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Selective equal spin Andreev 
reflection at vortex core center 
in magnetic semiconductor-
superconductor heterostructure
Chuang Li1, Lun-Hui Hu1,2,3, Yi Zhou1,2 & Fu-Chun Zhang2,3

Sau, Lutchyn, Tewari and Das Sarma (SLTD) proposed a heterostructure consisting of a semiconducting 
thin film sandwiched between an s-wave superconductor and a magnetic insulator and showed possible 
Majorana zero mode. Here we study spin polarization of the vortex core states and spin selective 
Andreev reflection at the vortex center of the SLTD model. In the topological phase, the differential 
conductance at the vortex center contributed from the Andreev reflection, is spin selective and has a 
quantized value dI dV e h( / ) = 2 /A

topo 2  at zero bias. In the topological trivial phase, dI dV( / )A
trivial at the lowest 

quasiparticle energy of the vortex core is spin selective due to the spin-orbit coupling (SOC). Unlike in 
the topological phase, dI dV( / )A

trivial is suppressed in the Giaever limit and vanishes exactly at zero bias due 
to the quantum destruction interference.

Majorana fermions1, whose anti-particles are themselves, were initially envisioned by E. Majorana in elementary 
particle physics. It has recently been revealed that the Majorana fermions may exist in a number of condensed 
matter systems2,3 as zero-energy states so-called Majorana zero modes (MZMs). In the earlier works, chiral 
p-wave superconductor4 (SC) and ν = 5/2 fractional quantum Hall system5 are possible to host MZM in con-
densed matter systems. In 2008, Fu and Kane6 proposed that MZM can be localized in the vortex core by inducing 
an effective superconducting (SCing) pairing gap on the surface states of a 3-dimensional (3D) strong topological 
insulator, such as topological insulator (Bi 2 Te 3)/s-wave SC (NbSe 2) heterostructure7. Sau et al.8 proposed a setup 
by using magnetic insulator/s-wave SC, in which there exists MZM at angular momentum m = 0 channel in the 
vortex core. Lutchyn et al.9 and Oreg et al.10 studied semiconductor Rashba nanowire with strong Rashba SOC 
and demonstrated localized MZM at the ends of the wire. Mourik11 et al. presented evidence for possible existence 
of non-Abelian MZM in InSb nanowires. Many other theoretical proposals and experimental evidences for MZM 
have also been reported7,12–20.

To detect the MZMs by transport measurement, the quantized zero-bias peak due to MZM has been theoreti-
cally studied21. He et al.22 have also proposed Majorana-induced selective equal spin Andreev reflection (SESAR) 
in 1D Rashba nanowire. In a usual Andreev reflection23–25 on a topological trivial SC, an incident electron of spin 
up(down) is reflected with a hole of the opposite spin. MZM is self-conjugate and allows equal spin Andreev 
reflection. If we assume the MZM is spin-up, then an electron of spin-up is reflected with a hole of the same spin, 
while an electron of spin-down will have only a normal reflection process being reflected as an electron. However, 
this property of MZM is strongly related to the polarization of the MZM. In the 2D Fu-Kane model, the polariza-
tion of MZM in the vortex core center is controlled by the direction of external magnetic field, and the tunneling 
conductance of spin polarization dependence has been observed in experiment15,26, which has provided strong 
evidence for the existence of MZM.

We note that there is a close similarity between Fu-Kane model and SLTD model. In both models, a topologi-
cal non-trivial Fermi surface can be realized and an s-wave superconducting pairing can then open a full gap with 
a chiral MZM at the boundary, and a localized MZM in the vortex core. On the other hand, SLTD model may 
also give a topological trivial phase in certain parameter space. In this work, we study the 2D semiconductor with 
SOC hybridization with an s-wave SC. We will focus on the vortex core states to examine the spin polarization of 
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the MZM as well as other quasi-particle states. In the calculation of the differential tunneling conductance, the 
spin-polarized scanning tunneling microscope (STM) tip is modeled as a normal lead providing incident parti-
cles and receiving scattered particles, as depicted in Fig. 1. It is known that the total local differential tunneling 
conductance consists of the normal term proportional to the local density of states and an additional term arising 
from the Andreev reflection. However, in this work, we only consider the Andreev reflection part and focus on 
the similarity and difference for AR in topological phase and topological trivial phase.

