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The leaky integrate-and-fire (LIF) spiking model can successively mimic the firing patterns

and information propagation of a biological neuron. It has been applied in neural

networks, cognitive computing, and brain-inspired computing. Due to the resistance

variability and the natural storage capacity of the memristor, the LIF spiking model with a

memristor (MLIF) is presented in this article to simulate the function and working mode

of neurons in biological systems. First, the comparison between the MLIF spiking model

and the LIF spiking model is conducted. Second, it is experimentally shown that a single

memristor could mimic the function of the integration and filtering of the dendrite and

emulate the function of the integration and firing of the soma. Finally, the feasibility of the

proposedMLIF spikingmodel is verified by the generation and recognition of Morse code.

The experimental results indicate that the presented MLIF model efficiently performs

good biological frequency adaptation, high firing frequency, and rich spiking patterns.

A memristor can be used as the dendrite and the soma, and the MLIF spiking model can

emulate the axon. The constructed single neuron can efficiently complete the generation

and propagation of firing patterns.

Keywords: LIF, MLIF, memristor, spiking patterns, neuron, Morse code

1. INTRODUCTION

Neurons, as the dual-role of the function units of the perceiving-conducting stimulus and the
information processing, can carry out particular tasks of sensory, motor, neural responses, and
cognition (Hirokawa et al., 2019), and so on. Many neuron models emerged (Hodgkin and Huxley,
1952a; FitzHugh, 1961; Morris and Lecar, 1981; Bernander et al., 1994; Izhikevich, 2003) to mimic
the functions of a biological neuron, especially the LIF spiking model. It is a simpLIFied and much
easier model for hardware implementation and large-scale integration (Slepova and Zhilenkov,
2018). The primary purpose of an artificial neuron is to mimic the functions of biological neurons
in an energy effectiveness and scalability way. The typical LIF model consists of a capacitor and a
resistor. The external stimulus is applied to the LIF model until a threshold is reached, and then
the action potential is produced (Han and Meyyappan, 2018). It is widely applied in bioinspired
and brain-inspired neuromorphic information processing systems (Belkaid and Krichmar, 2020;
Neves and Timme, 2020; Yang and Kim, 2020; Doutsi et al., 2021). Although the LIF model can
reproduce the firing behaviors of neurons after each activation, the previous pulse cannot be
retained, and the biological spiking frequency adaptability does not perform very well. To solve
these deficiencies, we need to find a new device to promote the LIF neuron model. A memristor
is a potential element to emulate the function and behavior of a biological synapse or neuron (Hu
et al., 2016; Choi et al., 2018; Chen et al., 2019; Greenberg-Toledo et al., 2019; Xia and Yang, 2019;
Wang et al., 2020; Shi and Zeng, 2021) gets a lot of attention. The non-volatile memristor modulates
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its conductance due to ion motion, similar to the phenomena
in biological neurons and synapses. Therefore, these advantages
enable the memristor to become an inevitable choice as a
building block between artificial neural networks and biological
neural networks. The LIF oscillatory neuron with a memristor
is used to perform threshold and firing functions (Jiang and
Hu, 2021), and the LIF neuron with a threshold switching
memristor realizes the firing behavior is driven by the threshold
(Dev et al., 2020). A flexible memristor is integrated into the
LIF neuron, generates four firing patterns, and implements the
transformation between analog signals and spiking signals (Zhu
et al., 2021). The TSM (threshold switching memristor) LIF
neuron circuit experimentally performs the integrate and fire
behaviors (Xu et al., 2022). The diffusive memristor LIF neuron
model mimics neuron integration, leakage, spatiotemporal, and
firing activities (Yang et al., 2020). The LIF neuron combined
with a TSM can show the “leaky-integrate-fire” function and low
power consumption (Lu et al., 2020).

Even though the LIF neuron model with a memristor had
achieved lots of progress in emulating biological neurons, the
implementation of retaining the previous pulse and performing
the biological spiking frequency adaptability has not been
yet explored in the MLIF neuron model. In our work, we
first experimentally implement the MLIF neuron model. The
memristor exhibits non-volatile behavior to “remember” the
previous pulses by applying a series of pulses. In addition, the
biological spiking frequency adaptability performs very well by
combining the LIF neuron with a memristor. Furthermore, an
individual neuronmodel formed bymemristors is presented, and
the distortionless transmission of the action potential is realized.

The primary work is to construct the memristive leaky
integrate-and-fire spiking model after integrating a memristor
to the LIF spiking model. In section 2, the LIF spiking model
will be introduced to analyze it. In section 3, the MLIF spiking
model is constructed. When the distinct stimuli act on the LIF
and MLIF spiking models, the MLIF spiking model performs
good biological adaptation, high firing frequency, and rich
firing patterns in section 4. The memristor experimentally
simulates the functions of synapse, dendrite, and soma, and
an individual neuron is entirely constructed by memristors. It
successfully reproduces the firing patterns and vividly emulates
the information transmission of a biological neuron in section 5.
Finally, the proposed model is further verified by the generation
and recognition of Morse code in section 6. Section 7 is the
conclusion of the article.

