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Abstract: Influenza A viruses remain a significant health problem, especially when a novel subtype
emerges from the avian population to cause severe outbreaks in humans. Zoonotic viruses arise
from the animal population as a result of mutations and reassortments, giving rise to novel strains
with the capability to evade the host species barrier and cause human infections. Despite progress in
understanding interspecies transmission of influenza viruses, we are no closer to predicting zoonotic
strains that can lead to an outbreak. We have previously discovered distinct host tropism protein
signatures of avian, human and zoonotic influenza strains obtained from host tropism predictions on
individual protein sequences. Here, we apply machine learning approaches on the signatures to build
a computational model capable of predicting zoonotic strains. The zoonotic strain prediction model
can classify avian, human or zoonotic strains with high accuracy, as well as providing an estimated
zoonotic risk. This would therefore allow us to quickly determine if an influenza virus strain has the
potential to be zoonotic using only protein sequences. The swift identification of potential zoonotic
strains in the animal population using the zoonotic strain prediction model could provide us with
an early indication of an imminent influenza outbreak.
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1. Introduction

Influenza A viruses primarily reside in avian species, yet in recent years, there have been
an increasing number of documented zoonotic infections in humans. After the first highly pathogenic
H5N1 outbreak in 1997 in Hong Kong, there were subsequently many more local epidemic outbreaks
from H5N1 viruses, especially in Asia and Africa [1-3]. There have also been a smaller number of
human infections involving other avian influenza subtypes including H7N7 in United Kingdom and
Netherlands [4-6], HON2 in China [7,8], as well as the recent H7N9 outbreak in China [9,10]. Most
of these zoonotic infections emerged in a similar manner, with patients having contracted the virus
upon direct contact with poultry or other avian species [2,11,12]. While there was no direct evidence of
human transmissibility or stable adaptation in humans, many of these zoonotic infections particularly,
of H5N1 and H7N9 subtypes, cause severe illnesses, with the mortality rate for H5N1 estimated to be
as high as 60% [13]. These zoonotic strains originated from avian species, having acquired sufficient
mutations or new segments from reassortment to overcome host range restriction and successfully
cause infections in humans.

Despite many years of intensive research, current surveillance technologies for influenza viruses
remain limited as there are still no reliable measures in predicting zoonotic strains that can cause the
next zoonotic outbreak or pandemic. Current surveillance efforts focus on detection, assessment and
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response following an outbreak [14,15]. Antigenic and genetic characterization of the new strains by
phylogenetic analyses with existing strains are performed to understand how the outbreak started
as well as to formulate effective response and treatment [16,17]. There have been increasing efforts
in surveillance recently, with disease surveillance in wild birds and poultry farms where influenza
sequence data are collected and deposited online [18,19]. Yet, the computational methods to identify
possible zoonotic strains remain rudimentary, with the reliance on host-associated genetic markers [20].
A number of avian- or human-specific residues at certain amino acid positions have been identified to
differentiate between avian and human strains [21,22], most notably the polymerase basic protein 2 (PB2)
E627K host range determinant which shows a strong selection for the amino acid lysine (K) in human
strains and some zoonotic strains as opposed to glutamate (E) carried by avian strains [23,24]. More
recent bioinformatics approaches have identified diversity motifs or combinations of interacting amino
acid residues to distinguish between avian or human strains [25,26]. However, these approaches are
context-specific and generally do not apply to novel influenza subtypes [20,27], because mutations
identified as critical in a particular zoonotic event may or may not be detected in other events. The World
Health Organization (WHO) and the United States Center for Disease, Control and Prevention (CDC)
have in recent years introduced influenza risk assessment tools to evaluate potential pandemic risks
of influenza A viruses circulating in animal species [28,29]. Both tools consist of several evaluation
criteria in three categories of viral properties, population attributes, and ecology and epidemiology to
characterize the risk of a virus. While the tools are comprehensive, several evaluation criteria such as
antiviral treatment resistance, receptor binding properties, and lab animal transmission require time
and extensive testing in the laboratory. As such, it is still a challenge to predict potential zoonotic strains
based on sequence information alone.

