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Respiratory Syncytial Virus Infection:
From Biology to Therapy

A Perspective

Shyam S. Mohapatra, PhD,*{ and Richard F. Lockey, MD*

Abstract: Respiratory syncytial virus (RSV) is responsible for
significant morbidity and mortality, particularly in infants younger
than 18 months and in the elderly. To date, there are few effective
treatment options available to prevent or treat RSV infections.
Attractive therapeutic strategies include targeting host epithelial
adhesion molecules required for RSV infection, enhancing localized
cell-mediated immunity, interfering with RSV viral gene expression
and developing a multigene DNA vaccine. The most recent data
supporting the advantages and limitations of each of these approaches
are discussed in detail. Several promising strategies offer hope for
safe and effective prophylaxis and treatment of RSV infection.
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Respiratory syncytial virus (RSV) is one of the most
important respiratory pathogens targeting all age groups;
however, infants (younger than 18 months) and the elderly
experience the most severe aspects of the disease, which
results in lower respiratory tract illnesses ( ie, bronchiolitis and
pneumonia)." Around 90% of infants are infected for the first
time by the age of 2 years."* Worldwide, about 5 million
infants are hospitalized because of severe RSV infection. The
first is usually the most severe, and previous findings indicate
that infants with a history of premature birth, bronchopul-
monary dysplasia, congenital heart disease, cystic fibrosis, or
immunosuppression are more likely to develop the most
severe clinical courses of bronchiolitis and pneumonia, which
have the highest risk of death.'-?
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However, an analysis of a comprehensive study done
between 1979 and 1997 about RSV-associated deaths in US
children suggests that most RSV-related deaths do not occur
among children who are presumed to be at high risk for severe
RSV lower respiratory tract illnesses.> The leading cause in
infant hospitalization is RSV bronchiolitis,* which imposes a
severe burden upon health services. Costs related to
emergency department visits between 1997 and 2000 amount
to approximately 202 million US dollars.* Complete immunity
to RSV never develops, and reinfection throughout life is
common. Although the major clinical manifestation of RSV in
older children and adults is upper respiratory tract illness
(rhinitis and acute otitis media), it may also cause up to 2.4%
of community-acquired pneumonia in these population
groups.” In older adults, RSV was identified as responsible
for 10% of winter hospital admissions and has a case-fatality
rate that approaches 10%. In addition, 78% of RSV-associated
deaths occur in individuals aged 65 years or older who have
underlying cardiac and pulmonary pathology.® In particular,
RSV infection in adults with strong immunosuppression, for
example, patients undergoing bone marrow transplantation is
of great medical importance.”’

In the past 8 years, our research has identified both
cellular and viral targets that may be useful for the prevention
of RSV infection and its accompanying pathology. Differential
microarray analysis was used to pinpoint gene expression
changes in RSV-infected cells, and expression of candidate
therapeutic genes was tested both in cultured lung epithelial
cells in vitro and in animal models in vivo. Characterization of
these gene expression changes includes immune modulation,
signal transduction, and apoptosis. In this report, the biology
of RSV and how these studies contribute to the basic
mechanistic studies of RSV infection and have led to new
targets to manage RSV infection will be discussed.

STATE OF THE ART IN TREATMENT AND
PROPHYLAXIS OF RSV INFECTION

There is no treatment to protect against RSV infection,
and the current treatment, Ribavirin, only produces modest
short-term improvement in respiratory tract infection.® More-
over, it is now restricted to a highly selected group of patients
with T-cell immunodeficiency.® Passive immunoprophylaxis,
involving the administration of either a polyclonal antibody
(Synagis) preparation or a humanized version of a monoclonal
anti—-RSV-F antibody (Palivizumab), is successful for protec-
tion of high-risk individuals against RSV infection. However,
these approaches are only partially effective, expensive, and
could generate resistant mutant RSV strains. Development of
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new and highly effective antibodies to modulate RSV infection
remains a major medical and pharmaceutical goal.

To date, there is no licensed vaccine for the prevention
of human RSV disease. Efforts have been made to develop
active prophylaxis measures (vaccines), and both subunit and
attenuated live vaccines are being pursed in clinical studies.
Vaccine development has been limited after the testing of
initial vaccines in the 1960s, which exacerbated the RSV
disease.'™'! Some of the reasons for the lack of success in
developing previous vaccines include the inadequate response
to vaccination, the existence of 2 antigenically distinct RSV
groups, and the history of disease enhancement after admin-
istration of a formalin-inactivated vaccine.'>"?

