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Abstract: For Diels–Alder (DA) reactions in solution, an accurate and converged free energy (FE)
surface at ab initio (ai) quantum mechanical/molecular mechanical (QM/MM) level is imperative
for the understanding of reaction mechanism. However, this computation is still far too expensive.
In a previous work, we proposed a new method termed MBAR+wTP, with which the computation of
the ai FE profile can be accelerated by several orders of magnitude via a three-step procedure: (I) an
umbrella sampling (US) using a semi-empirical (SE) QM/MM Hamiltonian is performed; (II) the
FE profile is generated using the Multistate Bennett Acceptance Ratio (MBAR) analysis; and (III) a
weighted Thermodynamic Perturbation (wTP) from the SE Hamiltonian to the ai Hamiltonian is
performed to obtain the ai QM/MM FE profile using weight factors from the MBAR analysis. In this
work, this method is extended to the calculations of two-dimensional FE surfaces of two Diels–Alder
reactions of cyclopentadiene with either acrylonitrile or 1-4-naphthoquinone at ai QM/MM level. The
accurate activation free energies at the ai QM/MM level, which are much closer to the experimental
measurements than those calculated by other methods, indicate that this MBAR+wTP method can be
applied in the studies of complex reactions in condensed phase with much-enhanced efficiency.

Keywords: Diels–Alder reaction; free energy surface; ab initio; reference-potential method;
umbrella sampling

1. Introduction

The Diels–Alder (DA) reactions are one category of organic chemical reactions (specifically, a [4+2]
cycloaddition) between a conjugated diene and a dienophile, which involve a dual carbon–carbon
bond-forming process. Among them, the DA reactions of cyclopentadiene (CP) with acrylonitrile
(ACR) or 1-4-naphthoquinone (NAP) have attracted much attention from experimental [1–3] and
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computational scientists [4–8]. It has been observed that the reaction rate is very sensitive to the
solvent [2,3,5–8]. Therefore, the solvation effect should be explicitly considered in order to unveil the
reaction mechanism, in which the polarization effect and the reorganization of the solvent molecules
may play a critical role.

Hybrid quantum mechanical/molecular mechanical (QM/MM) method, which was proposed by
Warshel and Levitt in 1976 [9], is now a mature method that can be used to study chemical reactions
taking place in condensed phase such as aqueous solution or enzymatic environment [10–13]. In this
approach, only reactive region is treated quantum mechanically, and the remaining part is described
by molecular mechanical force field. However, when the reaction barrier is much larger than kBT,
which is pervasive for reactions under mild condition, a direct ab initio (ai) QM/MM simulation is
still notoriously time consuming, if feasible at all. Despite the continuous development in computer
technology and enhanced sampling methods, investigation of reaction mechanism in solution or
enzymes using direct ai QM/MM simulations is still a daunting task.

To reduce the computational expense, Jorgenson et al. proposed a new approach for the
calculations of free energy changes in chemical reactions in solution by combining gas phase QM
calculations with free energy simulations (QM-FE method) [14–16]. Kollman et al. extended this
method to the studies of enzymatic reactions [17]. However, in the QM-FE approach, the QM
Hamiltonian and the MM Hamiltonian are separated, which is not a rigorous QM/MM approach.
In other words, the impact of the solvent or the enzyme environment on the electronic structure of the
QM region is not considered. However, solvent or enzyme environment often has a remarkable
impact on the reaction process. Zhang and Yang [18] were motivated by the QM-FE approach
and developed a more practical method, which combines ai QM/MM calculations with free energy
perturbation (FEP) [19,20]. Later, Thiel et al. named this method “QM/MM-FEP” [21]. In this method,
an efficient iterative optimization procedure was developed to determine the optimized structures
and the minimum energy paths for a large-sized system on an ai QM/MM potential energy surface.
However, this still requires arduous computations.