The paper is organized as follows: we firstly describe the model Hamiltonian and present the spec-
tra and the corresponding wave functions inside the vortex core in the topological phase. We then apply 
Fisher-Lee-Landauer-Bütikker formula to calculate the differential tunneling conductance. We then discuss the 
SOC induced SESAR in the topological trivial phase. Finally we will give a brief summary.

Models and Results
Model Hamiltonian for device.  We study a 2D semiconductor with a Rashba SOC, which is hybridized to 
an s-wave SC and under a Zeeman field8 [see Fig. 2]. The system is described by SLYD model. The Cooper pairs 
in the semiconductor are induced through the proximity effect. It resembles an effective chiral px + ipy topological 
SC at the interface. The model Hamiltonian reads,
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with m*, μ, αR and Vz being the effective mass of electron (in the 2D thin film), chemical potential, strength of the 
Rashba SOC, and the Zeeman field, respectively. The Pauli matrices ( , , )x y zσ σ σ σ→ = ˆ ˆ ˆ  are spin, and the electron 
annihilation operators read =

→
↑

→
↓
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T
 is the proximity-induced on-site pairing gap function in the 

2D semiconductor. According to the AZ classification27, the above Hamiltonian D belongs to D class since only 
particle-hole symmetry Kτx is preserved, where K is the complex conjugate and τx is an operator describing 
particle-hole transformation.

The dispersions of the Hamiltonian in Eq. (2), corresponding to the helical chirality λ = ±1, are,

Figure 1.  Illustration of the system. A spin polarized STM tip detects the vortex in the heterostructure. Tight-
binding lattice model is used in calculation.

Figure 2.  Illustration of the semiconductor-superconductor heterostructure studied in this paper. The 
semiconductor thin film is described by a 2D electron gas with a Rashba SOC. Superconductivity in the 
semiconductor is induced by proximity effect. A magnetic field is pointed down which induces a Zeeman 
energy Vz in Eq. (2).
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where we set  1=  for convenience. For Vz ≠ 0 and |μ| ≤ Vz, there is an energy gap 2Vz at Γ point (k = 0). If the 
pairing potential Δ → = Δr( ) 0 is uniform and if the criterion μ> Δ +Vz

2
0
2 2 is satisfied8–10,28, the system will open 

a gap at the dispersion’s outer wings without closing the Zeeman gap at Γ point. In this case, the system is essen-
tially the same as an effective 2D spinless px + ipy topological SC with chiral MZM6, so we expect a localized MZM 
in the vortex core of the system.

To study the quasiparticle excitations of the Hamiltonian in Eq. (1) with a single vortex, we use Bogoliubov-de 
Gennes (BdG) equation,
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v r v r u r u r[ ( ), ( ), ( ), ( )] are eigenfunctions with eigenenergies En and −En, respectively. The 
Bogoliubov quasiparticle operator is defined as,
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The necessary condition for MZM is †γ γ=  for zero-energy mode.
There are three main practical approaches to solve BdG equation (5). The first one is to use corresponding 2D 

tight-binding model29–31 of Hamiltonian in Eq. (1), and solve the problem in a lattice. The second one is to adopt 
a disc geometry to solve the BdG equation (5) and use orthogonal Bessel functions8,32–36. And the third one is to 
adopt spherical geometry to utilize harmonic spherical function or associated Legendre polynomials15,37–39. In 
this work, we shall use tight-binding model on 2D square lattice [see Fig. 1], where the Hamiltonian becomes,
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where tD and μD are the nearest-neighboring hopping integral and the chemical potential, respectively, αR is the 
Rashba SOC strength, and r̂ij denotes the unit vector between site i and j. Vz, D is the Zeeman energy due to the 
z-direction magnetic field. We assume that the pairing order parameter inside the vortex has form

ξΔ → = Δ ϕr r e( ) tanh( / ) (10)i
0

where r is the distance of the lattice site from the vortex core, and ϕ is the azimuthal angle of →r( ), and ξ describes 
the size of the vortex. We diagonalize the BdG equation (5) for Hamiltonian in Eq. (7) to obtain the eigenvalues 
and the corresponding eigenvectors by using the Feast Eigenvalue Solver for large sparse matrix. In this paper, we 
consider a lattice size of N = 199 × 199 with open boundary condition, and the vortex is located at the center of 
the lattice. The Hamiltonian in Eq. (5) is a 4N × 4N hermitian matrix.