Developing active or passive prophylaxis is important as
they are expected to decrease the incidence of severe
infections and thus may reduce or attenuate asthma pathogen-
esis. Recent advances in the vaccine area include research with
plasmid-based DNA vaccines and small-interfering RNA
(siRNA)-based approaches. To deliver these antiviral plas-
mids in the most effective way to target cells, a novel carrier
system has been produced based on modified polysaccharide
nanoparticles that protect the DNA and facilitate its introduc-
tion into the lungs. The advances in this field are reviewed in
the following sections.

RSV GENOME AND STRUCTURE

Human RSV is in the genus Preumovirus, subfamily
Pneumovirinae, family Paramyxoviridae, order Mononegavir-
ales, whose members consist of nonsegmented, negative-sense,
single-stranded RNA viruses. In addition to human RSV, the
genus Pneumovirus includes bovine RSV, ovine RSV, and
pneumonia virus of mice. The RSV virions consist of a
nucleocapsid contained within a lipid envelope of irregular
spherical shape with sizes of 150 to 300 nm. Both infected
cultures and viral preparations can also include filamentous

forms of the virions that are 60 to 100 nm in diameter and up to
10 wm in length.'* The viral envelope is a lipid bilayer acquired
from the host plasmatic membrane. The viral transmembrane
glycoproteins—the fusion protein F, the attachment protein G,
and the small hydrophobic protein SH—organize themselves to
form spikes, which are visible under electron microscopy. Host
lipid raft-derived proteins are also incorporated into the
envelope of mature viral particles.'>'” The envelope connects
to the nucleocapsid through the viral matrix M protein. Using
electron microscopy, the nucleocapsid is seen as an internal
electrodense material with a diameter of 15 nm inside the round
and filamentous forms of the virions.'* The nucleocapsids
consist of the RNA genome and the associated nucleocapsid
protein N, the phosphoprotein P, the large polymerase subunit L,
and the antitermination factor M2-1. The viral RNA genome
and the associated proteins in the nucleocapsid together form a
very tight ribonucleoprotein complex, which is resistant to
RNAse activity.

The genome for most of the virions is a negative-sense
strand of RNA of 15,222 nucleotides in length. However, some
virions are also found to have incorporated the positive-sense
replicative intermediate (antigenomic RNA), which is synthe-
sized during viral replication. Thus, this implies that during the
viral assembly, there is no mechanism that allows discrimina-
tion in packaging. The viral genes are ordered from 3’ to 5" in
the following way: NS1-NS2-N-P-M-SH-G-F-M2-L. Glyco-
protein G and F (and SH), respectively, mediate virus
attachment and fusion to the host cell.'® In addition to fusion,
protein F has also been postulated to participate in the
attachment of the virus to the host cell membrane. Intercellular
adhesion molecule 1 (ICAM-1), annexin-II, and Toll-like
receptor 4 are receptors for protein F.'°' The matrix (M)
protein forms a layer on the inner face of the viral envelope,
and it plays an essential role in viral assembly through its
interactions with the cell membrane, virus envelope, and virus

Control Lung

FIGURE 1. Model systems for RSV infection. A, The RSV infection is studied in human 3-dimensional epithelial cell cultures. Left
panel, Hematoxylin and eosin staining of cells. Right panel, Infection of ciliated epithelial cells by green fluorescent protein—RSV. B,
Left panel, Infection of human dendritic cells by green fluorescent protein—RSV. Right panel, Infection of mouse epithelium and
dendritic cells by rhodamine-labeled anti-RSV antibodies. C, Immunohistochemical analyses of section from mouse nose, trachea,

and lung, and localization of RSV infection.
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nucleocapsid.?*** The nucleocapsid-associated proteins N, P,
M2-1, and L play essential roles at different stages for efficient
viral transcription and replication. The nonstructural proteins
NS1 and NS2 are thought to be antagonists of the interferon
(IFN)-type I system. They seem to target the transcription
factor IRF-3. Thus, the expression of these proteins helps the
virus to reduce IFN-y expression by infected cells.***