To further reduce the computational expense, Jorgensen et al. used semi-empirical methods such
as AM1 and PDDG/PM3 in the free energy calculations of these DA reactions [6–8], followed by some
high-level correction to the stationary points in the reaction path including the reactant, the product
and the transition state (TS) [7]. They found that the solvent-sensitivity originated from a significant
nonhydrophobic component stemming from enhanced polarization of the transition state, which
leads to strengthened hydrogen bonds [6,7,22,23]. They also found that the DA reaction between
CP and ACR was an asynchronous and concerted process [4], while that between CP and NAP has
a synchronous and concerted feature [6,7]. This observation was evidenced in a two-dimensional
free energy landscape for these DA reactions, and a one-dimensional reaction coordinate for these
reactions would lead to potential artifacts and uncertainty in the locations of transition states, which
in the end leads to an ambiguous reaction mechanism [6,7]. Although semi-empirical (SE) QM/MM
calculations have been widely used [12,24–29], unfortunately, these semi-empirical methods may lead
to large errors in the results due to the approximations adopted. Thus, high-level quantum mechanical
methods at ab initio levels are necessary for a reliable depiction of electron redistribution during the
reaction, which can be critical to the energetics such as activation and reaction free energies.

Based on the idea of probability-reweighting, Gao developed a method termed the
dual-Hamiltonian method, also known as the reference-potential method, and applied it in a study
of hydration free energy [30,31]. Utilizing an empirical valence bond (EVB) method [32,33] as the
reference-potential, Warshel et al. developed a dual-Hamiltonian approach for calculating the free
energy (FE) profiles of chemical or enzymatic reactions, from which an ai FE profile can be obtained
with much lower computational expense than a direct approach [26,34–36]. Rod and Ryde calculated
the activation free energy of a methyl transfer reaction in enzyme using the dual-Hamiltonian approach
where the free energy was found to be overestimated [37]. Recently, Jia et al. used the dual-Hamiltonian
approach to calculate the solvation free energies of the molecules in the SAMPL4 competition by an
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alchemical decoupling method, which yielded the globally minimal variance for the QM/MM free
energies [38]. Liu et al. used this dual-Hamiltonian approach to calculate protein–ligand binding
affinity at an ai QM/MM level [39].

In our previous work [40], in the spirit of reference-potential method, a new method termed
MBAR+wTP was proposed to obtain the ai QM/MM FE profiles with much less computational expense.
In this method, a weighted thermodynamic perturbation (wTP) [19] correction is applied to the
semi-empirical profile, which is generated by the Multistate Bennett Acceptance Ratio (MBAR) [41,42]
analysis of the trajectories from umbrella sampling (US) [43]. The raw ai QM/MM FE profile was
then smoothed via Gaussian process regression [44]. This MBAR+wTP method had been validated
by calculating the FE profiles of one quasi-chemical reaction and three chemical reactions in aqueous
solution. The results showed that even if the SE FE profiles deviated from the ai ones by several
kcal/mol in terms of activation free energy and reaction free energy, after the SE-to-ai correction the FE
profiles agree much better with the direct QM/MM simulated ones with errors below 1 kcal/mol.

In this work, we applied the MBAR+wTP method to calculate the FE surfaces of two Diels–Alder
reactions of cyclopentadiene with either acrylonitrile or 1-4-naphthoquinone as mentioned above
and investigated the applicability of this method to the study of reactions with two-dimensional (2D)
reaction coordinates (RC).

2. Methods

2.1. Multistate Bennett Acceptance Ratio and Weighted Thermodynamic Perturbation (MBAR+wTP) Method

In our previous work [40], all the reactions studied were characterized by a one-dimensional
generalized reaction coordinate. It is well-known that the reference-potential method suffers from
numerical difficulty when the reference Hamiltonian and the target Hamiltonian have no significant
overlap in phase space. With the increasing complexity of the molecule, this difficulty becomes more
and more severe, and the applicability of this method is challenged. This work aims to investigate the
applicability of this method to the calculations of the ai FE surfaces of two Diels–Alder reactions with
two-dimensional reaction coordinates.

The two-dimensional reaction coordinate is denoted by η ≡ (η1(x), η2(x)), where η1(x) and
η2(x) are functions of the collective atomic coordinates x. In two-dimensional US simulations [43],
two harmonic restraining potentials W1

i (η1) = 1
2 k1,i(η1 − η1,i)

2 and W2
i (η2) = 1

2 k2,i(η2 − η2,i)
2 are

added to the original potential energy surface U0(x) of the system, where η1,i and η2,i are the target
values of RC, and k1,i and k2,i are the strengths of the restraints on the first and second dimensions,
respectively, in the ith biased window. A set of two-dimensional biased window simulations indexed
by i (i = 1, 2, . . . , S) are carried out with the potential energy surfaces U(b)

i (x) = U0(x) + Wi(η),
where Wi(η) = W1

i (η1) + W2
i (η2) is the restraint potential. The trajectories are then post-processed

using the MBAR method to obtain the unbiased thermodynamic properties on the original potential
energy surface U0(x). The nonlinear equations are solved using the pyMBAR program.