There are also attempts in the development of machine learning approaches to predict zoonotic
transmission. Qiang and Kou first developed a computational prediction model based on an artificial
neural network (ANN) to predict interspecies transmission of influenza A viruses based on molecular
patterns found in protein sequences [30]. The model utilized a wavelet packet decomposition method
to extract energy feature vectors from protein sequences in the training process, distinguishing avian
species with the capability to cross host species barrier from those that do not possess the zoonotic
capability. Another paper by Wang et al. also described a prediction model developed from a support
vector machine (SVM) to classify avian and human influenza A sequences [31]. The model employed
position-specific entropy profiles of avian and human protein sequences [21], which were then
transformed into feature vectors encoded with amino acid physicochemical properties. Both prediction
models apply protein sequences from six influenza inner proteins: three viral polymerases polymerase
acidic protein (PA), polymerase basic protein 1 (PB1), and PB2, nucleoprotein (NP), non-structural
protein 1 (NS1), as well as matrix protein 1 (M1). While both models reported high accuracy in
prediction, the accuracies in predicting past zoonotic strains from influenza outbreaks have not
been verified.

To achieve this goal, we have constructed a zoonotic strain prediction model using the machine
learning classifier random forest, capable of predicting avian, human or zoonotic influenza virus strains
in this study. Our previous work on host tropism of individual influenza virus proteins has resulted in
the construction of a host tropism prediction system [32]. The system consists of individual protein
prediction models of 11 influenza A virus proteins: hemagglutinin (HA), M1, matrix protein 2 (M2),
neuraminidase (NA), NP, NS1, non-structural protein 2 (NS2), PA, PB1, accessory protein F2 translated
from PB1 segment (PB1-F2) and PB2, which independently predicts avian or human host tropism of
each protein based on protein sequences translated into amino acid physicochemical properties feature
vectors. We next combined the protein prediction results into a host tropism protein signature for each
influenza virus strain, which is defined as an influenza viral proteome profile of 11 independent host
tropism predictions of avian or human influenza virus proteins. The host tropism protein signature
analysis of 12,624 strains has led to the discovery of distinct host tropism protein signatures between
avian, human and zoonotic strains [33]. Furthering this finding, we utilized the host tropism protein
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signatures to build a computational prediction model which is able to predict zoonotic strains capable
of causing human infections. Instead of the conventional avian versus human strains approach
generally adopted [21,22,25,26], we have defined zoonotic strains as a separate category distinct from
typical avian and human strains, resulting in a three-class classification of avian, human and zoonotic
strains. We then additionally validated the capability of the zoonotic strain prediction model whereby
avian strains shown to be possible sources of zoonotic outbreaks by previous studies were accurately
identified by the prediction model. This represents a significant validation to the capability of the
zoonotic strain prediction model in using protein sequences to detect zoonotic strains that can lead to
an influenza outbreak.

2. Results

2.1. Sufficient Distinction in Host Tropism Protein Signatures to Characterize Zoonotic Strains

Host tropism protein signatures obtained for the influenza virus strains in the dataset demonstrate
the distinct signatures between avian, human and zoonotic strains. This is consistent with earlier
findings where typical avian and human strains show almost unanimous host tropism predictions
of avian or human proteins respectively, while suspected and confirmed zoonotic strains typically
display a mixture of avian and human protein predictions [33]. As compared to the previous study
however, the signatures generated in this study are of a higher resolution, owing to the avian and
human probability distribution being used instead of binary predictions of either avian or human.
Each host tropism protein prediction is associated with a probability estimate which represents the
confidence of the prediction by each individual protein prediction model, loosely describing how
“avian-like” or “human-like” the proteins are, as illustrated by the intensity of the color (Figure 1).
This allows us to inspect with greater detail the host tropism protein signature of an influenza virus
strain, which could provide a clue as to how much it has deviated from a typical strain.

The host tropism protein signatures indeed provided sufficient distinction for the classification
of avian, human and zoonotic influenza virus strains. Based on the training samples in the dataset,
the random forest zoonotic strain prediction model achieved very high prediction performance, 99.20%
prediction accuracy and 1.000 weighted area under the receiver operating characteristic curve (AUC;
Table 1). This represents the correct avian, human or zoonotic strain classification by the prediction
model for 374 out of 377 strains in the training dataset. As identification of zoonotic strains are of
greater emphasis in this study, the prediction accuracy for zoonotic strains, while slightly lower at
a 98.40%, is still of satisfactory performance (Table 1). This could be attributed to the zoonotic strains
having a much more diverse range of avian and human protein predictions in their signatures as
compared to typical avian and human strains, hence amounting to the increase in difficulty to predict
these strains. Nevertheless, the prediction performance by the random forest zoonotic strain prediction
model is still significantly better than random three-class classification, highlighting that the host
tropism protein signatures of zoonotic strains are sufficiently distinct from typical avian and human
strains. This therefore enables the prediction model to identify zoonotic strains with a high standard
of accuracy.

