially informative missing values by 

considering both LLOD and MAR/MCAR mechanisms and our limited comparisons have focused 

on the two most relevant peer methods (Min/2 and Mean). We note that assessing imputation 

accuracy over masked values is intrinsically limited for real data because evaluation is not directly 

over authentic missing values (they will never be known). Hence, we recommend that users may 

apply additional global methods to refine missing value imputation after migImput (Li and Li 
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2018, Shen, Chang et al. 2022). We also advise users to apply a classical heatmap design for 

visualizing differential expression patterns. 
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Tables and figure legends 

Figure 1. Overview of ABDS tool suite. Briefly, ABDS provides three analytics tools, namely, 

migImput, eCOT, and uniHM presentation.   

 

Figure 2. Imputation accuracy achieved by migImput as compared with Mean and Min/2 using 

realistic simulation studies with ground truth and measured by RMSE, where the scatter simplex 

shows the effective recruitment of prematurely-eliminated marker gene (color-coded) by 

migImput.   

 

Figure 3. Upregulated (orange nodes) and downregulated (blue nodes) SGs/DSGs in FP group 

clustered into the top 5 functional pathways from the MSigDB component of Enrichr pathway 

analysis software. 
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Table 1. Imputation accuracy achieved by migImput as compared with Mean and Min/2 using 

realistic simulation studies with ground truth and measured by NRMSE. In this experiment, the 

missing rate threshold for masking-out is 60% (overall), resulting in a total of 83 features masked-

out, including 44 SGs and 39 non-SGs, containing 4,355 missing values 
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