The ensemble average of any physical operator Ô under Hamiltonian H can always be
computed via

〈Ô〉H = ∑
l

ωl
HOl , (1)

where Ol is the value of the operator Ô for configuration l, ωl
H is the normalized weight of this

configuration under HamiltonianH, and the summation is over all the configurations. Strictly speaking,
we should use thermodynamic state instead of Hamiltonian. The ensemble average is also a function of
other macroscopic thermodynamic parameters such as temperature. In this work, the only difference
between two thermodynamic states is the Hamiltonian, while the temperature is kept the same.
Therefore, we use Hamiltonians to differentiate the thermodynamic states. In the reference-potential
method, simulations are carried out under an inexpensive Hamiltonian L, sometimes with biasing
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potential W as, for instance, in umbrella sampling. With the samples harvested in the simulations,
ensemble averages under an expensive Hamiltonian H can be calculated via energy reweighting,
which will be explained in the following. In this way, the expensive sampling under HamiltonianH
is avoided.

Suppose we have carried out an umbrella sampling simulation with S windows in total. For the
ith window, the potential is U(b)

i (x) = UL(x) + Wi(η), with UL(x) being the unbiased potential and
Wi(η) the biasing potential. For the lth configuration from the ith window xi,l , the weight under the
unbiased Hamiltonian L can be written as [40,42]

wL(xi,l) =
e−β[UL(xi,l)− fL]

S
∑

k=1
Nke−β

[
U(b)

k (xi,l)− f (b)k

] , (2)

where f (b)k is the free energy of the biased window k and β is the reciprocal of the thermodynamic

temperature. f (b)k can be obtained by iteratively solving the core equations in the MBAR
method [40–42].

e−β f (b)k =
S

∑
i=1

Ni

∑
l=1

e−β[Wk(xi,l)]

S
∑

t=1
Nte
−β
[
Wt(xi,l)− f (b)t

] . (3)

The numerator eβ fL in Equation (2) is constant for a given Hamiltonian L, which can be canceled
during the normalization. By eliminating UL(x) from both the numerator and denominator in
Equation (2), the unnormalized weight of sample xi,l under the unbiased Hamiltonian L is

w0
L(xi,l) =

1
S
∑

k=1
Nke−β

[
Wk(xi,l)− f (b)k

] , (4)

in which the superscript 0 is added to emphasize that this is the unbiased weight. The unbiased
two-dimensional FE surface, with the reaction coordinate η represented as a vector, can thus be
expressed as

FL(η) =− β−1 ln
S

∑
i=1

Ni

∑
l=1

w0
L(xi,l)δ(η(xi,l)− η), (5)

in which the delta function picks out the samples falling into bin η.
The variance of the estimated free energy difference between bin ηi and bin ηj can be obtained by

δ2∆FL
(
ηij
)
= Θii − 2Θij + Θjj, (6)

where the covariance matrix is obtained from Equation D8 in Ref. [41] by

Θ =

[(
WTW

)−1
−N + 1S+M1T

S+M/N
]−1

, (7)

where N = diag(N1, N2, . . . , NS, 01, 02, . . . , 0M); M is the number of bins; N1, N2, . . . , NS are,
respectively, the number of samples in the 1st, 2nd, . . . , Sth simulation window; N is the total
number of samples collected from all the simulation windows; and W is a matrix with a dimension of
N × (S + M), whose elements are depicted in detail in Ref. [40].