Table 1. Performance evaluation of random forest zoonotic strain prediction model. AUC: area under
the receiver operating characteristic curve.

Stage Overall Weighted Zoonotic Zoonotic Zoonotic Zoonotic
& Accuracy AUC Accuracy  Sensitivity  Specificity AUC
Training 99.20 1.000 98.40 0.984 0.996 1.000
Testing 99.06 1.000 97.14 0.971 1.000 0.999

Independent validation of the prediction model with a separate testing dataset further affirms the
high predictive performance of the model. The prediction model achieved a 99.06% prediction accuracy
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with 1.000 weighted AUC even when tasked to predict strains which were not included in the training
process (Table 1). All but one of the zoonotic strains in the testing dataset including those isolated
from H5N1 outbreaks in Asia and H7N9 outbreaks in China were correctly identified by the prediction
model (Figure 2), resulting in a zoonotic prediction accuracy of 97.14% (Table 1). Results from this
demonstrate that the prediction model was able to predict novel avian, human and zoonotic strains
with high accuracy from the host tropism protein signature, even when presented with a diverse range
of signatures. Most of the zoonotic strains were predicted with high zoonotic probabilities exceeding
0.8, with the remaining predicted with low to moderate zoonotic probabilities of 0.517 to 0.682, as well
as one incorrect avian prediction with 0.315 zoonotic probability. What came as a surprise were the
zoonotic strains which carried signatures of all avian tropism yet predicted accurately as zoonotic
strains by the prediction model. This seems to suggest that zoonotic strains need not acquire human
proteins to cause human infections. Results from this independent validation of the prediction model
thus substantiate the capability of the model to accurately identify zoonotic strains in the future.

(@) (b) Zoonotic () Zoonotic (d)
Typical Avian (suspected) (confirmed) Typical Human

PBI- Avian . . Human

HA M1 M2 NA NP NS1 NS2 PA PB1 P PB2

Figure 1. The dataset used in the study represented by host tropism protein signatures of influenza
virus strains: 159 typical avian (a); 160 human-isolated confirmed zoonotic (c), and 164 typical human
(d) strains were used in the construction of the zoonotic strain prediction model. Additionally,
the signatures of a random 165 of 1047 avian-isolated suspected zoonotic strains (b) subsequently
analyzed using the prediction model are also shown. Each individual virus strain in the bar is
represented by the host tropism protein signature laid across the row, with the independent predictions
of 11 proteins depicted in each column (HA, M1, M2, NA, NP, NS1, NS2, PA, PB1, PB1-F2, and PB2).
Avian protein predictions are illustrated in blue, while human proteins are in red. The confidence
of the avian or human host tropism prediction is expressed by the intensity of the color, based on
the prediction probability estimates found in Supplementary S1 and S2 datasets. HA: hemagglutinin;
M1: matrix protein 1; M2: matrix protein 2; NA: neuraminidase; NP: nucleoprotein; NS1: non-structural
protein 1; NS2: non-structural protein 2; PA: polymerase acidic protein; PB1: polymerase basic protein 1;
PB1-F2: accessory protein F2 translated from PB1 segment; PB2: polymerase basic protein 2.
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Figure 2. Human-isolated confirmed zoonotic strains prediction results by the prediction model during
the independent validation process. A total of 35 zoonotic strains represented by their host tropism
protein signatures were predicted by the zoonotic strain prediction model with the estimated zoonotic
probability describing the confidence of the prediction. The strains are labelled with consecutive
numbers for reference in the main text.