PROPHYLAXIS AND TREATMENT
OF RSV INFECTION

Developing antivirals requires a comprehensive mole-
cular understanding of the early events of virus-host
interaction necessary for viral fusion and entry into cells
and viral replication. To study viral interactions, human
epithelial cell cultures, a 3-dimensional epithelium, and
human dendritic cell and mouse models of RSV infection
have been established in our laboratory (Figs. 1 A-C). The
RSV affects pulmonary function in BALB/c mice.”® A
number of investigators have used a mouse model for the
study of asthma and RSV infection using an inbred BALB/c
strain of mouse.”’ >? Figure 1C shows the localization of
RSV in the nose, trachea, and lung of BALB/c mice after
their infection with RSV by immunohistochemical analyses.
The sections stained for RSV were produced from mouse
nose after 1 hour of RSV infection. The negative controls
did not exhibit any RSV specific staining (red). One side of
the nose of infected mice showed RSV, also the tracheal
epithelium and peripheral lung sections showed RSV
infection. Macrophages were infected with RSV in the
peripheral lung. No infection was found in the control mice.
As in humans, pulmonary T cells induce both Ty,1 and T2
responses in the lung in response to RSV infection.3!-33
The contributions of our laboratory fields are summarized
in Table 1.

Similarly, the methods of prevention and treatment are
shown in Figure 2. The salient findings thus far are as follows:
(1) RSV infection induces the expression of ICAM-1 on host
cells. The colocalization of RSV and ICAM-1 suggests that
ICAM-1 binds to RSV, most likely by interacting with the
RSV fusion protein. Treatment of cells with antibodies to
ICAM-1 or targeting ICAM-1 in mice significantly inhibits

TABLE 1. Summary of Studies Relating to RSV Infection

Therapeutic
Area Protein(s) Involved Approach Reference
Host ICAM-1 Ab, antisense RNA 87-89

proteins  [FN-y 48,90,91

2-5'Oligoadenylate

Gene therapy

Gene therapy 2

synthetase
ERK1,2 SMD inhibitors %3
STAT-1/3 SMD inhibitors o4
PKC-a SMD inhibitors 9
Virus F Antisense RNA
proteins NS SiRNA %
F, G, SH, NSI1,NS2, P, N DNA vaccine 90,97

ERK indicates extracellular signal-regulated kinase; PKC, protein kinase C; SMD,
small molecular drug; STAT, signal transduction and activator of transcription.
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FIGURE 2. A schematic diagram of the methods under the
current research for the prevention, prophylaxis, and treatment
of RSV infection. Underlined areas represent contributions
reported in this article.

RSV infection and the production of inflammatory mediators,
suggesting a therapeutic potential of anti-ICAM-1
approaches; (2) intranasal administration in mice of a plasmid
encoding IFN-v significantly decreases viral replication in the
mouse lung and reduces lung inflammation. From DNA
microarray analysis and other molecular and cellular techni-
ques, we have identified 2-5 antisense oligoadenylate
synthetase as an important molecule in the IFN-y—mediated
inhibition of RSV replication. Mice given adenovirus
expressing 2—-5 antisense oligoadenylate synthetase signifi-
cantly inhibit RSV replication; (3) from microarray studies to
dissect the early events of RSV infection, multiple signaling
pathways involving STAT1 and STAT3, ERK-1 and ERK-2,
and PKC-a are involved in RSV-induced early gene
expression and inflammation. PKC-a is a critical target
upstream of these signaling pathways, and inhibitors of PKC-
a specifically block RSV fusion and stop the infection of
normal human bronchial epithelial cells. To elucidate the
mechanism of RSV infection, RSV-induced signal transduc-
tion pathways involving STAT and PKC were investigated.
These studies in human epithelial cells have now been
extended to RSV-infected mouse model, where it has been
possible to localize up-regulation of multiple signaling
pathways such as those involving nuclear factor-kB (NF-
kB) has been localized to infected lung cells (Fig. 2); (4)
finally, to develop a vaccine for prophylaxis or treatment
based on RSV genes, a multigene DNA vaccine and
siRNA-based strategy was explored. The contributions to
the development of a nanotechnology platform for a DNA
vaccine and for RNA interference therapy are summarized in
the following sections.

