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The High Osmolarity Glycerol (HOG) MAP kinase pathway in the budding yeast Saccharomyces cerevisiae is one of the
best characterized model signaling pathways. The pathway processes external signals of increased osmolarity into appropriate
physiological responses within the yeast cell. Recent advances in microfluidic technology coupled with quantitative modeling, and
techniques from reverse systems engineering have allowed yet further insight into this already well-understood pathway. These
new techniques are essential for understanding the dynamical processes at play when cells process external stimuli into biological
responses. They are widely applicable to other signaling pathways of interest. Here, we review the recent advances brought by these
approaches in the context of understanding the dynamics of the HOG pathway signaling.

1. Introduction

Living organisms have evolved specialized biochemical
pathways to cope with stressful, often changing environ-
ments. Even in simple cells such as yeast, thousands of
specialized sets of sensing and signaling proteins form
modules used to monitor and adapt to the environmental
state and its variations. Such modules can be insulated
or, on the contrary, connected to one another. Whereas
insulation allows for robust and sensitive response, the
interconnection of modules allows for higher-level behav-
ior such as multiple input sensing and decision making
through cross-talk [1]. For a given stimulus, the biochemical
components of the different modules that play a role in
the cellular response are usually well described in the
literature. Their biological functions and interactions are
known in detail, especially in model organisms such as
the budding yeast. This knowledge comes from decades of
complex, tedious, and elegant experiments. Genetic tech-
niques such as gene deletion, mutation, and overexpression
have been used to infer the connection patterns between
proteins and the architectures of many modular functions.

Biochemical assays provided crucial information on protein
phosphorylation and kinase activity. Microarrays revealed
the role of these modules in determining global gene
expression.

Signaling pathways are naturally dynamic [2] in that cells
must respond to external signals in a timely manner, and
indeed, the cellular response is often affected by the temporal
properties of the external signal. In addition, the internal
dynamics and timing of events in the signaling pathway
determine the cellular response. These internal dynamics
determine the information flow, allowing cells to process and
convey information from a sensory input to a specific protein
in charge of orchestrating the cellular response [3]. Until
recently, experimental techniques have been limited such
that most studies have examined the response of a signaling
pathway to a stationary stimulus. Accordingly, adaptation
and cellular responses to environmental cues were usually
studied only with respect to the magnitude of the stimulus
without seriously taking into account dynamical aspects.
Identification of the components of a signaling pathway
through the techniques mentioned above, combined with
studies of simple stationary stimuli, is not enough to
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understand the dynamics or systems-level properties of a
complex biological network.

With the emergence of systems biology, there has been
an important paradigm shift, and it is becoming increasingly
clear that the temporal variations of stimulatory inputs can
be directly sensed by cells [5] and that studying cells in
time-variable environments is a powerful way to determine
signaling pathway architecture and to understand how they
process information [6, 7]. Experimental microfluidics-
based strategies have matured to allow for excellent control of
the cellular environment both in time and space [8, 9]. This
technology coupled with genetic engineering to fluorescently
tagged proteins allows for real-time observation of the
system’s response using fluorescence microscopy. Finally,
quantitative real-time measurements form the basis for the
development of mathematical models and the use of signal
analysis tools, such as reverse engineering, to model the
dynamical aspects of signaling pathways [10]. These models
in turn provide testable experimental predictions.

This review describes the recent strategies that have
been developed to assess quantitatively the dynamics of the
canonical HOG MAP kinase (MAPK) pathway in the yeast,
Saccharomyces cerevisiae. We shall first briefly review the key
characteristics of the organization of the HOG pathway. We
then discuss the novel experimental and modeling tools [10,
11, 16–18] that are allowing new insights into the pathway’s
dynamics and systems-level behavior.

2. MAPK Cascades in Yeast

Among signaling pathways, the Mitogen Activated Protein
Kinases (MAPK) family has received considerable attention.
MAPK pathways are very well conserved from yeasts to
mammals [19–21] and several comprehensive reviews are
available in the recent literature [22, 23]. MAP Kinase
pathways are involved in many cellular processes such
as stress response, the regulation of differentiation and
proliferation. These pathways contain a canonical module of
three protein kinases that act in series (Figure 1). Upon phos-
phorylation by an upstream protein, a MAP kinase kinase
kinase (MAPKKK) phosphorylates a MAP kinase kinase
(MAPKK) on conserved serine and threonine residues,
which in turn phosphorylates a MAP kinase (MAPK) on a
threonine (sometimes serine) and a tyrosine residue located
adjacent to each other and separated by a single amino acid
(Thr/Ser-X-Tyr). This dual phosphorylation site is located
in the activation loop of the catalytic domain and its dual
phosphorylation is needed for activation of the MAP kinase.