2.2. Retrospective Analysis of Avian Strains from Outbreaks Demonstrate Capability of Zoonotic Strain
Prediction Model

By employing the zoonotic strain prediction model to perform an analysis of avian strains isolated
from zoonotic outbreaks, we validated the capability of the prediction model to identify potential
zoonotic strains circulating in avian species. Early studies on phylogenetic analyses from the H7N9
outbreak in China identified several avian-isolated strains sharing almost identical sequences with
strains isolated from one of the first few human infections at the start of the outbreak [34,35], two of
which in our dataset were successfully predicted as zoonotic by the prediction model with estimated
zoonotic probabilities of 0.967 and 0.940 (Figure 3a). This corroborates earlier findings that the H7N9
outbreak originated from poultry and avian sources [34-36], as many strains isolated from avian
species subsequently during the outbreak display classic zoonotic host tropism protein signatures with
very high estimated zoonotic probabilities predicted by the prediction model. This would suggest
that zoonotic H7N9 viruses had circulated among many avian species, covertly asymptomatic [35,36],
to spread across China causing severe human infections in many states.
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Figure 3. Avian-isolated strains from zoonotic influenza outbreaks represented by host tropism protein
signatures with estimated zoonotic probability predicted by the zoonotic strain prediction model.
The strains were cross-referenced with studies on phylogenetic analyses, demonstrating that some
of these strains share high sequence similarities with zoonotic strains isolated from human patients
during influenza outbreaks of (a) novel outbreak of H7N9 in China in 2013 and (b) H5N1 outbreaks in
Cambodia from 2011 to 2013 as well as (c) Indonesia from 2004 to 2006.

We also cross-referenced an additional six avian-isolated H7N9 strains from a recent study
investigating the import of H7/N9 human infections into Taiwan [37], which were all predicted as
zoonotic by the prediction model. Four of the six strains were predicted with high zoonotic probabilities
exceeding 0.8, while the remaining two strains were predicted with moderate zoonotic probabilities
of 0.679 to 0.702. Intriguingly, we again observe a strain having all avian proteins in its host tropism
protein signature being predicted as zoonotic with 0.702 zoonotic probability (Figure 3a). While we
cannot confirm if this strain did indeed cause human infections during the outbreak, it is possible that
it may evolve to be more zoonotic based on previous observation of several confirmed zoonotic strains
also carrying all avian signatures (Figure 1).

An additional four avian-isolated strains from Cambodia predicted as zoonotic by the prediction
model (Figure 3b) were also observed from phylogenetic analyses of another study to share the
same clades as human-isolated strains from H5N1 outbreaks in Cambodia from 2011 to 2013 [38].
Surprisingly, closer observation shows that the host tropism protein signature of the strain with
the highest zoonotic risk of 0.901 actually contains the least number of human proteins among
all four Cambodian strains (Figure 3b), with only the M1 protein having slight human tropism.
Indeed, a cross examination showed that the zoonotic strains isolated from human patients during
the H5N1 outbreak in Cambodia carried similar host tropism protein signatures (Appendix A
Figure Al). This demonstrates that zoonotic strains from the same outbreaks carried similar host
tropism protein signatures.

Results from our analysis also suggest that not all influenza viruses isolated from avian species
during the outbreaks are zoonotic strains capable of causing human infections. Of the three H5N1
strains isolated from chicken in Indonesia, one was predicted with very high zoonotic probability of
0.987, with the remaining two strains predicted with lower zoonotic probability estimates of 0.642 and
0.715 (Figure 3c). Phylogenetic analysis of the strains by another study demonstrated the close
evolutionary relationships of the HA and NA glycoproteins to confirmed zoonotic strain isolated from
human patients in 2005 [39,40]. Nevertheless, this indicates that not all avian species or poultry sources
were infected with zoonotic strains, as some avian strains of the same subtype circulating in the same
region might in fact not have the capability to cause human infections. Taken together, this might
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present an exciting prospect in the future where we can monitor avian influenza strains to determine
their zoonotic risks in causing human infections.

3. Discussion

This study describes the successful use of machine learning on influenza sequence data to predict
avian-to-human transmission of influenza viruses. Using host tropism protein signatures of influenza
viruses which are predicted from protein sequences, the zoonotic strain prediction model can accurately
distinguish between typical avian strains found in avian species, seasonal influenza circulating in
humans, and zoonotic strains originating from avian species that have caused human infections.
Almost all known zoonotic strains from past influenza outbreaks with complete proteome were
accurately predicted as zoonotic, regardless of their HA and NA subtypes, which also includes the less
common subtype of HIONS in addition to H5N1 and H7N9 subtypes (Figure 2). As compared to the
context-specific application of host-associated genetic markers, the zoonotic strain prediction model is
not restricted by this limitation and can be applied for prediction across all influenza subtypes.