Spin polarized MZM in the Vortex Core.  The energy spectra of the vortex states are plotted in Fig. 3 in 
topological phase region with parameters given in the figure caption. In the topological phase, we expect a MZM 
in the vortex core and a MZM at the edge in the infinitely large system. In a finite size system, the vortex core state 
and the edge state have a hybridization, leading to a pair of the MZMs with energies ± E0 very close to zero. Our 
numerical calculations agree with this analysis and the calculated −~E 100

6. By linear recombination of the two 
MZMs, we find a MZM localized in the vortex core, [see Fig. 4(a)], and the other one is localized at the edge [see 
Fig. 4(b)]. Both satisfy the MZM condition †γ γ=  in Eq. (6) to a high accuracy. Note that we only consider a 
single vortex in our model calculation, since the edge MZM will be easily destroyed in real system, where there 
are many vortices. Below we will only focus on the bound states in the vortex core. As shown in Fig. 4(a), one can 
see that the MZM’s wave-function at the center of the vortex is fully polarized with spin-up: |u↑|≠0 and |u↓| = 0. 
As a comparison, the wave function of the first excited state is shown in Appendix A, which is spin-down at the 
center of the vortex.

Transport calculation.  To experimentally detect the MZMs, it is important to examine some unique trans-
port features of the MZMs, such as quantized conductance21 and SESAR15,22,26. In this work, we theoretically study 
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spin-polarized transport properties of the MZM in the vortex core in the model, which can be tested in STM/STS 
measurement. We consider the STM tip as a 1D normal lead, illustrated in Fig. 1, and the Hamiltonian L for the 
semi-infinity lead is,
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here tL and μL are lead’s nearest-neighboring hopping coefficient and chemical potential respectively. VL is the 
potential of the magnetic field on the lead. The lead’s vertex (site 0) contacts the device at site p, then

 †∑= − + . .t c c[ H c ]
(12)c c

s
L s Dps0

where the lattice labels L0 and Dp are the connected (touched) points from N/S junction. Here we use tL = 1.2, 
μL = 0 for the lead, and choose |VL| = 0.4 to polarize the spin, adjusting the spin polarized direction to the local 
wave function’s of the vortex MZM. And, we set the coupling coefficient tc = 0.6 in the Giaever limit, which can 
simulate the barrier strength at the interface between normal lead and the SC device.

Now we consider a single electron with energy E injected from the spin polarized normal lead (STM tip, 
shown in Fig. 1), and reflected by the SLTD device. We use the basis c c c c[ ]i i i i

T† †
↑ ↓ ↑ ↓  in our calculation. In this 

situation, the 4 × 4 submatrix of scattering matrix (S-matrix) at the probed point site p,

= ( )S p p
r r
r r( , )

(13)
ee eh

he hh

describes the property of SESAR. † †r r r rTr( ) 2ee ee he he+ = , because of unitary of S-matrix.

Figure 3.  Low lying eigenenergies of the vortex states on 2D square lattice of the Hamiltonian. The parameters 
are: tD = 1.0, μD = 0, αR = 1.8, Vz, D = 0.8, Δ0 = 0.5, and ξ = 8.0 in Eq. (10).

Figure 4.  Amplitude of the MZMs wave-functions (a) in the vortex core; and (b) at the edge. The horizontal 
axis indicates the lattice site along (0, 1) direction with the vortex core centered at (0, 0), the center of the square 
lattice. The wave-functions of electron and hole components are identical for each spin, consistent with the 
requirement for Majorana fermion.
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Base on the S-matrix, the differential tunneling conductance contributed from the Andreev reflection can be 
calculated by using Landauer-Bütikker formula40–43

† †

†

dI dV r r r r

r r

/ 2 Tr( ) Tr( )

2Tr( ) (14)
ee ee he he

he he

= − +

=

where we have used e2/h for the unit of the conductance. In this work, we only focus on the Andreev reflection, 
and ignore the normal conductance which is proportional to the local density of states26.