There are five MAPK modules in yeast (Table 1) [22].
The hyperosmotic glycerol (HOG) pathway is activated in
response to a hyperosmotic stress [24–28]. The Cell Wall
Integrity (CWI) module controls the cell wall integrity and is
triggered in response to numerous stresses including cell wall
deterioration, temperature shifts, and hypo osmotic shocks
[29–31]. The pheromone pathway [32, 33] controls the
mating response which involves an important morphological
deformation of yeast cells. Finally, the filamentous growth
pathway [33, 34] and the sporulation pathway [22] control
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Figure 1: The canonical structure of a MAPK cascade. We used
the Systems Biology Graphical Notation (SBGN) [4] to represent
the interactions between the MAP Kinases. Activations of MAPK
occur through enzymatic phosphorylation and ATP consumption.
Interactions with other components and in particular with phos-
phatases are not shown. In the case of the HOG pathway in yeast,
dual phosphorylation of the final MAPK (Hog1p) occurs within a
few minutes after an hyper-osmotic stimulus.

the response to starvation for haploid and diploid cells
although the sporulation pathway is not as well known as
the other four MAPK pathways. Only its MAPK has been
identified in diploid cells (Smk1p), and it is thought to
drive the spore cell wall assembly [22]. Though they share
numerous components, the five MAPK pathways of the
yeast Saccharomyces cerevisiae are tightly regulated by cross-
talk and mutual inhibition which permit faithful signaling,
adaptation to their environment, and regulation of growth
and morphogenesis [22]. Among these MAPK pathways, the
HOG pathway (Figure 2) is particularly well suited to study
signaling dynamics, since it can be reliably activated through
increasing the osmolarity of the environment.

3. The HOG MAPK Signaling Pathway

Water homeostasis is fundamental for life. In nature, the
environment can vary rapidly from isotonic to hyper or hypo
osmotic conditions, and yeast cells have to adapt quickly
[23, 47]. The first response after a hyperosmotic shock is the
rapid loss in few seconds of cell volume due to water efflux
and the activation of membrane sensory receptors followed
by the activation of the HOG pathway which is completed
after a few minutes (Figure 2) [11, 48]. Two distinct branches
of the pathway detect changes in osmolarity and activate the
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Table 1: The MAPK pathways in S. cerevisiae. The morphological adaptation corresponds to the cell behavior in response to each specific
signaling input. The major molecular actors for each pathway are indicated below. Spore cell wall assembly during sporulation is another
morphogenetic process driven by a MAPK protein (Smk1p), but with little knowledge on the other proteins involved and the structure of
the pathway.

External Stress Pheromone Starvation Hyperosmolarity Cell wall Stress

Morphological
Adaptation

Membrane Sensors Ste2/3 Sho1
Sln1, Sho1, Msb2, Hkr1,

Opy2
Wsc1, Mid2

MAPKKK Ste11 Ste11 Ssk2/22 & Ste11 Bck1

MAPKK Ste7 Ste7 Pbs2 Mkk1/Mkk2

MAPK Fus3/Kss1 Kss1 Hog1 Slt2

Transcription factors Ste12 [22, 35] Ste12, Tec1 [22, 35, 36]
Hot1, Sko1, Smp1, Msn2/4

[22, 28, 37, 38]
Rlm1, Swi4/6 [22, 39, 40]

Inhibition
Msg5, Ptp2, Ptp3

[21, 41, 42]
—— [21]

Ptcs, Ptp2, Ptp3
[21, 43–45]

Msg5, Ptp2, Ptp3, Sdp1
[21, 30, 46]

pathway. These branches converge at the level of the MAPKK
Pbs2p. The first branch is referred to as the SHO1 branch
[23, 49], while the second is referred to as the SLN1 branch
[50, 51].