The design of this study employs a systems approach which includes two layers of machine
learning on influenza protein sequences to predict zoonotic strains. This is a departure from most
other studies looking into avian- and human- specific amino acid residues which are primarily based
on sequence alignments of common influenza subtypes such as HIN1, H3N2 and H5N1 [21,22],
as well as machine learning approaches to predict avian or human sequences using the host-specific
residues [25,31]. Here, we defined zoonotic strains as a third, separate category in addition to avian and
human strains. These zoonotic strains are recognized as an intermediate between avian and human
strains, where they may have started evolving to overcome the host species barrier, but have not
adequately adapted to humans yet. These changes can be reflected in the mixture of avian and human
proteins in their host tropism protein signatures (Figure 1). By using the host tropism protein signatures
which are in turn host tropism predictions based on global amino acid physicochemical properties
descriptors, the zoonotic prediction model can recognize potential zoonotic strains, regardless of
subtypes. This is in contrast with conventional approaches investigating amino acid positions which
show strong selection for either avian or human strains. While the host-associd genomic markers
are useful in providing clues behind the mechanism of avian-to-human transmission, the zoonotic
prediction model constructed in this study aims to complement existing tools by providing a rapid
prediction of zoonotic strains using a machine learning approach. This would allow a swift detection
of possible zoonotic strains circulating in avian species, which can then be further analyzed for their
host-associated genomic markers.

Analysis of the zoonotic strains using the zoonotic strain prediction model illustrates that zoonotic
events are truly a complex process. Similar to results from our previous study [33], there are no
universal host tropism protein signatures for zoonotic strains with strains from the same influenza
outbreaks sharing similar signatures (Appendix A Figure Al). Additionally, we have encountered some
puzzling observations from the analysis of the host tropism protein signatures, where some zoonotic
strains were observed to be carrying all avian tropism in their signatures. As these confirmed zoonotic
strains isolated from human patients carrying predominantly avian signatures can also be found in
the training dataset (Appendix A Figure A1), this resulted in high zoonotic probability predictions by
the zoonotic strain prediction model in the testing phase (Figure 2) as well as the subsequent analysis
for similar strains (Figure 3). This is due to the supervised training process by the machine learning
classifier where the prediction model learns from training examples provided in the training dataset.
Nevertheless, it can be observed crudely that the avian proteins for these zoonotic strains seem to carry
less avian tropism compared to typical avian strains (Figure 1). Despite that, our goal in this study is to
use protein sequences to detect zoonotic strains that pose a risk to cause human infections circulating
in avian species, and we have successfully shown with these findings the potential of the zoonotic
strain prediction model in using the underlying host tropism protein signatures to predict zoonotic
strains with a high degree of accuracy. We aim to provide a tool capable of predicting zoonotic strains
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circulating in avian species rapidly using only protein sequences. Understanding how zoonotic strains
are generated to cause outbreaks however, is a subject of further intensive investigation, requiring
much more data on zoonotic strains with the aid of in-depth phylogenetic analysis.

While we are no closer to dissecting exactly which proteins are required for zoonotic influenza
strains to make that zoonotic leap, we are slowly beginning to understand that we need to approach
the problem from a systems perspective by looking at contributions of all influenza virus proteins.
In using the host tropism protein signature, it is now possible to predict zoonotic strains as well as
estimate the zoonotic risk. Nonetheless, the zoonotic prediction model is still in its infancy stages with
limited data on confirmed zoonotic strains owing to the scarcity of complete genomic sequences from
earlier zoonotic outbreaks. This is evident from the training dataset containing only zoonotic strains
isolated since the beginning of the 21st century (Supplementary S1 dataset), as zoonotic strains prior to
that do not have the complete the host tropism protein signature required for prediction. The strength
of the zoonotic strain predictor lies in taking into consideration the contribution of all influenza virus
proteins and by using them to distinguish between avian, human and zoonotic strains.

