
Research Article
Dissect the Dynamic Molecular Circuits of Cell Cycle Control
through Network Evolution Model

Yang Peng,1 Paul Scott,2 Ruikang Tao,3 HuaWang,2 YanWu,2 and Guang Peng1,4

1Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
2Mathematical Sciences, Georgia Southern University, Statesboro, GA 30458, USA
3University of California, Santa Cruz, CA 65064, USA
4Department of Medical Oncology, Tongji Hospital, Tongji Medical College,
The Huazhong University of Science and Technology, Wuhan, China

Correspondence should be addressed to Yan Wu; yan@georgiasouthern.edu and Guang Peng; gpeng@mdanderson.org

Received 22 November 2016; Accepted 26 January 2017; Published 30 March 2017

Academic Editor: Xingming Zhao

Copyright © 2017 Yang Peng et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Themolecular circuits of cell cycle control serve as a key hub to integrate from endogenous and environmental signals into a robust
biological decision driving cell growth and division. Dysfunctional cell cycle control is highlighted in a wide spectrum of human
cancers. More importantly the mainstay anticancer treatment such as radiation therapy and chemotherapy targets the hallmark
of uncontrolled cell proliferation in cancer cells by causing DNA damage, cell cycle arrest, and cell death. Given the functional
importance of cell cycle control, the regulatory mechanisms that drive the cell division have been extensively investigated in a
huge number of studies by conventional single-gene approaches. However the complexity of cell cycle control renders a significant
barrier to understand its function at a network level. In this study, we used mathematical modeling through modern graph theory
and differential equation systems. We believe our network evolution model can help us understand the dynamic cell cycle control
in tumor evolution and optimizing dosing schedules for radiation therapy and chemotherapy targeting cell cycle.

1. Introduction

Cell growth and division are regulated by molecular circuits
known as “cell cycle control,” a coordinated protein-protein
interacting network, that monitor cell proliferative signals,
genome integrity, and proper timing of cell cycle transition
from four different phases including S phase (DNA synthe-
sis), M (mitosis), and two interphases (G1 and G2) between
S and M phases [1]. A wide spectrum of biological pathways
provides signaling inputs into molecular circuits of cell cycle
control to determine how and when a single cell divides into
two cells and also to ensure orderly cell cycle phase transition
with high fidelity of cell duplication [1–3]. More specifically,
themolecular circuits of cell cycle control are required by cells
to respond to biological sensing systems including MAPK
pathway, growth factor receptor pathways of EGFR, HER-2,
and ErbB2-ErbB3, PI3K/AKT pathway, Wnt-𝛽-catenin path-
way, estrogen/androgen-mediated pathway, energy sensing
pathway, metabolic pathway, and DNA damage response

pathway (Figure 1(a)) [4–13]. Based on the signal inputs
from these biological pathways, the molecular circuits of
cell cycle control then generate decisive and robust signaling
for cell growth. Thus, it is the key regulatory component
to maintain cell homeostasis involved in a complex protein
network (Figure 1(a)).

Given the functional importance of themolecular circuits
of cell cycle control in integrating biological signals into cell
growth decision, aberrant cell cycle control has been high-
lighted in the development of a variety of human diseases,
particularly in human cancers, which contain a hallmark
of uncontrolled cell proliferation [14–16]. For example, loss
of a key cell cycle regulator p53 is found in more than
50% of human cancers [17, 18]. Overexpression of cyclin-
dependent kinases (CDKs) and cyclin proteins (CCND1,
CCNE1, and CCNB1) are found in many human cancers [19].
Overexpression of SKP2which leads to reduced expression of
negative cell cycle regulator CDKN1B is found in cancer cells
as a bypass mechanism to escape cell cycle control [20].
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Figure 1: (a)The complexity of cell cycle control. IPA pathway analysis showed the regulatory protein network of cell cycle consists of a variety
of biology signaling pathways and complex protein-protein interactions. (b)A representative of protein-protein interaction network of cell cycle
control. Fourteen proteins involved in the cell cycle control were selected based on their key biological functions and relevance to human
cancers.