Sln1p negatively regulates the HOG signaling pathway
and deletion of SLN1 is lethal due to pathway overacti-
vation. This lethality is suppressed by knocking out any
of the downstream components SSK1, SSK2/SSK22, PBS2,
or HOG1. Sln1p contains two transmembrane domains,
a histidine kinase domain and a receiver sequence. Sln1p
autophosphorylates on its histidine kinase domain. The
phosphate group is then transferred to its receiver domain,
then to Ypd1p and finally to Ssk1p. This set of three proteins
forms a phosphorelay [50, 51], a very common signaling
motif in prokaryotes [51], but rare in eukaryotic cells such
as yeast. The phosphorylated form of Ssk1p is inactive and
the downstream MAPK pathway is usually not activated.
However, after a hyperosmotic stress, Sln1p is inactivated
by an unknown mechanism (though it has been proposed
that Sln1p is sensitive to membrane tension [23, 52]) leading
to the inactivation of Ypd1p and derepression of Ssk1p.
Finally, unphosphorylated Ssk1p binds to the MAPKKKs
Ssk2p and Ssk22p, which autophosphorylate, and then can
phosphorylate the MAPKK Pbs2p. Sln1p seems to dominate
the kinetic response of the pathway while also ensuring
its robustness by inducing high basal Hog1p expression
counteracted by a fast-acting negative feedback to allow rapid
pathway response [53]. Thus, this tightly tuned signaling
branch allows rapid and sensitive responses to environmental
changes.

Sho1p consists of four transmembrane domains and
an SH3 domain. This domain permits the recruitment of
molecular actors, notably the MAPKK Pbs2p, to the plasma
membrane [54]. The upstream kinase Ste20p, the G-protein
Cdc42p, and the MAPKKK Ste11p needed for the activation
of the protein Pbs2p are also recruited to the membrane [55].
Since it is a transmembrane protein, Sho1p has long been
considered an osmosensor [56]. However, recent studies

suggest that Sho1p is more an anchor protein than a sensor
for osmolarity [55]. Hkr1p and Msb2p, two mucin-like [57–
60] proteins that form heterooligomeric complexes with
Sho1p [58, 59] have recently been proposed as osmosensors
of the SHO1 branch. Components of the SHO1 branch
also take part in pseudohyphal development and mating,
indicating that Sho1p might not have a specific role in
osmosensing but a more general role related to cell shape
measurement [61].

MAPKKKs of these two initiating branches induce the
phosphorylation of the MAP kinase kinase Pbs2p on the
conserved residues Ser514 and Thr518 [62]. Pbs2p is a
cytoplasmic protein essential for the activation of Hog1p by
dual phosphorylation on the conserved Thr174 and Tyr176
[62]. PBS2 and HOG1 are essential for osmoadaptation
as null mutations in both genes induce osmosensitivity
[23, 63]. Pbs2p also plays the role of a scaffold for the
SHO1 branch [49, 54, 56, 64] by anchoring the different
components, promoting signal propagation between proper
protein partners and preventing improper cross-talk between
the Pheromone pathway and the HOG pathway. Once Pbs2p
phosphorylates Hog1p, Hog1PP translocates to the nucleus
in a manner that is dependent upon the karyopherin Nmd5p
[65]. Localization of Hog1p-GFP to the nucleus can be used
as a reliable reporter of pathway activity.

4. Sequential Response after
a Hyperosmotic Shock

The activation of the Hog1p MAPK triggers several responses
on different time-scales (Figure 3) [48]. A rapid non-
transcriptional response in the cytoplasm corresponds to
the closure of Fps1p [66] and the activation of several
kinases (e.g., Rck2p [67], Pfk2p [68]). Fps1p belongs to the
ubiquitous Major Intrinsic Protein (MIP) [69] family and
is known to play a central role in yeast osmoadaptation
by controlling both uptake and efflux of the osmolyte
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Figure 2: The HOG pathway. View of the main molecular actors
involved in the hyperosmotic glycerol pathway (see text for more
details). Two branches led by Sho1p and Sln1p are sensitive to
high osmolarity and lead to the activation of Pbs2p and Hog1p
after a hyperosmotic shock. Hog1p has both a cytoplasmic and
a nuclear role, with different timescales, that correspond to a
fast non transcriptional response and a longer response involving
transcription when dealing with strong hyper osmotic shock. The
yeast pictures at the bottom show nuclear localization of Hog1p
tagged by GFP after a moderate hyper-osmotic shock (Sorbitol,
1 M). Colocalization with the nucleus is seen on the overlay pictures
between the GFP channel (Hog1p) and the RFP channel (Htb2p).
Note that localization is transient and reversible if the cell is put
back into isotonic conditions.

glycerol [70]. Importantly, Fps1p is gated by osmotic changes
[66, 71]. Indeed, this channel protein is closed under
hyperosmotic stress to enable intracellular accumulation of
glycerol, whereas it is open under low-osmolarity conditions
to allow for glycerol efflux.