2. THE LIF SPIKING NEURON MODEL

A. L. Hodgkin and A. F. Huxley detailed the generation
mechanism of the action potential through carrying out many
electrophysiological experiments on the squid giant axon.
Meanwhile, they proposed the membrane electrical circuit
to mimic the electrophysiological behaviors of the biological
cell membrane (Hodgkin and Huxley, 1952a). The Hodgkin-
Huxley (HH) membrane circuit can precisely describe the main
characteristics of the axon membrane (Hodgkin and Huxley,

1952a,b,c,d); however, the equation calculation of the HH model
is complex, and the large-scale neural networks are hard to
construct. The LIF spiking circuit model is put forward to
simpLIFy the HH model, which is closer to the real biological
neuron, as shown in Figure 1 (Teka et al., 2014).

The cell membrane consists of the lipid bilayer and the ionic
channel (Figure 1A). The lipid bilayer can be represented by
a capacitor, and the ionic channel can be characterized by a
resistor (Figure 1B). Iext is external stimulus, C is the membrane
capacitor, R is the membrane resistor (leaky resistor), Vrest is the
resting voltage, V - Vrest is the resistive voltage, IC is the current
that passes through membrane capacitor, IR is the current that
passes through the membrane resistor, and V is the membrane
voltage. Current passes through the membrane capacitor:

q = CV (1)

IC = dq/dt = CdV/dt (2)

Current passes through the membrane resistor:

IR = (V − Vrest)/R (3)

According to Kirchhoff’s current law:

Iext = IC + IR (4)

The time constant:

τ = RC (5)

The differential equation of the LIF model, which represents the
leaky integration process:

dt = −(V − Vrest)+ RIext (6)

Using the finite differential method to solve (6) and compute the
membrane potential at a time step of duration 1t:

V(t + 1t)− V(t) = 1t/τ (−V(t)+ Vrest + RIext) (7)

The spiking generation process of the LIF circuit model: when
V(t) reaches a certain threshold Vth, the LIF model produces a
spike artificially by setting V(t) = 20mV , and then V(t + 1t)
resets to be−80mV immediately.

3. THE MEMRISTIVE LIF (MLIF) SPIKING
NEURON MODEL

Izhikevich analyzed and compared the advantages and
disadvantages of the typical spiking neuron models (Izhikevich,
2004). Considering the LIF spiking model has no memory of the
previous spike (Izhikevich, 2003) and the memory advantage
of the memristor (can “remember” the charges pass through
itself, and it is called non-volatile characteristics), we introduce a
memristor to the LIF spiking model, as shown in Figure 2A.

When we apply a sinusoidal voltage to the ion channel
memristor, it performs a zero-crossing pinched hysteresis curve.
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FIGURE 1 | The LIF circuit model of the axon membrane. (A) The sketch of the cell membrane. (B) The circuit model of the cell membrane.

FIGURE 2 | The MLIF circuit model and the I-V curve of the memristor. (A) MC membrane circuit of the MLIF model. (B) The pinched hysteresis curve and frequency

characteristics of ion channel memristor.

When we adjust the voltage frequency to 100Hz, the electrical
characteristics of the memristor are close to a straight line. The
memristor performs the feature of pure resistance (Adhikari

et al., 2013). In Figure 2B, the distribution of the curve is in
the first and third quadrants, which indicates that the device is
passive. The curve has two prominent switching states and keeps
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amemristance constant without a power supply. It shows that the
device is non-volatile.

In the MLIF membrane circuit, the τ is not a constant
anymore, and it becomes a function of time. Therefore, τ = RC is
transformed into τM(t) = M(t)C. The memristorM(t) is divided
into charge-controlled memristor and flux-controlled memristor,
and they are the functions of time. According to q = CV , we
get q(t) = C(t)VM (VM is the membrane voltage of the MLIF
model, as shown in Figure 2A), thereby we can rewrite C as
C(t) = q(t)/VM , and τM(t) = M(t)q(t)/VM . The charge or
discharge time of the capacitor always relates to the accumulation
of charges.

The charge-controlled memristor (Wang et al., 2012b):

M(q(t)) =






20000 q(t) < −0.5× 10−4

104 + (−1.99)× 108 × q(t) q(t) ≥ −0.5× 10−4 and q(t) < 0.5× 10−4

100 q(t)) ≥ 0.5× 10−4
(8)

And then, we get:

τM(t) =






20000q(t)/VM ϕ(t) < −0.75

104q(t)/VM + (−1.99)× 108 × q(t)2/VM ϕ(t) ≥ −0.75andϕ(t) < 0.25

100q(t)/VM ϕ(t)) ≥ 0.25

(9)

The relationship between charge and flux:

q(t) =






(ϕ(t)− 0.25)/20000 ϕ(t) < −0.75
√

−3.98× 108ϕ(t)+ 108 − 10000 ϕ(t) ≥ −0.75andϕ(t) < 0.25

(ϕ(t)− 0.25)/100 ϕ(t) ≥ 0.25

(10)

The flux-controlled memristor (Wang et al., 2012b):