The molecular circuits of cell cycle control are not only
important for preventing the development of human cancers,
but also important for determining treatment responses and
toxicities to current chemotherapy and radiation therapy,
most of which target cell proliferation and inhibit tumor
growth [15, 21, 22]. For example, approximately 50% of cancer
patients will receive radiation therapy, which induces DNA
damage, arrests cell cycle progression, and leads to cell death.
The efficacy of radiotherapy is largely affected by cell cycle
control. Inhibition of cell cycle arrest signaling can leave
cancer cells with less repair time and leads to a greater cell
death to improve therapeutic responses [23]. The mainstay
chemotherapeutic agents used in clinic, such as cyclophos-
phamide, cisplatin, 5-fluorouracil, gemcitabine, bleomycin,
doxorubicin, etoposide, and topotecan/irinotecan, are target-
ing DNA as well [22].They are also extremely toxic in normal
tissues with the high proliferative rates such as epithelia of
the gastrointestinal tract, hair follicle, and bone marrow. The
selectivity of these agents between cancer and normal cells is
largely determined by quantitative differences in the rates of
cell division [22]. Thus, a better understanding of molecular
circuits of cell cycle control will provide us with new insights
into tumor evolution and anticancer treatments.

The regulatory mechanisms that control the cell cycle
have been investigated in a huge number of studies. How-
ever, these studies often used conventional molecular biol-
ogy approaches to dissect the function of each individual
molecule. Because the molecular circuits of cell cycle control
involve a variety of proteins and regulatory interactions, this
biological complexity renders a great challenge in under-
standing the network impact of the cell cycle control by
single-gene approaches. To address this challenge, a mathe-
matical modeling of the molecular citrus of cell cycle control
can be taken to simplify the complex biological circuits into

a general framework for better analysis aimed at checking
assumptions in addition to predicting.

Mathematical models correspond to conceptual repre-
sentations that capture the essential features of the investi-
gated process in the cell cycle and then omit details (i.e.,
elements that have negligible effects as well as elements that
influence the explored behavior but are assumed as secondary
properties) to describe itsmechanisms.Mathematicalmodels
cast a process in the form of equations of a particular
type to predict the system behavior and possibly suggest
complementary experiments for a better understanding. The
differential equations model is a continuous system in which
the rates of change of the concentration of different states,
such as genes, are related to the states in the state space either
linearly or in a nonlinear setting [24]. Depending on the
nature of the biological systems, differentmathematicalmod-
els based on ordinary differential equations were developed
to study the progression of the system. Mamontov obtained
sufficient conditions onnonautonomous ordinary differential
equations that are capable of governing homeorhesis [25].
Dynamical modeling with differential equations has been
shown to be effective in gaining insight of the cancer pro-
gression and response to the immunotherapy [26, 27]. The
solution of the differential equations predicts the behavior
of the biological system with much more details than the
collected samples could reveal.

To establish molecular circuits of cell cycle control for
mathematicalmodeling, we usedQIAGEN’s Ingenuity�Path-
way Analysis (IPA�, QIAGEN Redwood City, https://www
.qiagenbioinformatics.com//ingenuity) to generate a 14-pro-
tein network, which involve key proteins in regulating cell
cycle and with extremely high relevance in human cancers
including cyclin proteins (CCND1, CCNE1, andCCN), CDKs
(CDK1, 2, 4, and 6), SKP2, CDKN1B, p53, and CDH1. GMNN
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Figure 2: A simplified network identified by IPA pathway. Five key
cell cycle regulators were selected to represent the complexity of
protein-protein actions involved in the cell cycle regulation.

and CDT1, two well established markers for G2/M phase
and G1 phase, are included (Figure 1(b)). To further achieve
simplicity of the core 14-protein network, we used IPA
analyses to represent the protein-interaction network by 5
proteins including CDKN1B, CCNB1, CDH1, CCND1, and
p53,which serve asmolecular hubs for the circuits of cell cycle
control (Figure 2).

2. Background and Methodology

The basic introduction to modern graph theory and random
walks was described in our previous publication [28]. For
completeness we include some of the details here. A graph
consists of nodes and edges where each edge connects two
nodes. Edges in a directed graph are directed, in the sense that
each edge goes from one vertex to another but not necessarily
vice versa. In our model, a directed graph is constructed such
that every protein is represented by a node and every protein-
protein interaction is represented by a directed edge between
the nodes corresponding to the proteins. For instance, if
protein 𝐴 regulates protein 𝐵, there is a directed edge from
the vertex corresponding to𝐴 to the one corresponding to 𝐵.
In addition, we add two artificial nodes: an initial node (𝑆)
and a transition node (𝑇). The node 𝑆 has directed edges to
and from all existing nodes. The node T has directed edges
from all existing nodes and a directed edge to 𝑆.