By combining the binned configurations from the two-dimensional US simulations with
U(b)

i (η) = UL(x) + Wi(η) and their weights from the MBAR analysis, the FE surface at an arbitrary
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high level Hamiltonian H can be calculated by wTP. For a certain two-dimensional histogram bin,
the free energy difference between the low-level and the high-level Hamiltonians can be obtained via
weighted TP as

∆F(η) =− 1
β

ln

S
∑

i=1

Ni
∑

l=1
w0
L (xi,l) δ(η(xi,l)− η)e−β[UH(xi,l)−UL(xi,l)]

S
∑

i=1

Ni
∑

l=1
w0
L (xi,l) δ(η(xi,l)− η)

, (8)

where the subscripts H and L denote the high-level and the low-level Hamiltonians, respectively.
Again, the delta function picks out the samples falling into bin η. Because the two-dimensional US
samplings were performed at the low-level Hamiltonian, the FE surface FL(η) corresponding to this
low-level Hamiltonian L can be obtained via Equation (5). Then, the FE surface of the high-level
HamiltonianH can be calculated by

FH(η) = FL(η) + ∆F(η). (9)

It is noted that any physical quantity 〈O(η)〉H at the high-level HamiltonianH can be obtained
via the reweighting method

〈O(η)〉H =

S
∑

i=1

Ni
∑

l=1
O(xi,l)w0

L (xi,l) δ(η(xi,l)− η)e−β[UH(xi,l)−UL(xi,l)]

S
∑

i=1

Ni
∑

l=1
w0
L (xi,l) δ(η(xi,l)− η)e−β[UH(xi,l)−UL(xi,l)]

, (10)

and its variance is computed via

δ2〈O(η)〉H =

S
∑

i=1

Ni
∑

l=1
O2(xi,l)w0

L (xi,l) δ(η(xi,l)− η)e−β[UH(xi,l)−UL(xi,l)]

S
∑

i=1

Ni
∑

l=1
w0
L (xi,l) δ(η(xi,l)− η)e−β[UH(xi,l)−UL(xi,l)]

−


S
∑

i=1

Ni
∑

l=1
O(xi,l)w0

L (xi,l) δ(η(xi,l)− η)e−β[UH(xi,l)−UL(xi,l)]

S
∑

i=1

Ni
∑

l=1
w0
L (xi,l) δ(η(xi,l)− η)e−β[UH(xi,l)−UL(xi,l)]


2

.

(11)

2.2. Gaussian Process Regression for FE Surfaces Smoothing

Following the same way as in our previous work [40], a nearly model-free method called Gaussian
processes regression (GPR) [44] was utilized to smooth the FE surface after the wTP correction,
removing the statistical noise in the wTP correction process as shown in Figure S3. Given a set of
observations {F1, F2, . . . , Fn}, it can be viewed as a single sample from a Gaussian distribution with
n variates. Here, due to the two-dimensional reaction coordinates of the reactions studied in this
work, each variate has two features which can be labeled by vector η. Since the observations are noisy,
each observation F is related to an underlying function f (η) through a Gaussian noise model

F = f (η) +N (0, σ2
n). (12)

Then, the covariance function kernel k was defined using the squared exponential as
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k(η, η
′
) = σ2

f exp

[
−(η− η

′
)2

2l2

]
+ ασ2

nδ(η, η
′
), (13)

where l is the length-scale and σ2
f is the signal variance, δ(η, η

′
) is the Kronecker delta function and σ2

n
is the noise variance, which was set to the reciprocal of the exponential of the reweighting entropy [45]
value (e−S ) corresponding to each observation in this work as done in our previous work [40].
The “hyperparameters” {l, σf , α} are optimized to maximize the likelihood of the observations. For any
point η∗ along the reaction coordinate, the free energy can be calculated, with the existence of n training
data {ηi, f (ηi)}, i = 1, 2, . . . , n, via

F(η∗) = kT
∗K−1(η, η)f(η), (14)

and its variance via
δ2F(η∗) = k(η∗, η∗)− kT

∗K−1(η, η)k∗, (15)

where

K =


k(η1, η1) k(η1, η2) · · · k(η1, ηn)

k(η2, η1) k(η2, η2) · · · k(η2, ηn)
...

...
. . .

...
k(ηn, η1) k(ηn, η2) · · · k(ηn, ηn)

 , (16)

k∗ =
[
k(η∗, η1) k(η∗, η2) · · · k(η∗, ηn)

]T
. (17)

and
f(η) =

[
f (η1) f (η2) . . . f (ηn)

]T
. (18)

Gaussian process regression was performed by using the scikit-learn package [46].

2.3. Locating the Transition State on the Free Energy Surface

The transition state is located on the smoothed free energy surface by satisfying two conditions

∂F
∂ηi

= 0 (19)

and the Hessian ∂2F/∂ηi∂ηj, i, j ∈ {1, 2} has one positive and one negative eigenvalues, where F and
ηi are the free energy and the reaction coordinate, respectively. The gradient and the Hessian were
computed using the finite central-difference method.