M(ϕ(t)) =






20000 ϕ(t) < −0.75
√

−3.98× 108ϕ(t)+ 108 ϕ(t) ≥ −0.75andϕ(t) < 0.25

100 ϕ(t)) ≥ 0.25

(11)

Substituting (10) into (9), we get (M=
√

−3.98× 108ϕ(t)+ 108):

τM(t) =






(ϕ(t)− 0.25)/VM ϕ(t) < −0.75

(−3.98× 108ϕ(t)+ 108 − 10000M)/(−1.99× 108VM ϕ(t) ≥ −0.75andϕ(t) < 0.25

(ϕ(t)− 0.25)/VM ϕ(t)) ≥ 0.25

(12)

From the above equations, we can get the time constants of
charge-controlled and flux-controlled memristors. Their plots
are shown in Figure 3.

According to the MLIF membrane circuit and (7), the
mathematic expression of the MLIF model can be rewritten

as follows:

VM(t + 1t)− VM(t) = 1t/(τM(t))(−VM(t)+ Vrest +M(t)Iext)
(13)

In the following experiments, the different stimuli are applied
to the MLIF model, and the values of parameters will be set as
C = 2 × 10−9F, R = 106�, Vrest = −60mV , Vth = −50mV ,
Vreset = −80mV .

4. THE RESPONSE OF MEMBRANE
POTENTIAL TO THE DIFFERENT
EXTERNAL STIMULI

To compare and analyze the differential firing behaviors between
the LIF and MLIF neuron models, we choose a series of pulses,
the step current, a single pulse, the ramp current, and the random
noise as the external stimuli (the coral red curves are external
stimuli, the blue curves are membrane potentials).

4.1. The External Stimulus Is Iext = 0nA
The initial membrane potentials are −80 and −50 mv and are
applied to the MLIF model.

When the neuron cell membrane is at the resting state, it has a
strong negative potential inside, and its value is about −65mV ,
which is called the resting potential. When the membrane
potential value decreases in the negative direction, it is called
depolarization of the cell membrane. The membrane potential
changes from−80 to−65mV (Figure 4A). When the membrane
potential value increases negatively, it is called hyperpolarization
of the cell membrane. The membrane potential varies from −50
to −65mV (Figure 4B). According to the simulation results,
we can conclude that no matter what the initial value is, the
membrane potential always returns to the resting state in the end.
The speed at which the membrane potential returns to the resting
potential depends on the time constant τM , and the larger value
of τM , the longer time consumed.

4.2. The External Stimulus Is a Series of
Pulses: Iext = 1nA
Under the same values of parameters, we compare the LIF model
and the MLIF model.

In Figure 4C, the LIF spiking model has no action potential
generated, which means the current with a small amplitude
applied to the LIF model cannot promote the membrane
potential to reach the threshold. When the external stimulus
current is applied to the MLIF spiking model, it can generate
action potentials in Figure 4D. When the first two pulses arrive,
a series of dense action potentials are produced, and it has four
or five action potentials in each cluster. This phenomenon is
called biological spiking frequency adaptation in a neuron. After
that, it fires continuously relative stable action potentials with the
identical waveform.
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FIGURE 3 | The accumulation processes of charge and flux. (A) The relationship between charge and memristor. (B) The relationship between the time constant and

charge. (C) When a series of pulses is applied on a memristor, the accumulation process of charges. (D) The relationship between flux and memristor. (E) The

relationship between the time constant and flux. (F) When a series of pulses is applied on a memristor, the accumulation process of flux.

4.3. Increase the Amplitude of External
Stimulus Current, a Series of Pulses:
Iext = 1.5nA
When the strength of the external current is increased from 1
to 1.5 nA, the action potentials of both models are produced at
regular intervals. No biological spiking frequency adaptation is
generated in the LIF model (Figure 4E). The LIF model has 9
individual spikes in 1,000 ms. When the first pulse arrives, the
dense spikes with five spikes, about 25 ms adaptation process
are produced in the MLIF model (Figure 4F). After that, the
single spike is generated regularly. Therefore, the MLIF model
has good biological frequency adaptation. We can consider a
realistic biological situation. The firing spikes are activated by
the previous spikes (the generation of the membrane potential
is caused by the linear superposition of the presynaptic spikes).
Once the action potential is initiated, it is propagated from one
neuron to another. Therefore, the generation of every action
potential is the result of multiple presynaptic pulses.

4.4. The External Stimulus Is Step Current:
Iext = 1.5nA
When the external stimulus is the step current, the two models
can produce the action potentials. The mean firing rate of the
MLIF model (Figure 4H) is higher than that of the LIF model
(Figure 4G). The MLIF model has a good adaptation process
before regularly fires, similar to the biological neuron self-firing
property. The typical LIF model cannot capture this adaptation
process (Connors and Gutnick, 1990).

4.5. The External Stimulus Is a Single Pulse
Input: Iext = 1.5nA
When the LIF neuron model (Figure 4I) is compared with the
MLIF neuron model (Figure 4J), they can produce the action
potentials. TheMLIFmodel performs a high firing frequency and
shows good biological frequency adaptation, but the LIF model
has no adaptation process.