In a random walk, a random walker starts from any
chosen node. At each step, the walker moves along the
directed edges to a neighboring nodewith equal probabilities.
That is, if a node A has directed edges to 𝐵, 𝐶, and 𝐷, the
random walker, when at 𝐴, will move to each of 𝐵, 𝐶, and
𝐷 with probability 1/3. At each node, the directed edge from
it to the transition node serves as the chance of exiting the
current network to external proteins. Also, the directed edge
from the initial node serves as the chance of restarting this
randomwalk, representing the impact from external proteins
outside of this network. Clearly, the higher the probability
of a node being reached from other nodes is, the more

interference the corresponding protein receives from other
proteins.

Suppose the directed graph has 𝑛 nodes, after 𝑡 steps, 𝑝𝑖
denotes the probability of the random walker being at the
𝑖th node. The vector 𝑃𝑡 = (𝑝1, 𝑝2, . . . , 𝑝𝑛) is then the “state”
after t steps. The sequence of 𝑃𝑡 as 𝑡 goes to infinity (i.e., the
randomwalker keeps walking forever) forms aMarkov chain.
The states are also called the transition probabilities.

In order for such a Markov chain to converge, the cor-
responding graph must be “irreducible” [29] and “aperiodic”
[30]. In simpler terms,

(I) the graph is “strongly connected”; that is, between
every (ordered) pair of nodes there is a directed path;

(II) the greatest common divisor of all cycle lengths is 1.

We claim that both of these conditions are satisfied in our
constructed network. First, the initial node 𝑆 has a directed
edge (hence, a directed path) to and from every other node
in the graph. For any pair of nodes 𝐴 and 𝐵, A → S →
B → S → A provides the necessary directed paths from
A to B and vice versa. Thus, the graph under consideration
is strongly connected. Second, for any node 𝐴, the directed
cycle A → T → S → A is of length 3. Also, for any directed
edge 𝐴 → 𝐵, the directed cycle A → B → T → S → A is of
length 4. Therefore, the greatest common divisor of all cycle
lengths is 1.

The unique limit to which this Markov chain converges
is, in other words, the unique vector 𝑃 to which the tran-
sition probability 𝑃𝑡 converges as 𝑡 approaches infinity. This
limit 𝑃 is the unique “stationary probability” or “stationary
distribution.” Such a convergence indicates that if the random
walking process goes on forever, the probability of each node
(protein) being visited (i.e., being influenced through the
network by other proteins) is a fixed value.

Using𝑀 to denote the adjacency matrix of the directed
graph with edge weights corresponding to the probabilities
(known as the transition matrix of this random walk), the
stationary distribution can be directly determined by solving
𝑃𝑀 = 𝑃. In other words, an eigenvector corresponding to the
eigenvalue 1, of the matrix𝑀 transposed.

We will use the vector 𝑃 as a measure of how strongly
each protein is performing in the network. As time changes,
the variation of 𝑃 with respect to each variable provides us
with the necessary data to construct our differential equation
model. We then use our model to predict the behavior of
each protein in the network as well as the impact between the
proteins.

First we construct our relation matrix from the 14-gene
network in Figure 1(b), yielding Table 1 of their correlations,
where an X in the 𝑖th row and 𝑗th column implies the fact
that the ith gene regulates the 𝑗th gene, while Y denotes
the binding relation between two genes. An entry labeled
with X/Y simply means both regulation and binding relation
exist between the two genes. We used the numerical labeling
instead of gene names for concise presentation, while keeping
the list of our labeling as in Table 2. With the addition
of the transition node and restart node, we obtain a 16 by
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16 adjacency matrix, from which our transition matrix is
constructed as follows. Here we assume each outgoing edge

from a chosen vertex is visited (by the random walker) with
the same probability.
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(1)

Starting with a probability distribution (0, 1/14, . . . , 1/14, 0)
(i.e., evenly distributed among the 14 genes), repeatedly
applying the transition matrix provides us the sequence of
data associated with each of the five key genes CCNB1,
CCND1, CDH1, CDKN1B, and TP53, whose impact on each
other is shown in Figure 2. We denote their expressions
by the variables 𝑥1, 𝑥2, 𝑥3, 𝑥4, and 𝑥5, respectively. The
convergence of each of these variables is shown in Figure 3.
By projecting the differential of each key gene with respect to
the neighboring genes (in Figure 2), we are able to model the
evolution of these genes inside our original network through
a system of differential equations, which enables us to predict
andmodel the relations between individual pairs.The pseudo
structure between them, together with the artificial transition
and restarting points, is shown in Figure 4.