SESAR in topological phase.  For the SESAR detecting system showed in Fig. 5, we calculate the differ-
ential tunneling conductance dI/dV(E) as a function of incident electron’s energy in Eq. (14). Usually as for the 
STM experiment15, the measured conductance comes from two parts: normal conductance (proportional to local 
density of states) and Andreev reflection44–47. In this work, we only focus on the Andreev reflection part. Andreev 
reflection due to MZM is very different from that in usual SC. In the usual SC case, Andreev reflection is known 
to be weak and can be neglected in the Giaever limit. But Andreev reflection due to MZM is very different and its 
strength at zero energy remains 2e2/h as pointed out previously and also shown in our numerical results below 
in Fig. 5.

The differential conductance dI/dV as functions of energy due to the Andreev reflection are plotted in Fig. 6 for 
a topological phase of the model. dI/dV is spin selective and shows a quantized zero-bias peak, i.e., dI/dV = 2e2/h 
at the center of the vortex core. We can analyse the S-matrix in Eq. (24), and see that the outgoing hole is spin up 
for spin-up incident electron. This is the reason why spin polarized STM experiment can see the unique signal of 
MZM. As we expect, the width of the zero-bias peak at the lattice site away from the core center becomes narrow 
and the spin polarization dependence becomes weak.

SOC induced SESAR in topological trivial phase.  In this subsection, we study the topological trivial 
phase. We use same models Eqs (7), (11), (12) and methods in previous sections, and keep parameters unchanged 
except setting, for simplicity, μ= < Δ +V 0z D D,

2 2  which belongs to topological trivial region. We perform 
numerically calculation for the spin-polarized differential conductance, and the results are shown in Figs 7 and 8.

Interestingly, we find there is no SESAR signal at E = 0, namely dI/dV(0) = 0 exactly, as Figs 7 and 8. It indi-
cates perfect quantum destructive interference48,49. And it can be explained by the particle-hole symmetry which 
makes the anomalous Green’s function26 vanishing in the vortex core center,

G r E r r
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( 0, ) ( 0) ( 0) 0
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n n
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= =
|Ψ = 〉〈Ψ = |
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because of En  δ| | . However, it will not happen if there exists MZM whose energy is almost zero.
Besides, in topological trivial case, for ground state wave function, the electronic component |u↑| is no longer 

equal to the hole part |v↑|. Since electron-hole reflection rhe by spin-up particles u v~| |↑ ↑  while r u vee
2 2~ | − |↑ ↑ , 

maximum of the differential conductance dI/dV is less than e
h

2 2
.

When the SOC strength is increasing, as in Fig. 7, the SESAR signal becomes stronger and stronger. And it 
leads to our main conclusion that SESAR can be induced by SOC. This signal is different from the MZM-based 
SESAR, since there is no MZM in topological trivial phase. In Fig. 8, we vary the hopping element tc from 0.3 
(dirty limit) to 1.2 (transparent limit), the conductance becomes more and more broad, consistent with the BTK 
theory23. In a short conclusion, the condition for the appearance of SOC-induced SESAR is large SOC strength 
and small tunneling barrier between STM tip and device.

To analytically investigate the effect of the SOC on the localized vortex core states, we start with a discussion 
of the Hamiltonian in continuum space on a spherical surface26. Note that the finite size effect can be reduced by 
increasing the radius of sphere. The Hamiltonian reads,

Figure 5.  SESAR happens when electrons inject (through the STM tip) to the MZM in vortex. An electron of 
certain spin (spin-up, for example) is reflected with a hole of the same spin, while an electron of opposite spin 
will have only a normal reflection process being reflected as an electron.
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Figure 6.  Local differential tunneling conductance contributed from the Andreev reflection as function of 
incident electron’s energy at the vortex core (0,0) for the STM tip spin-up (a) and spin-down (b), which is zero, 
and at site (0, 1) for the STM tip spin-up (c) and spin-down (d). Parameters in the calculations are the same as in 
Fig. 3.

Figure 7.  Local differential tunneling conductance at the vortex core center of the model in topologically trivial 
phase V 0z D D,

2 2μ= < Δ + , for various values of SOC strength αR. Other parameters in the calculations are 
the same as those in Fig. 3.