On a longer time scale, several minutes after an osmotic
shock, Hog1p induces the modification of expression of
nearly 600 genes [72–75]. This transcriptional response is
driven by intermediate transcriptional factors: Hot1p, Sko1p,
Smp1p, and Msn2/4p [37, 38, 74, 76, 77]. Importantly,
Hog1p initiates glycerol biosynthesis via the transcriptional
factor Hot1p [38]. Glycerol production is due to the expres-
sion of glycerol-3-phosphate dehydrogenase and glycerol-
3-phosphatase. Both enzymes are encoded by two similar
isogenes, GPD1, GPD2 and GPP1, GPP2, respectively, [78,
79]. The accumulation of glycerol results in an increase
of the internal osmolarity, leading to water influx and cell

size recovery. Hot1p is also involved in regulating glycerol
influx by inducing a strong and transient expression of
STL1, which codes for a glycerol proton symporter located
in the plasma membrane [80]. Hog1p is dephosphorylated
and exported from the nucleus via the karyopherin Xpo1p
[65] 20 to 30 minutes after an osmotic shock depending
on the severity of the shock. This is concomitant with the
onset of glycerol production and restoration of osmotic
balance. Dephosphorylation of Hog1p is due to nuclear
phosphatases. Phosphatases have a critical role in down-
regulation of MAPK proteins whose excessive activation
can be lethal for the cell. In yeast, three classes of protein
phosphatases are known to downregulate MAPK pathways.
The dual specificity phosphatases (DSPs) dephosphorylate
both phosphotyrosine (pY) and phosphothreonine (pT).
The protein tyrosine phosphatases (PTPs) dephosphorylate
only tyrosine residues. Finally, protein phosphatases type
2C (PTC) dephosphorylate threonine, serine, and some-
times tyrosine residues. For the HOG pathway, the serine-
threonine phosphatases Ptc1p, Ptc2p, and Ptc3p act on both
the Pbs2p (MAPKK) and Hog1p (MAPK), while the tyrosine
phosphatases, Ptp2p and Ptp3p strictly control Hog1p [43,
44, 49]. Ptp2p is predominantly localized in the nucleus,
Ptp3p in the cytoplasm, while the protein phosphatases types
2C are located both in the cytoplasm and in the nucleus.
Simultaneous knockout of both PTP2 and PTC1 is lethal
for the cell [45]. Deletion of PTP3 induces overactivation
of Hog1p but is not lethal because it predominantly acts on
other MAPK proteins involved in the mating pathway.

5. Towards a Model of the HOG Pathway

Years of genetic and biochemical analysis have provided us
with an extraordinarily precise description of the key players
in the HOG pathway. What about the signaling dynamics
of the pathway? How does the architecture determine the
pathway’s signal processing ability? Classic molecular biology
experiments were based on step shock experiments with
an osmotic agent, such as NaCl or sorbitol at various
concentrations. Phosphorylation states of key proteins have
been measured at different time points after a step shock
at the population level, showing a transient increase of
phosphorylation (lasting several minutes) concomitant with
nuclear enrichment of Hog1p [81]. Nuclear cytoplasmic
shuttling of Hog1p was also observed qualitatively, indicating
a fast deactivation of the pathway when cells are returned
to an isotonic environment [81]. Levels of gene expression
have been measured at different timepoints after an osmotic
shock using microarrays [73]. Although done with a low
resolution in time compared to biophysical experiments,
these measurements give an idea of the dynamics of the
activation of the pathway.