The zoonotic strain prediction model has been validated with confirmed zoonotic strains from
past influenza outbreaks, where most zoonotic strains were predicted correctly as zoonotic with high
zoonotic probability estimates. Due to the probabilistic nature of the random forest classifier with
the classification output determined by majority voting of the random trees in the forest [41], it is
possible to manually define a threshold for the probability estimates in each classification. Based on the
predicted zoonotic probability estimates from the confirmed zoonotic strains in the independent testing
dataset as well as the analysis from the avian-isolated suspected zoonotic strains, we propose a zoonotic
risk table to aid in the interpretation of each strain prediction by the zoonotic strain prediction model
(Table 2). This is again in preliminary stages based on the data in this study, with the sensitivity
of zoonotic strain detection at 0.988 by defining the threshold for zoonotic probability estimate at
0.7. With the increase in influenza surveillance and sequencing of complete genome in the future,
the zoonotic strain prediction model can only improve with the collection of more data for continuous
training of the prediction model. This would also help us further understand which proteins are
required for interspecies transmission. In the meantime, the zoonotic strain prediction model could
prove to be a valuable addition to influenza virologic surveillance to complement traditional analytical
methods through the monitoring of influenza strains in avian species and poultry, and by providing
swift prediction on the zoonotic risks of influenza virus strains using sequence data.

Table 2. Proposed zoonotic risk interpretation table based on zoonotic probability estimates predicted
by the zoonotic strain prediction model.

Zoonotic Probability Estimate ~ Zoonotic Risk

>0.7 High
<0.7 Low to none

4. Materials and Methods

4.1. Data Collection and Preparation

Influenza A virus protein sequence data was acquired from Influenza Research Database (http:
/ /www.fludb.org (accessed on 27 October 2015)) [42]. The data was next processed to retain only
influenza A virus strains with complete proteome, comprising complete full-length sequences of
11 proteins (HA, M1, M2, NA, NP, NS1, NS2, PA, PB1, PB1-F2, PB2). This included the removal of
invalid protein sequences with non-standard amino acids or of incomplete lengths, as well as the
removal of strains with multiple contradictory sequences of the same protein. The complete dataset
consisted of 13,998 strains with 7592 avian strains and 6406 human strains.

We next identified zoonotic strains which were distinct from typical avian and human strains.
Based on published literature on avian or zoonotic influenza outbreaks, WHO reports and CDC reports,
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a total of 160 confirmed zoonotic strains were identified from strains isolated from human cases
during influenza outbreaks from 1997 to 2015 (Appendix A Table A1) [3-10,38,43-68]. An additional
1047 avian-isolated strains collected during the same period as the outbreaks around the geographic
region were also identified and designated as avian-isolated suspected zoonotic strains. The dataset
used in this study is thus categorized into three groups of avian, human and zoonotic strains, with the
avian-isolated suspected zoonotic strains excluded from the following prediction model construction
process for subsequent analysis.

4.2. Host Tropism Protein Signature Feature Transformation

Host tropism protein signatures for all influenza strains were next obtained using the host
tropism protein prediction system (http:/ /fluleap.bic.nus.edu.sg (accessed on 7 December 2015)) [32].
The system provides independent avian or human host tropism predictions of 11 influenza virus
proteins. For each individual protein, the host tropism prediction model predicts avian or human
host tropism based on protein sequence input. The protein sequences were represented by 146 feature
vectors comprising 20 standard amino acid compositions and global descriptors of six amino
acid physicochemical properties of hydrophobicity, normalized van der Waals volume, polarity,
polarizability, charge and solvent accessibility [32]. Based on these, the avian or human host tropism
prediction results for 11 proteins are integrated as a host tropism protein signature for each strain.
Each prediction by the respective protein prediction model in the system is predicted with avian and
human probability distribution to indicate the confidence of host tropism prediction based on the
protein sequence. In summary, each influenza virus strain is thus represented by 22 avian and human
probability distributions of 11 host tropism predictions of each protein (Figure 1). The 22 avian and
human probability distributions therefore compose the training dataset for the subsequent machine
learning process.

4.3. Construction of Zoonotic Strain Prediction Model

The influenza virus strains represented by the host tropism protein signatures were next used
for machine learning to build a zoonotic strain prediction model in the classification of three groups
of avian, human and zoonotic strains. The zoonotic strains in this training process consist only of
the confirmed zoonotic strains isolated from human patients during influenza outbreaks. As the
number of avian and human strains were disproportionately greater than the number of confirmed
zoonotic strains, the method of down-sampling was introduced to prevent an imbalanced dataset.
An imbalanced dataset may result in bias in the training process which may affect the performance
evaluation. In the down-sampling process, avian and human strains were randomly removed to result
in approximate equal number of strains in the three groups of avian, human and zoonotic strains.
Following that, the final dataset was partitioned into separate training (80%) and testing (20%) datasets
(Table 3).