Based on the structure of the gene network and the
collected data samples (i.e., the sequences of the expressions

of each 𝑥𝑖 when the hypothetical random walking process
is applied), we propose the following system of differential
equations that governs the evolution of the five-gene network:

𝑥̇1 = 𝑟11𝑥1 + 𝑟12𝑥2 + 𝑟13𝑥5,
𝑥̇2 = 𝑟21𝑥1 + 𝑟22𝑥2 + 𝑟23𝑥3 + 𝑟24𝑥1𝑥3,
𝑥̇3 = 𝑟31𝑥2 + 𝑟32𝑥3 + 𝑟33𝑥4 + 𝑟34𝑥5,
𝑥̇4 = 𝑟41𝑥1 + 𝑟42𝑥3 + 𝑟43𝑥4 + 𝑟44𝑥5,
𝑥̇5 = 𝑟51𝑥2 + 𝑟52𝑥3 + 𝑟53𝑥4 + 𝑟54𝑥5,

(2)

where 𝑥1, 𝑥2, 𝑥3, 𝑥4, and 𝑥5 represent the genes CCNB1,
TP53, CCND1, CDKN1B, and CDH1, respectively, in the gene
network; 𝑟𝑖𝑗’s are the system parameters, controlling the rate
of change of their corresponding states.These parameters are
computed through calibrating the system with the sampling
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Table 1: Correlations between the 14 genes.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 O O O O Y Y Y Y Y O O O O Y
2 O O O Y Y Y X/Y X/Y Y O O X O Y
3 X O X/Y X X O X/Y Y X/Y X/Y X/Y X/Y O Y
4 O X/Y O X O O Y X/Y X/Y X/Y X/Y X O Y
5 Y Y O O X/Y O O O Y O O Y Y Y
6 Y Y O Y O O O Y Y O Y O O Y
7 X/Y Y X/Y X/Y O O X/Y X/Y X/Y X/Y X/Y O O Y
8 Y X/Y Y Y O X/Y X/Y X/Y X/Y X/Y O X/Y Y Y
9 O Y X/Y Y Y X/Y X/Y O X/Y X/Y Y O Y X/Y
10 O O Y X/Y O X/Y Y X/Y X/Y X/Y X/Y Y O O
11 O O Y Y O O X/Y O X/Y X/Y X/Y O O O
12 O X X/Y X X/Y X X X/Y X/Y X/Y O X/Y X O
13 O O O O X/Y X/Y O Y Y O O X Y Y
14 Y Y Y X/Y Y X/Y X/Y Y X/Y O O O Y X/Y

Table 2: Numerical labelling of the 14 genes.

Numerical labeling Gene names
1 CCNA1
2 CCNB1
3 CCND1
4 CCNE1
5 CDH1
6 CDT1
7 CDKN1B
8 CDK1
9 CDK2
10 CDK4
11 CDK6
12 TP53
13 GMNN
14 SKP2

data of the state variables. The calibrating process includes
a static stage followed by dynamic adaptation. In the static
stage, the derivative samples are obtained from the data sam-
ples via a higher order finite differencemethod.Thederivative
samples along with the data samples are applied to (2) to opti-
mally approximate the parameters by using the least squares
method. This is carried out for each differential equation
in (2). These newly computed parameters are applied to (2)
for dynamic adaptation. At this stage, the dynamical system
is simulated via the fourth-order Runge-Kutta method to
produce the state trajectories.The state trajectories are plotted
against the state samples for comparison. The discrepancies
are reduced through transient-steady state compensation.

3. Results and Discussion

The simulation results of the differential equations system
(2) against the collected sample data are shown in Figure 5.
We compute the system parameters optimally by minimizing

CD
H

1

Time
2 4 6 8 10 12

0.04

0.08
0.06

CD
KN

1B

0.06

0.07

Time
2 4 6 8 10 12

CC
N

D
1

0.04

0.08
0.06

Time
2 4 6 8 10 12

TP
53 0.06

0.02

0.08

0.04

Time
2 4 6 8 10 12

CC
N

B1
0.04

0.08
0.06

Time
2 4 6 8 10 12

Figure 3: Convergence of key gene expressions. The expressions of
the five key proteins CCNB1, CCND1, CDH1, CDKN1B, and TP53
aremodeled through the randomwalk probability distribution, each
converging to the stationary probability.

the errors throughout the transient and steady state stages.
The numerical values of the parameters are listed in Table 3.
Figure 5 shows the collection of state trajectories predicted by
(2) along with the corresponding sample values. It is easy to
see that the transient response and the steady state match up
well with the collected samples.
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Figure 4: Updated network with artificial nodes. Two artificial nodes, the “transition” and “restarting” nodes, are added to the five-protein
network to generate the directed graph for the random walk model.