4.6. The External Stimulus Is a Ramp
Stimulus
The ramp stimulus is applied to the LIF model and the
MLIF model (Figures 4K,L). With the increase of the external
stimulus, the action potentials of the two models become
dense, and the number of spikes increases quickly. The MLIF
spiking model generates 7 action potentials from 0 to 45
ms; it is comprehended as the biological frequency adaptation
process. The MILF model has a high firing frequency and good
biological frequency adaptation. The LIF model has no biological
frequency adaptation.

4.7. The External Stimulus Is Random
Noise
When the neurons receive the proper stimulus, the membrane
potential reaches the threshold potential. The action potential is
generated, propagating along the axon without waveform change
and transmission loss to the axon terminal to activate other
neurons. The biological nervous system is a kind of system with
non-linear noise. To mimic the real biological phenomenon, we
use stochastic noise as the input stimulus. Under the influence
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FIGURE 4 | The relationship between the external stimulus and the action potential (the threshold voltage is −50 mV, the peak value of the action potential is 20 mV,

and the reset potential is −80 mV). (A) The initial potential is −80 mV. (B) The initial potential is −50 mV. (C) A series of pulses act on the LIF spiking model. (D) A

(Continued)
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FIGURE 4 | series of pulse act on the MLIF spiking model. (E) A series of pulses are injected into the LIF spiking model. (F) A series of pulses are injected into the

MLIF spiking model. (G) The step current is applied to the LIF spiking model. (H) The step current is applied to the MLIF spiking model. (I) The LIF spiking model

receives a single pulse. (J) The MLIF spiking model receives a single pulse. (K) The ramp stimulus acts on the LIF spiking model. (L) The ramp stimulus acts on the

MLIF spiking model. (M) The random noise is applied to the LIF spiking model. (N) The random noise is applied to the MLIF spiking model. (O) Forward input pulse

and forward memristor. (P) Forward input pulse and reverse memristor. (Q) Reverse input pulse and forward memristor. (R) Reverse input pulse and reverse

memristor. (S) The external stimulus is 0.01 nA acts on the MLIF spiking model. (T) The external stimulus is 0.045 nA. (U) The external stimulus increases to 2 nA.

of noise, the LIF membrane model does not have a biological
adaptation process. The intrinsic spike interval is distinct because
the noise stimulus is random (Figure 4M). The MLIF membrane
model generates dense action potentials between 0 and 50
ms after that generates a series of action potentials regularly
(Figure 4N). TheMLIFmodel performs a higher firing frequency
and good biological frequency adaptation.

4.8. The External Stimulus Is a Series of
Pulses: Iext > 0 and Iext < 0
We increase the strength of external stimulus to 2 nA, and
other values of parameters have no change. The neuron may
receive the excitatory signals or the inhibitory signals from
other neurons. As long as the membrane potential exceeds the
given threshold potential, it will produce the firing behaviors. In
Figures 4O,R, the MLIF model receives the forward and reverse
stimuli, and the polarity of the memristor is forward and reverse,
respectively. Under these situations, the memristor will change
from a high-memristance state to a low-memristance state. The
initial value of memristance is large, which will lead to the high-
firing frequency generated at the beginning of the waveforms.
The MLIF model has better biological adaptation in both cases
and shows similar waveforms, except the directions of waveforms
are distinct. In Figures 4P,Q, the forward and reverse stimuli are
used as injected currents, the polarity of the memristor is reverse
and forward, respectively. Thememristor will change from a low-
memristance state to a high-memristance state. The initial value
of memristance is small, and low-frequency firing is produced.
No biological frequency adaptation is generated at the beginning
of the waveforms.

4.9. The First Half of Period Is Forward
Stimulus While the Second Half of Period
Is Reverse Stimulus
The previous half of the external stimulus is a series of forward
pulses; the latter half is reverse pulses.When the external stimulus
is small (0.01 nA), the MLIF model can generate one forward
action potential and one reverse action potential (Figure 4S).
With the increase of the external stimulus, more action potentials
are generated. Every action potential is produced by a neuron,
which is stimulated by a set of presynaptic spikes, where it
behaves more like a realistic neuron. When the external stimuli
are 0.045 nA, the MLIF spiking model generates many spikes
(Figure 4T). The current stimulus becomes 2 nA, the MLIF
model generates high-frequency repetitive bursts with four or five
spikes (Figure 4U). It is similar to the spiking pattern generated
by the fast rhythmic bursting neuron. Various spiking patterns
are reproduced with distinct stimulus intensities.

5. THE MLIF CABLE MODEL FOR THE
PROPAGATION OF ELECTRICAL SIGNALS

The emergence of the cable theory is due to the derivation and
application of the cable formula, originally designed to solve
the first transatlantic telegraph cable calculations. In the 1930s,
Cole, Rushton, and Hodgkin, and other scholars provided vital
experimental evidence for the relevance between cable theory and
nerve axons (Koch, 1998; Tasaki and Matsumoto, 2002). It is an
essential reference for studying excitable neurons and helps us
understand the role of excitability (Koch, 1998).