2.4. Solvent-Assisted Charge Transfer on the Transition State

The solvent-assisted charge transfer on the transition state can be approximately delineated as
interactions between the transferred charges within the newly formed C–C bonds generating a local
dipole and the electric field on the middle point of the bonds (M1 or M2) contributed from all the
solvent molecules as depicted in Figure 1. The electric field ~E on point j is a sum over the contributions
from all the solvent molecules with atomic partial charge qi by

~Ej = ∑
i

qi(~rj −~ri)∣∣~rj −~ri
∣∣3 , (20)

where~ri is the coordinate of atom i from solvent molecules,~rj is the coordinates of the middle points
of newly formed C-C bonds (M1 or M2) as shown in Figure 1. The projections of the electric fields
along the unit vectors~e1 and~e2, respectively, may facilitate or impede the charge transfer between
the reactants. The ensemble averages of these physical quantities are computed via Equation (10) by
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substituting Ô with the corresponding operators. The interaction between the local dipole moment
and the solvent-generated electric field can be computed via

∆E = −0.5(δq2 − δq1)× lC−C × Ê, (21)

where δq1 and δq2 are the changes of the atomic Mulliken charge from the reactant to the transition
state for C1(or C2) and C3 (or C4), lC−C is the bond length of C1−C3 (or C2−C4), and Ê is the projection
of the solvent-generated electric field along the C1 − C3 (or C2 − C4) bond.

C2

C1

C4

C3

R1 R2

M2

M1

DienophileDiene

e1

e2

Figure 1. The diagram representation of active sites for Diels–Alder reactions in this work, where C1,
C2, C3 and C4 are the four atoms shown in Figure 2, and the remaining atoms in diene are grouped
together as R1, and those in dienophile as R2. The unit vector~e1 points from atom C1 to atom C3 and
the unit vector~e2 points from atom C2 to atom C4. M1 and M2 are the two middle points of C1–C3 and
C2–C4 bonds, on which the solvent electric fields are computed.

2.5. Gibbs Free Energies in Implicit Water Solvent

To save computational cost, implicit solvent model is frequently used during the calculations of
stationary structures, activation free energy and reaction free energy. In this method, instead of an
ensemble of structures, a unique structure is used to represent each of the stationary points (such as
reactant, transition state, and product), thus avoiding expensive sampling in the phase space. Reaction
free energy and activation free energy can be computed under the rigid-rotor/harmonic-oscillator
(RRHO) approximation via frequency analyses for the reactant, transition state and product.
In this work, the calculations were carried out at the same ab initio levels as in explicit solvent
(B3LYP/6-31G(d) or B3LYP-D3/6-31G(d) level), and the integral equation formalism of the polarizable
continuous solvent model (IEF-PCM) was adopted for the solvation effect. In addition, we also chose a
higher level ai method (MP2/6-311 + g(2d,p)/IEF-PCM), which is similar to that used in Ref. [7] by
Jorgensen et al. For the optimization of the transition structures, the option opt = QST3 implemented in
Gaussian 16 [47] was used, which requires three molecular specifications corresponding to the reactant,
the product, and an initial guess for the transition state structure. All the transition state structures are
verified via intrinsic reaction coordinate (IRC) analysis, in which both the reactant and the product can
be identified along the IRC path starting from transition state structure.

2.6. Molecular Dynamics Simulations

Two Diels–Alder reactions of cyclopentadiene with either acrylonitrile or 1-4-naphthoquinone
were studied in this work, which are shown in Figure 2. Only the reactant molecules including
cyclopentadiene and either acrylonitrile or 1-4-naphthoquinone were defined as the semi-empirical
QM (SE QM) or the QM region, and the remaining of the system (including only the water molecules)
were defined as the MM region. A TIP3P water sphere with a radius of 25 Å was added to solvate
the reactive molecules centering on the heavy atom closest to the center-of-mass of the QM regions
and was restrained by a soft half-harmonic potential with a force constant of 10 kcal/mol/Å2 to
prevent evaporation, as done by Thiel et al. [48]. There were 2007 water molecules for the ACR system
and 1996 water molecules for the NAP system. The nonbonded interactions were fully considered
without a truncation and the general AMBER force field [49] was assigned to the solute molecules.