Development of Chitosan-Based Nanoparticles
as a Platform for Gene and Drug Delivery
Numerous investigators, including those in our laboratory,
have extensively studied chitosan, which we believe has the
potential to be useful for the delivery of genes and drugs, as it has
very low immunogenicity while having strong immunostimula-
tory properties.’® Moreover, as a carrier, it can most adequately
provide heat stability to encapsulated or adsorbed vaccines.
Chitosan, a natural biocompatible cationic polysaccharide
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extracted from crustacean shells, is capable of efficient drug and
gene delivery.>”*! Chitosan has many beneficial effects,
including anticoagulant act1V1ty ® wound-healing properties, a2
and antimicrobial properties.** In addition, chitosan is nontoxic,
nonhemolytic, slowly biodegradable, and nuclease resistant, and
it has been widely used in controlled drug delivery.’”**’
Chitosan also increases transcellular and paracellular transport
across the mucosal epithelium*® and, thus, may facilitate mucosal
drug delivery and modulate immunity of the mucosal and
bronchus-associated lymphoid tissues. Chitosan apparently
binds to macrophages and myeloid cells via CD14.49-50

The toxicity of mucosally administered chitosan has
been studied in rodents. N-trimethyl chitosan and chitosan
hydrochloride given intranasally do not alter the ciliary beat
frequency of the rat nasal eplthehum and hence, both are
considered to be nontoxic.’' In addition, the subacute oral
toxicity of chitosan oligosaccharides was investigated in
Sprague-Dawley rats of both sexes.’®> The chitosan is
metabolized and secreted through the viliary system.
Thirty-six male and female rats were administered by
gavage 500, 1000, and 2000 mg/kg per day of chitosan
for 4 weeks (7 days per week), and their clinical signs, body
weights, hematologic and biochemical parameters, and
histopathology were examined. There were no significant
differences in behavior, external appearance, body weight or
food consumption between control and treated rats. In
addition, no significant differences in urinalysis, hematology,
blood biochemistry, relative organ weights, and histopatho-
logical findings were found in either control or treated rats.
These results suggest that the acute toxicity of chitosan
oligosaccharides is low and that the detection limit of
toxicity is greater than 2000 mg/kg in rats. Furthermore,
chlorophyllin-chitosan, an insoluble form of chlorophyllin,
inhibits DNA adduct formation and mutagenesis by a
heterocyclic food mutagen-carcinogen, 3-amino-1-methyl-
5H-pyridoindole (Trp-P-2), in mice carrying the Escherichia
coli rpsL gene as a mutagenesis reporter, this suggests that
chlorophyllin-chitosan may be a candidate chemopreventive
agent against the genotoxic action of Trp-P-2 and possibly
other aromatic carcinogens in the diet.

The Environmental Protection Agency has ruled chit-
osan exempt from its tolerance guidelines because of its
nontoxicity as evidenced by the: (1) literature search done for
chitin, chitosan, N-acetyl-D-glucosamine, and D-glucosamine
toxicity in humans using the databases PubMed, Hazardous
Substances Data Bank, Integrated Risk Information System,
Gene-Tox, Environmental Mutagen Information Center, Toxic
Release Inventory, the Food and Drug Administration, the
United States Department of Agriculture and ChemIDplus; (2)
animal feeding studies, in which up to 5% of the diet is
chitosan, that failed to show any adverse effects; and (3) the
lack of reported complaints of toxicity against the database of
2700 complaints despite years of chitosan use in food and
nutritional supplements.

Several double-blind placebo-controlled human studies
demonstrate the safety of chitosan when given orally. The
results of these studies show chitosan-mediated decreases in
total cholesterol level,>> > decreases in serum low- den51ty
hpoprotem cholesterol,>® 1ncreases in fetal fat excretion,”’ and
increases in vitamin K.*® No chitosan-mediated reductions in
body weight were observed.’®® Chitosan was tolerated, and
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FIGURE 3. Anti-RSV activity of pIFN-y nanoparticles in mice.
Nanoparticles complexed with plasmid encoding IFN-y (pIFN-
v) decreased lung RSV titers. i.n. indicates intranasal; PBS,
phosphate buffered saline.