Most neurons have only one axon, which can be up to one
meter in length and covered by myelin sheath partially. The part
without myelin sheath is called the node of Ranvier (namely,
point A, point B, point C, and point D), as shown in Figure 5A.
Spikes are generated at the start of the axon shaped like a small
bump and propagate along the axon. The passive and active
electrical properties in a neuron are determined by the voltage
change resulting from the external current pulse passing across
the axonal membrane. If the external current pulse is large
enough to stimulate an action potential, the action potential
with constant magnitude will propagate along the entire axon
(Figure 5A) (Purves, 2018). We suppose the external current
pulse is too small to evoke an action potential. In that case, the
amplitude of the resulting potential will attenuate with increasing
distance from the site of current injection (Figure 5B) (Purves,
2018). The neuron can be modeled as a cable. For the part of
the axon, we can think of it as many cylindrical compartments
coupled to each other with resistors (Figure 5C) (Purves, 2018).
The node of Ranvier is modeled as the MLIF model. The
interior of the axon is filled with axoplasm, which is the internal
pathway for ions to flow along. It can be represented as an
electrical resistor. The primary function of the axial resistor is
to distinguish the interior and the exterior of the model and
influence the waveform of membrane potentials.

Nodes of Ranvier use the mechanism of saltatory conduction
to speed up the propagation of action potentials. It is also the
vulnerable site of the axon and is prone to cause neurological
injury for lacking myelin protection (Lubetzki et al., 2020).

Myelin sheaths serve as the electrical insulator between
adjacent axons to avoid interference and further enhance the
saltatory conduction (Chang et al., 2016) and protect the axon
or surrounding tissues.

The non-linear memristor with a tunable resistance performs
good synaptic plasticity in corresponding to continuously
modulate the synaptic weight of biological synapses (Kim et al.,
2017); it can be used to mimic the artificial synapses (Jo et al.,
2010; Wang et al., 2012a; Cai and Tetzlaff, 2014; Yang et al., 2017;
Deswal and Kumar, 2019) and realize the single-component
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FIGURE 5 | Long-distance propagation of spikes in the axon. (A) The action potential with constant amplitude yielded by the external current pulse, which spreads

with increasing distance (the black arrows show the conduction direction of current). (B) The amplitude of membrane potential decreases with the distance increase

because the injected current leaks out of the axon. (C) An electrical circuit model of the axon in propagation.

synapse emulators (Serb et al., 2016). In neuroscience, synaptic
plasticity refers to a change in the strength of the connection
between two neurons. STDP is a vital learning rule for regulating
and controlling synaptic weight (Guyonneau et al., 2005).
A memristor is a device with synaptic characteristics whose
continuously variable conductance can be used to simulate
synaptic weight and realize the STDP learning rule (Wang et al.,

2014) acquired in biology (Bi and Poo, 2001). A memristor
performs the property of the STDP learning rule, the voltage
threshold Vth = 1 V). Thereby it can be used as a synapse
between neurons.

When the action potential (Figure 6A) acts on the memristor,
and the STDP learning curve (Figure 6B) of a memristor
is realized. Here, AP means the action potential, 1t is the
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FIGURE 6 | The memristive STDP. (A) The voltage is applied to the memristor. (B) STDP learning curve of a memristor.

time difference between a postsynaptic spike and a presynaptic
spike, and 1G denotes the memductance. When 1t > 0 (the
presynaptic potential takes precedence over the postsynaptic
potential), 1G increases with the decrease of 1t. When 1t < 0
(the presynaptic potential lags behind the postsynaptic potential),
1G decreases with the increase of 1t. The obtained STDP
learning plot is similar to the curve measured biologically, and
the memristor can implement the STDP learning rule. All of the
parameter values and formulas in simulation refer to Wang et al.
(2014).

In Li et al. (2020), an artificial dendrite is implemented by
a memristor with a Pt/TaOx/AlOδ/Al structure, an artificial
soma is fabricated with a Mott memristor with a NbOx
structure, and an artificial synapse realized by a memristor with
a HfOx structure. A fully memristive spiking neuron structure
is designed only by drift and diffusion memristors without
any other electron elements (Tang et al., 2019). It means that
an individual memristor can completely mimic the synapse,
dendrite, and cell body functions in the propagation of electrical
signals. Here, the non-volatile memristors (Wang et al., 2012b)
are used as the dendrite and the soma (Figures 8B,C), the
simulation results perform the electrical properties of artificial
dendrite and soma. In Figures 7A–C, a series of voltage pulses,
the ramp voltage, and a single voltage pulse are applied to
the memristive dendrite, respectively. The memristive dendrite
receives a series of voltage pulses. When the voltage pulses
are small (0.00625V), the dendrite device is in the off-state,
no current response is activated, the memristor is an off-
state filter. Until a large voltage pulse (0.0125V) arrives, the
memristor is in the on-state, giving rise to the integral behavior
(the position of the blue oblique dashed line), and the current
response with a larger amplitude is produced (the vertical blue
dotted line in Figure 7A). After that, the current responses of
small voltage pulses (0.00625V) can be observed (Figure 7A).
In Figure 7B, when the slope voltage is low, the memristor
is turned off and shows an apparent filtering phenomenon in
the time duration from 0ms to 21ms (the position of the blue
dotted line in Figure 7B). After that, the memristor is turned on;
the integration phenomenon can be observed (the plot shows
an upward trend). A single pulse voltage (0.004V) acts on the
memristive dendrite. The memristor is on-state and performs

the property of non-linear integration (the position of the blue
dotted line), as shown in Figure 7C. These simulations show
the properties of non-linear integration and filtering of the
memristive dendrite.