Based on such measurements, several models have been
proposed to describe mathematically the HOG signaling
pathway and more generally osmoadaptation in yeast [82].
The most comprehensive and the first integrative one is due
to Klipp et al. [81]. Their model takes not only the HOG
signaling cascade into account (only the SLN1 branch), but
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Figure 3: Sequential sketch of yeast adaptation to a hyperosmotic shock. The evolution with time of the size, phosphorylation of Hog1p, and
internal concentration of glycerol are schematically represented in the center of the picture. (1) After an increase of the external osmolarity
(green), a first mechanical response corresponds to a rapid loss of water (blue arrow). It leads to a decrease of the cell size and a loss of turgor
pressure. (2) HOG osmosensors (blue) activate the pathway and eventually lead to the phosphorylation of Hog1p. (3) Hog1PP induces
several processes: (a) Inactivation of the glycerol channel Fps1p preventing glycerol leakage; (b) direct or indirect activation of cytoplasmic
actors, for example, 6-phosphofructo-2-kinase (Pfk2p) involved in glycerol synthesis; (c) translocation in the nucleus. Note that there are
other targets of Hog1p such as Sic1p, Hsl1p, Nha1p, and Tok1p. (4) Nuclear Hog1PP induces a large transcriptional response. In particular,
the gene GPD1 leading to glycerol synthesis is upregulated. Negative feedbacks (glycerol production, phosphorylation of Sho1p, etc.) allow
inhibition of the pathway activity. (5) Increase of the internal glycerol leads to water influx and progressive cell size recovery while Hog1p is
exported from the nucleus. (6) Pathway is off, and turgor pressure and cell size are restored. The cell is adapted to its new environment.

also includes a description for the metabolic production of
glycerol, as well as an elementary gene expression model for
the enzymes involved in glycerol production. The model also
includes the closure of the membrane glycerol tranporter
Fps1p and takes the dephosphorylation of nuclear Hog1p
by Ptp2p into account. Most reactions in the model were
described by the mass action rate law. The model consisted of
70 parameters, of which 24 had to be estimated. To estimate
this number of parameters with the limited data available,
the authors divided the model in modules and fitted them
separately to data points. Their model reproduced accurately
the transient response of the HOG pathway after a single
hyperosmotic shock. This included the phosphorylation
states of Hog1p and Pbs2p, as well as glycerol production
and cell-size recovery. In addition, the model was able to
correctly predict the effect of different mutations of proteins

involved in the pathway. Mutants unable to produce glycerol
(gpd1Δ, gpd2Δ) [83] or to close the Fps1p channel showed
an increased duration of HOG activity. Mutants with an
increased phosphatase Ptp2p activity showed a lower level of
phosphorylated Hog1p but a similar period of HOG activity.

Although very promising, such an approach is still
extremely difficult to fine tune since it relies on many
unknown parameters. Comparison of the model outputs
to experimental data is crucial. To further constrain and
test complex models one needs quantitative, time-resolved
experiments at the single-cell level in response to complex
input signals.

As engineers do with electronic circuits and chips, a very
powerful way to explore the dynamics of a given system is
to observe its response to complex input signals. Such an
approach lends itself to developing minimal models that
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Figure 4: Different microfluidics techniques to control the chemical
environment of single yeast cells while imaging them through
microscopy. (a) Microfluidic system as described in Hersen et al.
[11]. Yeast cells are fixed in the channel by the lectin protein
Concanavalin A. One inlet is filled with an iso-osmotic media
(blue) and the other with a hyperosmotic media (orange). By tightly
controlling the pressure in each inlet, it is possible to create a
periodic shock on the cells. (b) Optical tweezers system (red) as
described by Eriksson et al. permits to control the cells position in
the channel with two fluids flowing side by side [12]. (c) The system
developed by Charvin et al. uses a dialysis membrane (green) to trap
cells on top of a soft PDMS slice [13]. (d) Multilayer microfluidic
device [14]. The top layer (green) is used to capture cells. By
controlling the pressure inside this channel, cells can be optimally
trapped while subjected to periodic shocks. The bottom layer is used
to culture cells.

capture the dynamical properties of the pathway, such as
feedback loops and signal processing abilities, without taking
into account all the details of the biochemical reactions.
These approaches require designing experimental systems
in which the extracellular environment can be quickly and
precisely varied. We will now review the innovative method-
ologies that have been recently used to study single yeast
cells in time varying environments. Then, we will review
how those measurements have been integrated into minimal
modeling to further study the dynamics of the HOG pathway.