Table 3. Final dataset of avian, human and zoonotic strains for construction of the zoonotic strain
prediction model.

Category Training Dataset  Testing Dataset  Total Samples in Group
Avian 125 34 159
Human 127 37 164
Zoonotic 125 35 160
Total samples in dataset 377 106 483

The machine learning algorithm employed in the construction of the prediction model is random
forest. Random forest is an ensemble of decision trees, where the random trees are grown using the
bagging technique, in which a randomly selected subset of features from the entire feature space
is selected to split each leaf node in the tree [41]. Random forest has been shown to consistently
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achieve high performance and is also the most suited for this as the dataset was obtained from host
tropism predictions made on random forest protein prediction models as well [32]. This was performed
on the WEKA machine learning platform [69], the Waikato Environment for Knowledge Analysis
software containing a suite of machine learning algorithms for data mining and classification tasks.
Ten-fold cross-validation training was applied to minimize the effect of overfitting. In this process,
the training dataset is randomly partitioned into nine training subsets and one testing subset over ten
iterations. The algorithm will train with nine training subsets and evaluate the prediction model with
the remaining testing subset for every iteration, with each subset used exactly once as testing. Results
for the performance evaluation are taken as an average of ten iterations, and the model with the best
results is chosen.

In addition, a parameter optimization process was also performed in the training process.
The optimized random forest parameters were the number of trees in the random forest and the
number of features to use in random selection. These were fine-tuned using the grid search approach
where each parameter in a manually defined subset of a maximum of 500 trees and 22 features,
is exhaustively applied to select for the parameters producing the best results. This approach ensures
that the best parameters were chosen to maximize the performance in constructing the prediction
model. The final random forest prediction model was constructed with 302 trees in the random forest,
with 1 random feature at each branch split.

The prediction model was next assessed with several performance measures. This includes
overall prediction accuracy and AUC. The prediction accuracy measures the number of predictions
correctly made from the total number of strains in the training dataset. AUC, on the other hand,
describes the probability of a randomly chosen positive sample ranking higher than a randomly
chosen negative sample by the model [70,71]. As this study involves a three-class classification
problem with an approximately balanced dataset, the models were evaluated primarily with overall
prediction accuracy and weighted AUC of the three groups of avian, human and zoonotic prediction.
Furthermore, the prediction accuracy and AUC for zoonotic strains were also taken into account as
the primary concern of this study is in the prediction of zoonotic strains. This was implemented
through the generalization of the three-class classification into a binary classification of zoonotic versus
non-zoonotic comprising both avian and human strains.

The completed zoonotic strain prediction model was finally independently validated with the
testing dataset, consisting of strains which were excluded from the initial training process. Performance
of the model in predicting strains from the separate testing dataset could help establish whether
overfitting has occurred in the training process. This would hence determine if the model is robust for
accurate prediction of novel strains in the future.

The zoonotic strain prediction model classifies a strain as avian, human, or zoonotic from the
feature vectors represented by the host tropism protein signatures. The random forest algorithm is,
by nature, a probabilistic classifier where the outputs are continuous decision values determined
based on voting by the random trees in the random forest [41]. Therefore, each strain prediction
by the random forest prediction model has an avian, human and zoonotic probability estimate as
calculated from the number of votes by the random trees out of the total number of trees in the forest.
This represents the confidence of the prediction by the random forest prediction model. The final
predicted avian, human or zoonotic classification of a strain would thus be the class with the highest
probability estimate.

4.4. Analysis of Avian-Isolated Suspected Zoonotic Strains

The zoonotic strain prediction model was then tasked to analyze the zoonotic risks of avian-isolated
suspected zoonotic strains. This group of strains were excluded initially from both the training
and testing process as not all the avian strains isolated from influenza outbreaks contributed to the
onset of the outbreak [40]. Thus, the zoonotic capability of these strains cannot be established with
certainty. The strains, represented by their host tropism protein signatures, were provided to the
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zoonotic strain prediction model for prediction. The resulting avian, human or zoonotic classifications,
along with the estimated probability distributions, were analyzed in conjunction with the host tropism
protein signatures.

