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Aortic aneurysms and dissections (AAD) are devastating aortic diseases with high
risks for aortic rupture, leading to uncontrolled bleeding and death. Despite significant
advances in our understanding of the disease pathogenesis, there are still many unan-
swered questions and conflicting findings requiring clarification. This Topical Collection of
Biomolecules, aiming to highlight the pathological heterogeneity and molecular mecha-
nisms of AAD, includes five reviews, three original research articles, two commentaries,
and one perspective article.

Abdominal aortic aneurysms (AAAs) are the most common aortic aneurysms in
humans. Several mouse models of AAAs were developed in the past two decades to
study the disease’s development and related mechanisms. One common mouse model is
infusing angiotensin II (AngII), an 8-amino acid peptide, into mice subcutaneously through
mini-osmotic pumps [1]. It is worth noting that hypercholesterolemia drastically increases
the incidence of AngII-induced AAAs in male mice [2,3]. However, to study AAAs by
genetic manipulation in a target molecule, this mouse model requires breeding with either
apolipoprotein E or LDL receptor −/− strain. This is both time- and cost-consuming [4].
Of note, adeno-associated viruses (AAVs) containing a gain-of-function mutation of PCSK9
can induce hypercholesterolemia in C57BL/6 mice within a week [5–7]. In a commentary
of this Special Issue, Sawada and colleagues described the detailed method of how to use
AAVs containing a mouse PCSK9 gain-of-function mutation [8]. In an original research
article of this Special Issue, Ikezoe et al. [9] provided solid data that hypercholesterolemia by
this PCSK9 AAV induction does not augment elastase-induced AAAs in mice, implicating
potentially different mechanisms between AngII and elastase-induced AAAs.

Several articles of this Special Issue have provided comprehensive reviews on molecu-
lar mechanisms of AAAs. Thrombosis and aortic wall rupture are fatal consequences of
AAAs, and platelet activation and aggregation have been reported by many investigators.
Sun et al. [10] searched the PubMed and Science Direct database for “platelets and AAAs”
and provided an extensive review and evaluation of the current knowledge on platelet
activation as a mechanism and therapeutic strategy of AAAs. DeRoo et al. [11] reviewed
the contributions of the endothelial layer, the frontmost barrier of the aortic wall, to the
development of AAAs. In addition to summarizing the recent research findings using
animal models and in vitro system, the authors [11] also reviewed the clinical evidence
supporting effects and mechanisms of endothelial dysfunction in AAAs. Epigenetic modifi-
cations are important regulatory mechanisms of many diseases. Mangum and colleagues
reviewed the present literature on epigenetic processing in the pathogenesis of AAA devel-
opment [12]. Plasma serum amyloid A (SAA) is associated with multiple cardiovascular
diseases. Shridas et al. reviewed the pathological significance of SAA in the development
of atherosclerosis and AAAs [13].
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The ultimate goal of our research is to treat AAAs. Fibrates are medications used
to lower plasma triglycerides in patients with dyslipidemia. Amioka and Miyoshi [14]
summarized the current literature that shows that fibrates have multiple beneficial effects
on treating AAAs in mice, but the findings in human studies have not been consistent.
The authors provided a comprehensive discussion on the discrepancy of the literature [14].
Edaravone is an FDA-approved antioxidant. Uchida and colleagues [15] administered this
drug to male apolipoprotein-E-deficient mice infused with AngII. Edaravone did not affect
plasma cholesterol concentrations and AngII-induced high blood pressure but reduced
AAAs and atherosclerosis. The authors found that the attenuation of aortic pathologies
was accompanied by diminished inflammation [15].

Thoracic aortic aneurysms (TAA) are the second most common aortic aneurysms.
Asano and colleagues [16] provided an extensive review on TAAs attributed to a relatively
common genetic disease in humans: Marfan syndrome. Many patients with Marfan
syndrome suffer from TAA caused by genetic changes of an extracellular protein fibrillin-1.
Mouse models with fibrillin-1 manipulations mimic the human disease. As reviewed
by Asano et al., mouse models provided great mechanistic insights into TAAs of this
devastating disease [16].

For aortic aneurysm research, irrespective of the location, it is important to apply
appropriate and accurate imaging and quantification of aortic dilatation and pathologies in
animal models. Ito and co-authors [17] reviewed the imaging techniques used for aortic
visualization, discussed their advantages and limitations, and provided suggestions on
how to choose the appropriate imaging technique.

This Special Issue also reports a new finding. Fludrocortisone is a drug that has been
used in patients with orthostatic low blood pressure to increase blood pressure. Ye and
co-authors [18] found that fludrocortisone induced aortic aneurysms in ascending, arch, de-
scending thoracic, and suprarenal abdominal aortic regions. Different from AngII-induced
aortic aneurysms, fludrocortisone-induced aortic pathologies occur in both normocholes-
terolemic and hypercholesterolemic mice. The presence of aortic aneurysms was not
associated with blood pressure changes [18]. The findings in this article warn clinicians to
closely monitor this possible fatal side effect when they prescribe fludrocortisone or drugs
of the same class to patients.

We thank every author for their great contributions to this Special Issue. We hope that
the articles published in this Special Issue will help researchers to improve our understand-
ings of the pathological heterogeneity, molecular mechanisms, and potential therapeutic
targets of AAD.
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