6. Fast Control of the Chemical Environment of
Single Cells

Several approaches, using microfluidics [8, 9, 84, 85], have
been recently proposed to allow for a fast and reliable control

of the chemical environment of yeast cells [7]. Hersen et
al. [11] designed a fast binary switch to repeatedly change
the environment of single yeast cells between two chemical
conditions as fast as every second (Figure 4(a)). They used a
Y-shaped flow chamber, 50 μm high and 500 μm wide, with
two inlets. One inlet was filled with an isotonic medium,
and the other with the same culture medium complemented
with sorbitol to increase its osmolarity. At such small scales,
flows are laminar and fluids do not mix but rather simply
flow side by side. The lateral position of the fluids interface
is set by the relative hydrostatic pressure—or the relative
flux—of the two inlets. Changing this pressure difference
displaces the interface laterally in less than a second. Yeast
cells, previously fixed in the channel through concanavalin-
A coating were then repeatedly switched from an isotonic
to a hyperosmotic environment. An interesting alternative
developed by Eriksson et al. [12] consists of moving the
cells with optical tweezers (Figure 4(b)) rather than moving
fluids over fixed cells. This strategy removes the potential
influence of cell adhesion on signaling dynamics related
to morphological changes, but at the cost of technological
complexity. Also, such a strategy is very time consuming.
Holographic tweezers—a sophisticated version of optical
tweezers—can help to increase the number of cells that can
be observed in real time [86]. Another strategy was proposed
by Charvin et al. [13, 87]. Yeast cells are fixed between a
permeable dialysis membrane and a cover slip coated with
a very thin layer of soft PDMS (Poly-Di-MethylSiloxane).
A channel is placed on top of the membrane and allows
flow of fresh media and exchange within a few minutes.
Nutrients and other chemicals can freely diffuse through
the membrane. With this device, environmental exchange
happens more slowly, but cells can grow over several
generations in a monolayer simplifying their observation
through microscopy. Indeed, Charvin et al. used it to force
periodic expression of cyclins in yeast growing exponentially
up to 8–10 generations.

More complex devices have been proposed, though they
require a high degree of expertise to fabricate and manipu-
late. Bennet et al. [88] developed an environmental switcher
capable of generating sinusoidal inputs. Their multilayer
device was composed of a microchemostat, with a depth
of 4 μm to force yeast cells to grow in a monolayer, and a
fluid mixer to generate complex time varying environmental
signals for the cells in the chemostat chamber. They used this
device, in a particularly elegant work, to revisit the wiring
of the GAL system in yeast, by subjecting cells to sinusoidal
inputs of carbon source over a range of frequencies. Tay-
lor et al. [14] described a high throughput microfluidics
single-cell imaging platform to study the dynamics of the
pheromone response in yeast. They combined a fluidic
multiplexer, an array of channels, and many sieve valves to
trap cells and to control fluid delivery. They were able to
perform simultaneous time lapse imaging of 256 chambers
with 8 different genotypes with several dynamical inputs.
Such a strategy, although very sophisticated, can enhance
dramatically the quantity of data gathered to improve our
knowledge and refine modeling of MAPK pathways in
yeast [7].
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Figure 5: Schematic representation of the Hog pathway models of Mettetal et al. [10] and Zi et al. [15]. Pictures are redrawn from original
figures of these papers. Top: (a) Diagrammatic representation of Mettetal’s model. Au(t) represents the osmolarity applied at time t and
the variables x and y can be identified with the intracellular glycerol concentration and the enrichment of Hog1 in the nucleus. The model
contains a feedback depending on Hog1p (with strength β) and one, which is independent of Hog1p (strength α). The equations for this
model read ẏ = (A0u − x) − γy and ẋ = α(A0u − x) + βy. (b) The same model, interpreted in biological terms. The export of osmolytes is
regulated by a mechanism, which does not depend on the MAPK pathway (e.g., closure of Fps1p) and by a mechanism depending on Hog1p
activation. (c) Diagram of the model structure proposed by Zi et al. The model includes a simplified version of the MAPK pathway as well
as two different feedbacks induced by activated Hog1p (a slow transcriptional and a fast nontranscriptional). Both of these feedbacks act by
increasing the production of glycerol.