Figure 8.  Local differential tunneling conductance at the vortex core center of the model in topologically trivial 
phase μ= < Δ +V 0z D D,

2 2 , for various values of the coupling tc between the device and the lead. Other 
parameters in the calculations are the same as those in Fig. 3. The kinks emerged at E ≈  ± 0.3Δ are induced by 
excited states which have small spin-up components at vortex core.
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where the Nambu basis is † †−↑ ↓ ↓ ↑c c c c{ , , , }. The SC pairing function is Δ(θ) = Δ0 tanh(R sin(θ)/ξ) with R as 
radius of sphere, and θ for polar angle, φ for azimuth angle. We firstly turn off SOC, i.e., αR = 0, and then turn on 
SOC as perturbation term. In the absence of SOC (αR = 0), the 4-by-4 BdG Hamiltonian can be decoupled into 
two 2-by-2 blocks. In each block, we notice that Lz + σz/2 or Lz−σz/2 provide a good quantum number, thus |m, 
i〉 (i = ± represents blocks) can be used to label the in-gap vortex states: (Lz±σz/2)|m, ±〉 = (m±1/2)|m, ±〉. 
Therefore, the wave function for the localized vortex core states are |m, + 〉 = [eimφu↑, m(θ),0, ei(m + 1)φv↓, m(θ),0] and 
|m, −〉 = [0, eimφu↓, m(θ),0, ei(m + 1)φv↑, m(θ)], both satisfying m E m, ,m0| ± 〉 = | ± 〉 . The components for the 
corresponding wavefunction are,

∑θ θ θ= =↑ ↓
≥| |

u u A Y( ) ( ) ( )
(17)

m m
l m

l
m

l
m

, ,

∑θ θ θ= =↑ ↓
≥| |

+v v B Y( ) ( ) ( )
(18)

m m
l m

l
m

l
m

, ,
1

where Al
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m are the corresponding coefficients, and Y P( ) (cos )/ 2l
m

l
mθ θ π=  with Pl

m the associated 
Legendre polynomial. Note that the m = 0 channel is in the particle-hole relationship with the m = −1 channel, 
the m = 1 channel is in the particle-hole relationship with the m = −2 channel. And we also assume that the 
quasi-particle wave functions are all orthogonal and normalized.

Then, we switch on the SOC (αR ≠ 0), and assume it is small compared with η. For the following discussion, 
we only focus on the vortex core center. In the presence of SOC, Kz = Lz + (σz − τz)/2 provides a good quantum 
number26. Then, the SOC will mix the in-gap states, so that the corrected wave function should be eigenvector 
of Kz. And we find that the corrected wave function up to the first order is exact since all spherical harmonics 
with l ≥ 1 vanish in the vortex core center. In other words, only u↑/↓,0 and v↑/↓,0 survives. Thus the corrected wave 
function is given by

~ 
∑λ| = | + |
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Rλ = − α . Thus the corrected wave function for |0, ±〉 and |−1, ±〉 
are,
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∼

A A0, 1 0, 1, (20)2

⁎| − − 〉 = − | | | − −〉 − | +〉
∼

A A1, 1 1, 0, (21)2

B B0, 1 0, 1, (22)2| − 〉 = − | | | −〉 + | +〉
∼

| − + 〉 = − | | | − +〉 + | − −〉
∼

C C1, 1 1, 2, (23)2

where A, B, C are normalized coefficients and proportional to λ = − α
R

R . Then we observe that both 0,| + 〉
∼

 and 
1,| − − 〉

∼
 have nonzero electron component u↑ and hole component v↑, which are spin polarized in the vortex 

core center. Furthermore, the equal spin anomalous Green’s function (proportional to ↑ ↑u v ⁎ or u v↓ ↓
⁎) contributes 

to the Andreev reflection. From this point of view, we may expect that there is also equal spin Andreev reflection 
in the vortex core center, even when the system is topological trivial. However, as for 0,| − 〉

∼
, 1,| − + 〉
∼

, 1,| + 〉
∼

 
and | − −〉
∼

2,  contain only nonzero electron component u↓ or hole component v↓. They are also spin polarized 
down, but there is no Andreev reflection signal. Therefore, this phenomena can also be treated as SESAR.

Moreover, we should emphasize that such SESAR is totally induced by SOC, if the SOC strength is larger, 
⁎ ~uv Rα  will be larger, then the SESAR effect become more and more obvious, which is consistent with numeri-

cal results of square lattice in Fig. 7.