no serious adverse events or changes in safety parameters were
noted, including serum levels of fat-soluble vitamins A, D, E,
and Fe++ and transferrin.’® Given these numerous reports on
safety and lack of toxicity, chitosan-based nanoparticles
provide a great opportunity to deliver proteins, peptides,
drugs, and genes. Furthermore, a number of investigators have
taken advantage of the cationic property of chitosan and used
chitosan for targeted delivery of drugs and other biologics via
the mucosal route, maximizing the drug effectiveness and
minimizing the adverse effects by slow sustained release of the
drug (Fig. 3). Thus, the advantages of chitosan nanoparticles
as a platform for vaccine or therapy are: (1) ease of
construction of DNA-based constructs, (2) stability and heat
resistance, (3) ease of use and preparation, (4) possibility to
use cocktails, (5) lack of replication in mammalian cells, (6)
lack of integration into host genomes, (7) the possibility for
persistent expression, and (8) expression of the cloned gene
for a period of weeks to months. We have used this platform
for an intranasal gene expression vaccine, for the expression of
cytokine IFN-vy as a prophylactic/treatment, and for delivery of
RNA interference therapy based on a nonstructural gene, NS1,
of RSV.

A Nanoparticle Gene Expression Vaccine for RSV
The potential of vaccines has been intensely investigated
since the discovery of the virus. All RSV proteins, except L,
have been tested for 1mmun0gemclty and protectwe efficacy in
rodents using recombinant vaccinia viruses.”* ®' A number of
approaches, including recombinant live, attenuated, subunit
vaccines, and DNA vaccines, are under intense in-
vestigation,>** but none have crossed the clinical-phase
hurdles and been licensed thus far. The development of RSV
vaccines is complicated by the need to administer the vaccine at
avery young age, between 6 weeks and 6 months, in the face of
a premature immune system. In addition, because RSV is a
mucosal pathogen, an effective vaccine must generate secreted
mucosal antibodies, such as immunoglobulin A (IgA) and
mucosal cytotoxic lymphocytes (CTLs).?>°° The RSV-induced
CTL response at mucosal sites is inadequate. Although

© 2008 World Allergy Organization
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evidence suggests the potential of a gene expression
vaccine for RSV infection, the number of studies is
limited. Previous reports using systemic injections of
pDNA show variable results. The quantity of DNA used
per unit body mass, as much as 10 mg/kg, and the route
of administration chosen are inconvenient for infants and
are suboptimal for inducing mucosal immunity against a
pulmonary infection.®’

Our laboratory developed a nanoparticle multigene
vaccination strategy against RSV infection using a comple-
mentary DNA cocktail produced by cloning 9 RSV antigens
(NS1, NS2, M, SH, F, M2, N, G, or P in a pVAX plasmid)
complexed with chitosan nanoparticles, referred to as
nanoparticle gene expression vaccine (NGXV). The NGXV
was administered to mice by the intranasal route. The rationale
for developing this vaccine is based on the following reports.
All of the RSV proteins, except L, have been tested
individually (and in some cases, in combination) for
immunogenicity and protective efficacy in rodents using
recombinant vaccinia viruses.’” ® The F and G proteins are
the antigens that induce most of the the neutralizing antibodies
against RSV.**7° The CTL repertoire in humans revealed that
the N, SH, F, M, M2, and NS2 proteins were strong target
antigens. In BALB/c mice, the F, N, and M2 proteins are major
target antigens.®’’'""* Protection against and recovery from
RSV infection are mediated largely by the immune system,
with the specific direct effectors being secretory antibodies,
serum antibodies, and major histocompatibility complex class
I-restricted CTLs.

The results demonstrate that a single vaccination of
about 1 mg/kg body weight of NGXV decreases viral titers by
2 orders of magnitude (100-fold) upon primary infection. In
addition, NGXV significantly decreases pulmonary inflam-
mation and does not alter airway hyperresponsiveness, thus
making it a potentially safe vaccine. This may represent a
major breakthrough in RSV vaccine development.

The immunologic mechanisms for the effectiveness of
this vaccine include the induction of both high levels of
serum IgG and mucosal IgA antibodies, the generation of an
effective CTL response, and elevated lung-specific produc-
tion of IFN-y with antiviral action (Fig. 4). Although a single
dose of NGXYV is effective, it is possible that dose escalation
and prime-booster strategies might further enhance its

NF-kB-LacZ Tgn mice

Immunoprophylaxis

Host Gene Expression

Prophylactic IFN-y gene transfer in BALB/c mice
decreases viral replication and induces a Ty,1-like (increased
production of IFN-y and interleukin-12), instead of a Tj,2-like
(decreased interleukin-5) immune response against RSV
infection.”*’® Viral infections induce IFN-vy, which in turn
facilitates the resolution of viral infection.”* Levels of IFN-y
have been compared in bronchoalveolar lavage fluids after
infection with RSV in control and pIFN-y—treated mice. A 3-
to 6-fold increase in IFN-y production was found in RSV-
infected mice compared with uninfected mice. Such increases
are considered to be relatively low compared with other viral
infections.”* ’® The finding that a natural live virus infection is
cleared by elevated IFN-y production, a response similar to
that seen after live viral infection in mice, suggests that the
results from this animal model may be applicable to human
RSV disease.