7. New Insights from Coupling Complex
Stimulus and Reverse Systems Engineering

Using such microfluidics strategies (Figure 4(a)), Hersen et
al. studied the HOG pathway response to periodical osmotic
stimulation over a range of frequencies. Interestingly, the
HOG pathway acts as a low-pass filter, meaning that the
output of the pathway (Hog1p nuclear localization) does not
follow a fast varying input precisely, but rather integrates
fast fluctuations over time. For wild-type strains, when the
input signal varies slower than once every 200 s, Hog1p

cytoplasmic—nuclear shuttling follows the input variations
faithfully [11, 17]. However, when the input varies more
rapidly than every 200 s, Hog1p nuclear translocation no
longer follows the input faithfully, but instead integrates
over the input fluctuations [11, 17]. This typical time is
also the slowest time (or limiting step) of activation of the
pathway although it was not possible from these experiments
to point out which biochemical step was limiting. By genetic
removal of one of the two branches, the contribution of each
branch was also measured by Hersen et al., and it was found
that the SHO1 branch is slower than the SLN1 branch by
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almost a factor two. The SHO1 branch was actually unable
to integrate the too fast variations of the input whereas the
SLN1 branch, when taken alone, was displaying a similar
behavior than wild-type cells [11]. Those investigations
clearly evidenced that the pathway can be turned off very
quickly and repeatedly, suggesting the existence of several
feedback loops acting on different timescales.

An attempt to decipher the dynamical aspects of these
feedback loops has been done by Mettetal et al. [10], who
also examined the response of the Hog1p nuclear localization
in response to an oscillating input. They constructed, based
on these frequency experiments, a simple predictive model,
which was not based on biological knowledge (Figure 5(a)).
Subsequently, they identified the two variables of their
model with the intercellular osmolyte concentration and the
phosphorylation state of Hog1p and concluded that the path-
way contains a Hog1-dependent and a Hog1-independent
feedback mechanism. By underexpressing Pbs2p, thereby
reducing the sensitivity of the Hog1-response to the input,
they were able to isolate the Hog1-independent feedback
from the Hog1-dependent feedback. Based on this they
concluded that the Hog1-dependent feedback is required
for fast pathway inactivation. By inhibiting translation,
they showed indeed that the slow transcriptional response
triggered by Hog1p is only necessary for the adaptation to
multiple osmotic shocks, while for a single osmotic shock
faster nontranscriptional feedback mechanisms dominate
the response. Their conclusion is in perfect agreement with
recent experimental investigations showing that even cells
with Hog1p anchored to the membrane present an increase
of glycerol production after a hyperosmotic shock [89].
Although the details are not known, Hog1p directly or
indirectly activates the 6-Phosphofructo-2-kinase (PFK2)
[68] which leads to an increase production of glycerol
through Gpd1p activity.

Hao et al. also focused on rapid non-transcriptional
feedback loops. First, they noticed that the response of the
SHO1 branch is more transient than that of the SLN1 branch.
Then, based on previous observations, they constructed
three simple mathematical models, each describing another
possible mechanism of HOG inactivation. One model was
based on Hog1p mediating activation of a negative regulator
(phosphatases), while the other two models focused on
the negative control of a positive regulator. Analysis of
the different models suggested a Hog1p-dependent feed-
back mechanism occurring early in the response. Their
experimental analysis confirmed this and suggested that
Hog1p acts negatively on Sho1p by phosphorylation, thereby
implementing a direct negative feedback loop.

Muzzey et al. [18] followed a similar approach to
study the feedback mechanisms within the pathway. They
identified the transient activation of Hog1p with a feature
called perfect adaptation, which states that the steady state
output of the pathway does not depend on the strength of the
osmotic shock. They argued that robust perfect adaptation
requires at least one negative feedback loop containing an
integrating component [90] and they analyzed the location
of this integrator. They defined an integrating component
as a dynamic variable whose rate of change does not

depend on itself. They monitored multiple system quantities
(cell volume, Hog1p, and glycerol) and used varied input
waveforms to analyze the pathway. Similar to Hao et al. [16],
they constructed different variants of a mathematical model,
each with a different location of the integrating component.
The authors found that the integral feedback property is
Hog1p dependent and regulates glycerol uptake.

More recently, Zi et al. [15] analyzed the experimental
frequency response of the HOG pathway done by Hersen et
al. and Mettetal et al. They constructed a minimal model
that can reproduce the response of the pathway to oscillating
inputs (Figure 5(b)) [15]. They defined a signal response
gain, which is defined as the ratio of the integrated change
of the output of the pathway to the integrated input change
and represents a measurement for the efficiency of signal
transduction. They concluded that yeast cells have optimized
this signal response gain with respect to certain durations
and frequencies of osmotic variations.