Comparing the experimental results in Figure 7

with those in Li et al. (2020), they agree with each
other. It verifies that the non-linear integration
and the filtering function of a memristive
dendrite, that is, a single memristor can act as an
artificial dendrite.

The differences between the memristive dendrite and artificial
dendrite device in Li et al. (2020) are:

(1) The author of Li et al. (2020) developed a memristor with
a new material structure to fabricate a dendrite device; we
use the original flux-controlled memristor to implement the
memristive dendrite.

(2) The external voltage applied to the artificial dendrite in Li et al.
(2020) is from 2V to 5V ; the external voltage we use is two or
three orders of magnitude smaller.

The soma is the functional part of integration and firing (Li
et al., 2020) in a neuron. To mimic the soma of a biological
neuron, we set the voltage threshold as −50mV , the firing
spike potential as 20mV , the external stimulus as 3nA, the
resting potential as −65mV , and the time duration as 0ms
to 600ms. The simulation plots in Figures 7D–F perform that
the voltage responses to the different current stimuli. When
the external stimulus is large enough, the memristive soma
can activate the action potential. A short upstroke waveform
before firing (inside the blue ellipse with a dotted line) shows
the non-linear integration of the memristive soma. Therefore,
a memristor can mimic the firing and integration functions of
the soma.

The computational model of a neuron is a vital tool to unveil
the mysteries of the human brain and a crucial way to extend
to any field beyond neuroscience (Poirazi and Papoutsi, 2020).
Meanwhile, many theoretical studies have confirmed that an
individual neuron can act as a powerful computing unit (Murphy
and Miller, 2003; Duan et al., 2020).

Any neuronal structure that contains the dendrite, the soma,
and the axon can be described as a compartmental cylindermodel
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FIGURE 7 | Memristive dendrite and memristive soma. (A) The non-linear filtering and integration of dendrite. (B) The non-linear integration of dendrite. (C) The

current response of memristive dendrite in on and off states. (D) The voltage response of a ramp current applied on the memristive soma. (E) The voltage response of

a single current pulse applied to the memristive soma. (F) The voltage response of a series of current pulses applied to the memristive soma [each plot in this figure is

divided into the figure above (the external stimulus applied to the memristor) and the figure below (the response of a memristor to the external stimulus)].

(Tuckwell, 1988). By connecting these cylinder models, the cable
model is implemented (Figure 8D). Here, the memristor acts as
the synapse (Figure 8A), the soma (Figure 8B), and the dendrite
(Figure 8C). At the same time, ignoring humoral resistance (rii)
between synapse and dendrite, the cytoplasmic resistance (rii)
between dendrite and soma (because the coupling conductance
is too small to generate spikes) (Liu and Tian, 1996). The axon
is modeled by the “T” circuits (the MLIF unit and two axial
resistors; Figure 8D).

Here, we do not consider the complex phenomena of the
axon, such as the failure of action potential propagation, the
reflection of action potentials, and the variability of axonal
morphology (Dominique, 2004). The axon is regarded as the
stable transmission cable of the action potential once the action

potential is evoked. The cable model consists of a series of short
compartmental cylinders. We take the active propagation of a
neuron as an example and apply three distinct external stimuli
through synapses to a neuron.

(1) We ignore the axial resistance ri in Figure 8E, the axon
consists of threeMLIF spikingmodels, and the simpleMLIF cable
model is obtained (Figure 8F). The three single pulses (from
small to large: 2, 3, and 10nA) with a 30ms delay are applied to the
three memristive synapses. The voltage responses of memristive
synapses are obtained [the plot (1) at the bottom of the neuron
circuit model in Figure 8F]. The greater the external stimulus,
the greater the voltage response. After that, the total current
passes through the dendritic and somatic compartments, and
the action potential is generated [plot (2) at the bottom of the
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FIGURE 8 | Memristive cable model of a neuron. (A) The memristor used as the synapse. (B) The memristor is used as soma. (C) The memristor used as dendrite.