Summary
In this work, we have studied selective equal spin Andreev reflection at vortex core center in magnetic 
semiconductor-superconductor heterostructure described by the model proposed by Sau, Lutchyn, Tewari and 
Das Sarma. We solve the BdG equation for a single vortex of the model in 2D square lattice. In the topological 
phase, the Majorana zero mode is localized at the vortex core and its spin component at the center is completely 
parallel to the external magnetic field, which leads to spin selective Andreev reflection. In the topological trivial 
phase, there is no Majorana zero mode inside the vortex. However, the spin-orbit coupling induces a spin selective 
Andreev reflection at the bias of the lowest quasiparticle energy. The Majorana zero mode induced spin selective 
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Andreev reflection is robust and gives a quantized value of differential conductance 2e2/h, which is independent 
of the tunneling barrier. The usual vortex quasiparticle induced spin selective Andreev reflection gives a vanishing 
value of the differential conductance at zero bias due to quantum destructive interference and is sensitive to the 
barrier in the tunneling.

Methods
Transport Methods for dI/dV of N/S Junction.  Then, to calculate the differential conductance in Eq. 
(14), what we need is the S-matrix for N/S junction. From the Fisher-Lee Formula50, the whole 4N × 4N S-matrix 
can be calculated

S i G1 (24)R1/2 1/2= − + Γ Γ

Here Γ = Σ − Σi[ ( ) ]R R † , ΣR is the self-energy induced by the lead. It’s a 4N × 4N matrix but only nonzero for the 
probed site p on the device, that we will show later, as well as Γ. And the total (retarded) Green’s function reads

 η= − − Σ + −G E i[ ] (25)
R

D
R

D
1

Only the 4 × 4 sub-matrix GR(p, p) contributes to the calculation because of the sparsity of Γ. Infinitesimal 
positive number ηD = 10−5 is adopted. To calculate the inverse of large sparse matrix, we use Intel MKL PARDISO 
Solver in Fortran code.

As we know, the lead will contribute a self-energy43 to the device, which could be described by a 4N × 4N 
matrix ΣR,

Σ τ τ= G (26)R
L
R†

GL
R is the retarded Green’s function of the lead. The coupling matrix τ is nonzero only between the adjacent 

points of the lead’s vertex (L)0 and device’s probed site (D)p, τ(L0, Dp) = diag{tc, tc, −tc, −tc}. So the self-energy 
ΣR only has a nonzero 4 × 4 sub-matrix at the probed point site p (connected point for N/S junction). For defini-
tion for the surface Green’s function of lead,

η− + =E i G[ ] 1 (27)L L L
R

ηL is a infinitesimal positive number, we used ηL = 10−5. Although the lead’s Hamiltonian has infinite dimen-
sion in matrix form, same as the Green’s function, the only submatrix we need in the calculation is the Green’s 
function on the lead’s vertex site 0, because of the sparsity of the coupling matrix τ. And the surface Green’s func-
tion G (0, 0)L

R  can be calculated by decimation method through Eq. (27).
In order to get the surface Green’s function, let’s write Eq. (27) in block matrix form

�
� �

�

� �







−
− −

−



















=

d A
B D A

B D

g g g
g g g
g g g 1

(28)

11 12 13

21 22 23

31 32 33

each letter presents a 4×4 sub-matrix with different site indexes. Initially, d = D, =B A†. In our case, from Eq. 
(27), we have

(29)

D

E i t V V iV

V iV E i t V

E i t V V iV

V iV E i t V

(2 ) ( )

( ) (2 )

(2 ) ( )

( ) (2 )

L L z x y

x y L L z

L L z x y

x y L L z

η µ

η µ

η µ

η µ

=







+ − − − + −

+ + + − − +

+ + − − − +

− − + + − +







and the effective interaction between adjacent sites A = diag{−tL,−tL, tL, tL}. Note that the only value that we need 
is g G (0, 0)L

R
11 = , for the surface Green’s function of the lead. We separate Eq. (28) into equations in the following 

forms,

δ− + − =− +Bg Dg Ag (30)n m n m n m n m1, , 1, ,

for n = 2, 3, 4, …, and m = 1, 2, 3, … Write Eq. (30) with adjacent indices then cancel the two terms: gn−1, m and 
gn+1,m, we finally get:

BD Bg AD Ag BD A D AD B g BD AD( ) (31)n m n m n m n m n m n m
1

2,
1

2,
1 1

, 1,
1

, 1,
1δ δ δ− − + − + − = + +−

−
−

+
− −

−
−

+
−

If we discard all even number for n and m, and take the transform









′ =
′ =
′ = − −

−

−

− −

A AD A
B BD B
D D BD A AD B (32)

1

1

1 1

then Eq. (31) becomes
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δ− ′ + ′ − ′ =− +B g D g A g (33)n m n m n m n m2, , 2, ,

which has the same form as Eq. (30), with n = 3, 5, 7, …, and m = 1, 3, 5, …
Similarly, we have the transform d′ = d−AD−1B for the surface. Then Eq. (28) becomes

�
� �

�

� �







′ − ′
− ′ ′ − ′

− ′ ′



















=

d A
B D A

B D

g g g
g g g
g g g 1

(34)

11 13 15

31 33 35

51 53 55

Repeat these steps in Eq. (32), we will update the coefficient and abandon the Green’s function between nearby 
sites consistently.

After sufficient number of iterations, the coefficient A becomes the effective interaction between pretty far 
sites which must be a sub-matrix comprised of small values. From d′′g11−A′′g′′21 = 1, we finally obtain the surface 
Green’s function for lead

g d (35)11
1= ″−

where g11 is exactly the surface Green’s function defined in Eq. (27).

Apply sparse matrix to Transport calculation.  In the calculation of Eq. (25), it’s difficult to take the 
inverse directly, since Hamiltonian of SLTD model device D in dominator is a big matrix of size 4N × 4N. 
Traditionally, the methods of recursive Green’s function could be applied here to calculate the Green’s function on 
the contact point p, GR(p, p), for S-matrix calculating Eq. (24). There is an alternative approach using sparse 
matrix. In this regard, we store D as sparse matrix, which is suitable for tight-binding lattice model. Then the j-th 
column of total Green’s function, defined as Gj

R, can be solved by the linear equation







η− − Σ + =













E i G j[ ]

0

0
1( row)

0

0 (36)

D
R

j
R

and GR(p, p) can be drawn from relevant columns of total Green’s function.
Intel MKL PARDISO Solver could be used to solve the linear equation of sparse matrix Eq. (36). We also tried 

methods of recursive Green’s function, by calculating Green’s function of one lattice’s column gradually. Same 
result of the differential conductance [Fig. 6(a)] was obtained, but it cost more time in calculation. So taking 
inverse of sparse matrix directly shows its efficiency advantage.

Appendix
Appendix A: Low-Energy states.  The wave function for the first excited states are shown in Fig. 9. The 
first three excited states are all edge states. And we show the first excited state on the edge in Fig. 9(a). Similar 
to the analysis of edge MZM and vortex MZM, our interest is also focused on the vortex states. Because the 
mini-gap is defined as the difference between the first vortex state and the vortex MZM, about 0.066Δ0. Due 

Figure 9.  The first excitation for (a) edge state; (b) vortex state.
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to the spin property of this first vortex excitation, we see it is spin polarized down at vortex core, i.e., u↓ ≠ 0 and 
u↑ = v↑ = v↓ = 0. It is consistent with the calculation in ref.15,34

Appendix B: Normal Andreev Reflection.  For normal Andreev reflection, incident electrons are 
reflected by SC device as holes with opposite spin direction. Though electrons with energy less then Δ reflect as 
holes, this process will be suppressed by sufficiently small tc (high barrier) unlike SESAR induced by MZM. For 
comparison, we calculated the Andreev reflection coefficient in normal Andreev reflection case. The Andreev 
reflection coefficient TA here is defined by

=T r rTr( ) (37)A he he
†

As showed in Fig. 10, for tiny coupling coefficient tc, the Andreev reflection coefficient TA vanished for all 
energy E lower than SC gap Δ. Since tc increasing in certain range, the TA that the reflection in SC gap contributed 
rises, and finally form a plateau valued 2 for two channels spin up and down. These behaves of Andreev reflection 
coefficient are consistent with the BTK theory.
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