5. Conclusions

Our study demonstrated the successful use machine learning trained on host tropism protein
signatures to predict zoonotic strains having the capability to cause human infections. The zoonotic
strain prediction model is proposed as an influenza virologic surveillance tool to detect changes in
protein sequences in avian strains that may indicate a zoonotic jump event. As influenza sequence
data are already regularly sampled and collected [18,19], this tool could complement existing methods
to rapidly screen for possible zoonotic strains. Future work to integrate geographical and ecological
data [72] would bring more significant advancements in predicting future influenza outbreaks beyond
current sequence prediction capabilities. The detection of possible zoonotic strains in avian species in
the future could grant us precious time in formulating appropriate responses before they can reach the
human population to start devastating outbreaks. This would ultimately not only benefit public health,
but also reduce the economic impact to the agriculture industry in the event of an influenza outbreak.
The zoonotic strain prediction model is available for prediction online at http:/ /fluleap.bic.nus.edu.sg
(accessed on 20 May 2017).

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/6/1135/s1.
Dataset S1. Training dataset for the zoonotic strain prediction model. Dataset S2. Independent testing dataset for
the zoonotic strain prediction model. Dataset S3. Dataset for analysis of avian-isolated suspected zoonotic strains
using the zoonotic strain prediction model.
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M1 Matrix protein 1
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Figure A1. Hierarchical clustering of host tropism protein signatures of 160 confirmed zoonotic strains.

Zoonotic strains from the same influenza outbreaks typically share similar signatures. Each row

depicts the signature of a zoonotic strain, with host tropism predictions of 11 proteins shown in each
column (HA, M1, M2, NA, NP, NS1, NS2, PA, PB1, PB1-F2, and PB2). Avian protein predictions are
illustrated in blue while human proteins are in red. The confidence of the avian or human host tropism

prediction is expressed by the intensity of the color, based on the prediction probability estimates found

in Supplementary S1 and S2 datasets.

Table A1l. Total number of suspected and confirmed zoonotic strains with complete proteome identified

from zoonotic influenza outbreaks.

Avian-isolated Suspected

Human-Isolated Confirmed

Year  Subtype Country Zoonotic Samples Zoonotic Samples
1997 H5N1 Hong Kong
HON2 Hong Kong 2
1998 HI9N2 China 1
1999 HON2 China 2
H5N1 China 32
Vietnam
2003 H7N7 Netherlands 1
HON2 Hong Kong 2
H5N1 Thailand 10
2004 Vietnam 14
H7N3 Canada 1
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Table Al. Cont.
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Avian-isolated Suspected

Human-Isolated Confirmed

Year  Subtype Country Zoonotic Samples Zoonotic Samples
H5N1 Cambodia
China 2
2005 Indonesia 11 8
Thailand 22
Vietnam 46
H5N1 Azerbaijan
Cambodia
China 19
Djibouti
2006 Egypt 4 2
Indonesia 11 46
Iraq 1
Thailand 7 1
Turkey 3
H3N8 Laos 1
H5N1 Cambodia
China 7
Egypt 2
Indonesia 4 10
2007 Laos 16
Myanmar
Nigeria 20
Pakistan
Vietnam 54
United
H7N2 Kingdom
H3N8 Vietnam 1
H5N1 Bangladesh 1
Cambodia
China 5
2008 Egypt 18
Indonesia 1
Vietnam 4
HO9N2 Hong Kong 9
HI11N9 Vietnam 2
H5N1 Cambodia 1
China 6
Egypt 6
2009 Indonesia 1
Vietnam
HO9N2 Hong Kong 4
H5N1 Cambodia 5 1
China 3 1
2010 Egypt 25
Indonesia
Vietnam 3
H5N1 Bangladesh 1 1
Cambodia 6 4
2011 China 11
Egypt 13
Indonesia
H5N1 Bangladesh 18
Cambodia 1 3
China 3
2012 Egypt 6
Indonesia
H5N1 Vietnam 30
H7N3 Mexico 1
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Table Al. Cont.

Year  Subtvpe Count Avian-isolated Suspected Human-Isolated Confirmed
P 4 Zoonotic Samples Zoonotic Samples
H5N1 Bangladesh 5
Cambodia 8 10
Canada
China 3
Egypt 3
Indonesia
2013 Vietnam 19
H7N9 China 114 35
Hong Kong 1
Taiwan 2
HON2 China 135 1
HI10NS8 China 26 4
H5N1 Cambodia
China 7
2014 . Egypt 3 !
ndonesia
Vietnam 24
H7N9 China 226 19
H5N1 China
Egypt
Indonesia
2015 H5N6 China 1
H7N9 Canada
China 2
Total 1047 160
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