(D) An individual neuron realized by memristive synapse, memristive dendrite, memristive soma, and memristive axon. (E) An individual neuron without the humoral

resistance and the cytoplasmic resistance. (F) The three different current stimuli act on the compartmental circuit model of a neuron. (G) An individual neuron circuit

model with three synapses.
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neuron circuit model in Figure 8F]. Finally, the action potential
propagates along the axon, and the action potentials without any
distortion are obtained through the MLIF axonal compartments
[axon part 1, axon part 2, and axon part 3 of the plot (3) in
Figure 8F]. When the ramp input (the peak value varies from
small to large: 2, 3, and 5nA) and the noise input (the amplitude
value goes from small to large: 2, 4, and 6nA) with a 30-ms
delay act on the memristive neuron, the voltage responses of
synapses and the action potentials are achieved [plots (4), (5),
(7), and (8) in Figure 8F]. The MLIF spiking models realize
the signal transmission of the axon [the plot (6) and the plot
(9) in Figure 8F]. These simulations prove that the MLIF cable
model of the neuron is successful and can completely mimic the
information transmission in a neuron.

(2) The axial resistance ri in Figure 8E is considered
(Figure 8G). According to the cable theory, the cable equation
in the active state can be expressed as follows (Matsumoto and
Tasaki, 1977; Dayan and Abbott, 2001):

Cm∂v/∂t = 1/ri∂
2v/∂x2 − v/Rm + iext (14)

Cm is the membrane capacitance, Rm is the resistor of the LIF
spiking model, and iext is the external stimulus.

Replacing Rm withM, (14) can be rewritten as:

Cm∂v/∂t = 1/ri∂
2v/∂x2 − v/M + iext (15)

And then, multiply (15) byM

MCm∂v/∂t = M/ri∂
2v/∂x2 − v+Miext (16)

The M is the memristor of the MLIF spiking model, the
membrane time constant τm = MCm, the membrane space
constant λ=

√
M/ri, v =VM -Vrest .VM is themembrane potential,

and Vrest is the resting potential.
To simpLIFy (16), we assume the cable is infinite. The external

current is injected, the solution of the equation is independent of
time, and the cable equation can be rewritten as follows (Liu and
Tian, 1996; Dayan and Abbott, 2001):

M/ri∂2v/∂x
2 = v−Miext (17)

We solve the second-order differential Equation (17) and get the
general solution V1e

−x/λ + V2e
x/λ. For the region x > 0, which

means that V2 = 0. For the region x < 0, which means that
V1 = 0. At x = 0, which denotes the site of current injection. To
obtain the continuous solution, it must satisfy V1 = V2 = V0,
then the expression v(x) = V0e

−|x|/λ. The special solution is
Miext . the solution of (17) is v(x) = V0e

−|x|/λ + Miext . here, we
only consider the situation of x > 0, so v(x) = V0e

−x/λ.

v(x) = V0e
−x/λ = ire−x/λ = i(Mri)

1/2e−x/λ (18)

The v is the electrotonic potential, i is the injected current, r is the
input resistance of nerve fiber, M and ri contribute to the input
memristance, x is the distance from the current source, and λ is
the length constant of the fiber (the parameter values are listed
in Table 1).

TABLE 1 | The parameters of the MLIF cable axon.

Parameters Experimental

values

Descriptions

Cm 1µ F Membrane capacitance

M Mmax = 20, 000Ohm

Mmin = 100Ohm

Membrane resistance

ri 100 Ohm Axoplasm resistance

Vrest −65 mV Resting membrane potential

Vth −50 mV Firing threshold potential

Vspike 20 mV Peak value of the membrane potential

To observe the firing and propagation behaviors of electrical
signals in a cable axon, we select a series of pulses, the rump
current, and the noisy input to act on a cable neuron. The current
stimulus is large enough to stimulate the action potentials, and
the action potentials propagate steadily along the axon with the
constant amplitude and waveform.

The action potentials are evoked by the external stimuli
(Figures 9A–C). The value of memristor changes from
10, 000Ohm (the initial value) to 100Ohm with the distance
increasing (Figure 9D). The amplitude of the action potential
keeps constant at distinct positions, as shown in Figure 9E. At
the point x = 0, the membrane potential is at the resting state,
v(0) = −65mV . The current pulses extend in both directions
from the injection point of current (x = 0) in the nerve fiber.
The amplitude of the response potential maintains constant as
the distance increases, v(x) = 20mV .

The simulation results indicate that the MLIF cable model can
efficiently imitate the propagation of electrical signals and the
firing process of neurons.

6. THE GENERATION AND RECOGNITION
OF THE MORSE CODE FOR THE
ALPHABETS IN THE MLIF MODEL

The information in the brain is encoded into pulse sequences,
which are equivalent to the Morse code (Cles, 1992). Therefore,
we utilize the action potential (a series of spike sequences)
generated by the MLIF spiking model (Figure 2A, the resting
potential −65mV , the threshold voltage −50mV , and the reset
potential −80mV) to realize the representation of Morse code.
When the external pulse intensity is constant (13nA), the
different pulse widths can produce specific numbers of action
potentials. The Morse code consists of the dot (.) and dash (-)
markers. We select the four-spike group represents the dash and
the two-spike group denotes the dot. The four-spike group and
the two-spike group in action potentials are caused by applying
the long-time (0.1ms) current pulse and the short-time (0.05ms)
current pulse (Hasdak et al., 2018; Tan et al., 2020) (Figure 10).