Table 3: Determined system parameters.

𝑟11 −1.6525
𝑟12 0.56
𝑟13 1.22
𝑟21 0.21
𝑟22 −1.72
𝑟23 0.85
𝑟24 0.3919
𝑟31 0.32
𝑟32 −1.65
𝑟33 0.45
𝑟34 0.38
𝑟41 0.31
𝑟42 0.23
𝑟43 −1.62
𝑟44 0.16
𝑟51 0.24
𝑟52 0.12
𝑟53 0.11
𝑟54 −1.9

In this study, we generate amathematicalmodel to predict
dynamics of molecular circuits of cell cycle control. Instead
of studying each molecules involved in cell cycle regulation,
we use a network evolution model to dissect how molecular
circuits of cell cycle control function as a network tomaintain
homeostasis of cell growth signals.

We believe our approach can be applied to a variety of
biological contexts to solve key clinical questions in cancer
research. First, cancer dormancy is a stage in tumorigenesis
where the cells stop dividing but survive while waiting for
appropriate endogenous and environmental signals to reenter
into cell cycle and proliferate again [31]. Cancer dormancy

is associated with drug resistance, tumor recurrence, and
metastasis.Thus our network evolutionmodel might provide
a new perspective to identify the difference at the network
level of cell cycle control between dormant cancer cells and
proliferative cancer cells. The results from such analyses
may mechanistically explain how dormant cells achieve
withdrawal and reentry of cell cycle and more importantly
may identify druggable targets that can be used to develop
antidormancy therapy to extend patient survival.

Secondly, this network evolution model of cell cycle
control might provide us with a molecular tool to monitor
dynamics of cell cycle transition, which can be used to opti-
mize dosing schedules of cancer preventive and therapeutic
drugs. Most of radiation therapy and chemotherapy are given
to cancer patients with scheduled cycles. For example, typical
dosing schedule of radiation therapy is 2Gy per day, 5 days
per week, for 6 weeks [23]. However, it remains open as what
alternative schedules could be applied to improve treatment
efficacy and reduce toxicity. Our network evolution model
provides us with a possible approach to model the treatment
responses of cells to radiation by monitoring the dynamics of
cell cycle control, which will help us guide the experimental
validations to achieve an optimized dosing schedule.

In addition to the study of cancer treatment, our model
may also be helpful for designing better cancer prevention
regimens for patients with high risks of cancers. For example,
estrogen signaling is a major biological pathway driving
cell cycle progression and cell proliferation. For women at
high risks of breast cancer such as genetic predisposition
or existing premalignant pathological changes, tamoxifen
and raloxifene have been demonstrated by clinical trials
with approved chemopreventive effects [32, 33]. It has been
recommended to take these drugs for 5 years in the cancer
prevention setting based on clinical experience. However
this prolonged dosing schedule causes severe side effects,
which lead to reluctance of women at high risks of breast
cancer to take these drugs for cancer prevention [32–34].
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Figure 5: Comparison between projected and sample data. The state trajectories are plotted against the state samples for comparison. The
discrepancies are reduced through transient-steady state compensation.
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There is no method available to determine such an optimized
dosing schedule with potential intermittent treatment in lieu
of a 5-year continuous treatment. By applying our network
evolutionmodel, wemay identify an optimal dosing schedule
to conduct intermittent preventive treatment, which can
reduce toxicity and improve efficacy [35]. Consistent with
our findings, ordinary differential equationmodels have been
widely used in cancer research to estimate tumor growth and
anticancer treatment responses [35]. These studies demon-
strate a proof of concept for using these models to simulate
complex biological processes and interactions by developing
simple quantitative models and also comparing experimental
data.

In summary, we believe our interdisciplinary approaches
may open a new avenue to study cell cycle control, which
may better our understanding of tumor evolution and cancer
prevention/therapy.
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