These different analyses have shown that the HOG
signaling cascade can be described in a very simple and
modular way with several feedback loops operating to
deactivate the pathway: two operating on short time scales
through Hog1p activity (Sho1p deactivation and glycerol
production increase), and one depending on transcriptional
activation of GPD1. The dynamics of the pathway was also
precisely measured and it was shown that it behaves as
a low-pass filter with a cutoff frequency, probably set by
protein concentration. Interestingly, the SHO1 branch which
is known to be involved in other cellular processes was shown
to be slower in activating the Hog1p MAPK than the SLN1
branch. Finally, those approaches have provided us with an
easily tractable mathematical model of the HOG pathway
that can be efficiently coupled to detailed mechanistic models
to study in silico the behavior of this MAPK pathway. Taken
together, the coupling between mathematical modeling and
experimental frequency analysis of the HOG pathway has
given very important insights into the HOG pathway dynam-
ics and more generally its functioning, demonstrating the
interest of developing such strategies for studying signaling
pathways in yeast.

8. Future Directions

Although the structure and the dynamics of the HOG
signaling pathway are now well understood, several key
points remain to be elucidated, the most elusive one being
the mechanistic functioning of the two osmosensors, Sln1p
and the Sho1p complex. Another important aspect of a
better understanding of the HOG pathway is to integrate
its behavior with other cellular processes. In particular, in
2000, Gasch et al. [73] compiled genome expression profiles
of S. cerevisiae yeast subjected to several stress conditions and
discovered that genes normally induced after a hyperosmotic
shock are downregulated in response to a hypo-osmotic
shock and vice versa. The CWI pathway is activated by
hypo-osmotic stimulation [29], its physiological role being
to reinforce the cell wall and prevent the cell from bursting.
HOG and CWI do not share direct components but were
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seen to interact with each other [91, 92]. During cell growth
both pathways may well be activated and deactivated within
short intervals to balance between cell expansion and cell
wall development. The Sln1p-dependent response regulator
Skn7p [93, 94] could have a role in linking the cell-integrity
pathway to the HOG pathway. Skn7p also interacts with
Rho1p an upstream component of the CWI pathway. The
evidence that Skn7p is apparently controlled by sensors of
both the HOG pathway and the cell-integrity pathway makes
Skn7p an excellent candidate for a regulator that coordinates
osmoregulation and cell wall biogenesis [23, 93, 94]. More
work is needed to better understand the putative role of
Skn7p in coordinating different aspects of turgor pressure
control and cell surface assembly. Using minimal models
and fluctuating environments to activate periodically the
CWI and/or the HOG pathway is one interesting way to
explore their interactions. Similarly, it is known that the
HOG pathway and the Pheromone pathway can interact
[95–98]. For example, a hog1Δ strain will respond to a
hyperosmotic shock by activating the response to pheromone
pathway. Again, the dynamics of such cross-talk has not
been intensely studied. Performing time varying inputs with
both pheromone and hyperosmotic medium will provide
invaluable experimental data to probe for the dynamical
aspects of cross-talk between MAPK in yeast.

Since MAPKs pathways are highly conserved from yeast
to mammalian cells, it would be interesting to test higher
eukaryotic cells, in single cell experiments, for similar system
level properties. Although more difficult to implement than
for yeast cells, microfluidic technics can also be used to
control the external environments of mammalian cells both
in time and space. Transposing the approaches described
here to mammalian cells will probably give further insights
in their signaling pathways dynamics.

9. Conclusion

Since its initial discovery in 1993 [24], extensive molec-
ular and genetic research has uncovered the molecular
actors, interactions, and functions of the components in
the HOG signaling pathway. However, these methods are
limited in that one cannot predict the behavior of a
complex system from the analysis of isolated components.
Understanding of the entire system requires the use of
novel techniques borrowed from engineering, physics, and
mathematics. Microfluidic technologies combined with live-
cell microscopy have allowed the use of temporally complex
stimuli to interrogate pathway function. Kinetic information
obtained through biochemistry combined with knowledge
of the molecular components has allowed for complex
quantitative models of the HOG pathway to be constructed.
These models in turn provide experimentally testable predic-
tions about pathway behavior and function. Simple “black-
box” models designed to mimic only key components of
the pathway have proven useful for understanding specific
phenomena. Thus, genetic and biochemical data combined
with novel experimental approaches and modeling have
allowed for the prediction of the dynamics and systems-level

properties of HOG pathway signaling processes. These
techniques are easily extended to other signaling pathways
of interests with the final goal being to understand the
relationships between structure, kinetics, and dynamics at
the systems-level in complex biological networks.
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