Spike counting is an effective way to realize the Morse code,
which is extensively used in biology (Tan et al., 2020). We take
the letter “A” as an example, and its Morse code consists of a
dot and a dash. The short current pulse and the long current
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FIGURE 9 | Firing and propagation of electrical signals in a cable axon. (A) A series of pulses applied on the cable axon. (B) The rump current is applied to the cable

axon. (C) The noisy input is applied to the cable axon. (D) The relationship between memristor and the position. (E) The relationship between membrane potential and

the position.

pulse (two coral pulses in Figure 10) act on the MLIF spiking
model, and the two voltage pulses and four voltage pulses are
evoked (the blue firing spikes in Figure 10). The two-spike action
potential corresponds to a dot, and the four-spike action potential
corresponds to a dash in Morse code (the dark blue geometric
patterns in Figure 10: a circle and a rectangle). Then the Morse
code of the letter “A” can be represented by the action potentials.
Finally, the total number of spikes describes each letter and can

be applied to interpret the action potentials into the Morse code.
26 English letters are implemented in Figure 10.

It is observed that the total number of spikes in every letter
is not distinct in Figure 10. The total number of spikes in letters
“D”, “F”, “H”, “M”, “R”, and “U” is 8, the total number of spikes
in letters “B”, “G”, “K”, “L”, “V”, and “W” is 10, the total number
of spikes in letters “C”, “O”, “P”, “X”, and “Z” is 12, the total
number of spikes in letters “I” and “T” is 4, the total number of
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FIGURE 10 | The correspondence relationship of letters, spikes, and Morse codes.

FIGURE 11 | The recognition of “RO” and “SE” in Morse code [the action time of a series of pulses is 1,000 ms (the coral red plot)].

spikes in letters “J”, “Q”, and “Y” is 14, and the total number of
spikes in letters “A”, “N”, and “S” is 6. The internal-spike interval
is the length of time between the generated action potentials. It
can be used to identify whether the produced action potential is
a single letter or a word. Therefore, we need to consider the pulse
time intervals in the simulation (tss, tl, and ts) to recognize the
Morse code correctly. The tss means the internal time interval

of the Morse code. The long- and short-time intervals (tl, ts)
without spikes indicate the spacing between words and between
letters, accordingly (Figure 11). In our simulation, we assume
that “RO” and “SE” are two words separated by the long-
time interval.And the current pulse interval is 0.02ms (tss), the
width of narrow pulses is 0.05ms, the width of wide pulses is
0.1ms, the interval between letters is 0.04ms (ts), and the interval
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between words is 0.1ms (tl). The current pulses are applied
to the MLIF spiking model, and the action potentials (two-
spike and four-spike groups) are generated. The input current
signal is transformed into the action potential. The Morse code
can be obtained according to the corresponding relationship
between two or four pulses and Morse code similar to the
information coding process. We take the “R” as an example, and
the three continuous current pulses (narrow-wide-narrow pulse)
are applied to the MLIF neuron model, the action potentials are
achieved (two-spike, four-spike, and two-spike groups). Two-
spike group corresponds to the dot, and the four-spike group
corresponds to the dash. The Morse code of “R” is denoted the
dot-tss-dash-tss-dot.

The obtained Morse code can be interpreted as letters
based on the relationship between Morse code and letters
and the intervals between letters and words. We take the
“RO” and “SE” as an example, and they consist of dots
and dashes. When the time interval is tss between dots
and dashes, it means these dots and dashes form a letter
(such as “R”, dot-dash-dot). The time interval ts appears
in dots and dashes, it denotes two letters (such as “RO”,
dot-dash-dot-ts-dash-dash-dash). The time interval tl occurs
between dots and dashes, it represents two words (such
as “RO” and “SE”, dot-dash-dot-ts-dash-dash-dash-tl-dot-dot-
dot-ts-dot). We can recognize the Morse code effectively.
Finally, the generation and recognition of Morse code can be
implemented effectively.

7. CONCLUSION

In this work, the LIF model with the non-volatile memristor is
proposed successfully, and we aim to develop the application
of memristor in neuroscience. We choose the flux-controlled
memristor to combine with the LIF spiking model and get the
MLIF spikingmodel. To demonstrate the superiority of theMLIF
model over the LIF model, we compared the firing patterns
of the two models. The simulation results show that the MLIF
model has good biological spiking frequency adaptation, higher
firing frequency, and rich firing patterns. The MLIF model can
reproduce the firing behavior of biological neurons very well.

Due to the intrinsic characteristics of a memristor, it can
potentially promote the analysis and application of biological

neural models. This work has experimentally proved that a single
memristor can be used as a synapse, performs the function
of integration and filtering of the dendrite, and realizes the

function of integration and firing of soma. An individual neuron
constructed entirely by memristors can emulate passive and
active propagations over time; finally, it efficiently transmits the
information. Our MLIF model converts the current pulses to
potential spikes, corresponds to the Morse code sequence. The
simulation results indicate that the MLIF model can successfully
generate and recognize the Morse code. Therefore, the proposed
MLIF model can be a potential building block for reproducing
the behaviors of a biological neuron and constructing the spiking
neural networks.
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