SiRNA-Based Prophylaxis

A new prophylactic approach consists of taking
advantage of the RNA interference mechanism initially
discovered in plant cells and that is present in all species
including mammals. RNA interference is triggered by double-
stranded RNA that is cleaved by an RNAse Ill-like enzyme,
Dicer, into 21-25-nucleotide fragments (siRNAs) with char-
acteristic 5" and 3’ termini.””-’® These siRNAs act as guides for
a multiprotein complex, including a PAZ/PIWI domain,
containing the protein Argonaute2, which cleaves the target
messenger RNA (mRNA).” These gene-silencing mechan-
isms are highly specific and induce inhibition of gene
expression throughout an organism. RNA interference is a
known phenomenon that has been proven effective in silencing
anumber of genes of different viruses.**** The siRNA to viral
P or NS-1 mRNAs prevents RSV infection in cellular and
animal model studies.®>®* Prophylactic intranasal administra-
tion of an siRNA formulation specific for RSV-P mRNA is
able to significantly reduce the viral load and the disease
parameters in RSV-infected mice.®® A carrier in the formula-
tion is not required. In addition, a very low dose is effective in
showing a protective effect. Moreover, siRNA-resistant virus
did not appear after using this formulation.®® Although
intranasal administration of naked siRNA to humans was

effectiveness.

A Control 7
Staining: anti-lacZ

B

FIGURE 4. Immunohistochemical analyses of sections from mouse trachea and localization of NF-kB (lacZ) expression in NF-
kB-lacZ Tgn mice. A, The cryosections stained with phospho-STAT (green) antibody were produced from mice after 1 hour of RSV
infection. The negative controls did not exhibit any RSV-specific staining (red). B, Sections were stained with antibody to RSV (red)

and lacZ (green). Tgn indicates transgenic.
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found to be safe in a phase I study, other studies have shown
toxicity.

Because the synthesis of RNA oligonucleotide—based
siRNA is expensive, our laboratory engineered DNA vector—based
approaches to introduce siNS1 into RSV-infected human
cells and animal models. This is based on the principle of the
intracellular transcription of small RNA molecules that are
synthesized from a DNA template under the control of RNA
polymerase III promoters, such as U6.%> NS-1 was selected as
the target because the NS1 protein interferes with type-1
IFN-mediated host antiviral responses.>**¢ Silencing of the
NS-1 gene attenuated RSV replication and boosted the
immune response through an increase in IFN-y production.®*
The prophylactic intranasal administration of this formula-
tion, combined with chitosan, significantly reduced the viral
load and ameliorated the pulmonary pathology in RSV-
infected mice.®* In addition, mice treated with this formula-
tion develop protection against reinfection.®*

Moreover, this formulation also drives human dendritic
cells to promote a Ty, 1-like profile.** Overall, siRNA-mediated
silencing of the NSI1 gene up-regulates host-antiviral genes
and suppresses RSV replication compared with control
groups. Studies confirm the role of siNSI in a rat model of
RSV infection. A phase I study is currently under development
using the nanoparticle-incorporated siNS1, and it may
represent a novel prophylaxis/therapy that can be used in a
global population.

SUMMARY AND CONCLUSION

The RSV is the major pathogen responsible for serious
upper and lower respiratory tract infections, primarily in
infants, but also in the elderly worldwide. The precise
molecular and cellular mechanisms are unclear, and satisfac-
tory prophylaxis or treatment strategies are yet to emerge. This
research has resulted in the understanding of the pathology
and complexity of signaling pathways involved in successful
infection; the role of host defense molecules such as ICAM-1,
IFN-v, and related pathways; and how they can be exploited to
develop less costly prophylaxis and treatments for RSV
infection. Finally, the potential to develop safe and effective
prophylaxis and/or treatment by targeting important RSV
genes is under investigation.
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