Molecules 2018, 23, 2487 8 of 16

PM6 was used as the low-level Hamiltonian, and B3LYP(-D3)/6-31G(d) was chosen as the high-level
QM Hamiltonian. Here, the electrostatic embedding scheme was used to explicitly take into account
the polarization effect from the MM region on the QM region. The two-dimensional umbrella sampling
simulations were performed at PM6/MM level. The indirect FE surfaces at B3LYP(-D3)/6-31G(d)/MM
level was computed by reweighting from the PM6/MM level.

(a)

(b)

Figure 2. Diels–Alder reactions between: (a) cyclopentadiene and acrylonitrile; and (b) cyclopentadiene
and 1-4-naphthoquinone, where η1 = dC1C3 and η2 = dC2C4 were chosen as the two-dimensional
reaction coordinates.

The endo addition mode for these reactions was chosen, because it corresponds to the preferred
transition state from ab initio calculations [4,7] and experimental stereoselectivity preferences [1,5].
The η1 = dC1C3 and η2 = dC2C4 were chosen as two-dimensional reaction coordinates in both cases.
Two-dimensional umbrella samplings were conducted centering on η ≡ (η1, η2) ranged from 1.50 to
4.00 Å with increments of 0.05 Å for each dimension. The reactant state in both cases was defined
as η1 = 4.00 Å and η2 = 4.00 Å, where the FE surfaces were rather flat in the vicinity. To reduce the
computational cost, only the important region on the FE surface was sampled.

For each two-dimensional US window under the PM6/MM Hamiltonian, the system was
energy-optimized for 500 steps using the steepest decent optimization method followed by 500 steps
of the conjugate gradient method with the solute molecules restrained. Then, the same optimization
procedure continued with the restraint removed. The system was heated up to 298.15 K in 50 ps and
was equilibrated for 100 ps. A 1-ns production molecular dynamics (MD) simulation was performed
for each window. The integration time step was set to 1 fs and the configurations were saved every
1 ps. The temperature was regulated at 298.15 K with the Andersen temperature coupling scheme [50].
Then, single point energies under the PM6/MM and B3LYP/6-31G(d)/MM Hamiltonians for the one
thousand configurations saved in each US simulation were calculated and taken into the TP reweighting
calculations. All the simulations were performed by the AmberTools 17 program package [51], and the
QM/MM calculations were carried out by interfacing with Gaussian 16 package [47].

3. Results and Discussion

In the MBAR+wTP method, there are two key factors that are critical to the reliability of the
results. The first one is the similarity between the Hamiltonians for neighboring windows in the
two-dimensional US. It can be characterized by the overlap of the samples in the phase space, which



Molecules 2018, 23, 2487 9 of 16

can be quantitatively measured by, for instance, the overlap matrix proposed by Klimovich et al. [52].
As shown in Figure S1 in the Supplementary Materials, for both DA reactions, the overlap between
neighboring windows are larger than 0.03, which is the lower-limit suggested by Klimovich et al.
It indicates that the phase space overlap is sufficient for the subsequent MBAR analysis. Therefore, all
the PM6/MM FE surfaces calculated by the MBAR method are statistically reliable. The other factor is
the similarity between the PM6/MM Hamiltonian and the B3LYP/MM Hamiltonian, which determines
the reliability of the weighted TP and can be measured by reweighting entropy [45]. As shown in
Figure S2, overall reweighting entropy values are large enough for yielding reliable results in the
weighted TP calculations. Because of the statistical noise in the wTP correction process, as shown in
Figure S3, Gaussian processes regression (GPR) method [44] was used to smooth the FE surface after
the wTP correction.

3.1. DA Reaction between CP and ACR

As shown in Figure 3, the product state defined by dC1C3 = 1.58 Å and dC2C4 = 1.58 Å is a reference
state with zero free energy and the reactant state is defined with dC1C3 = 4.00 Å and dC2C4 = 4.00 Å.
From the FE surfaces obtained by our method, the transition state can be located at (η1, η2) = (2.41 Å,
1.92 Å) at the PM6/MM level, which is different from (η1, η2) = (2.28 Å, 2.00 Å) at the PM3/MM level
obtained by Jorgensen et al. and indicates stronger asynchronism of this reaction at the PM6/MM level
than that at the PM3/MM level. Meanwhile, the transition state at the B3LYP/MM level is located
at (η1, η2) = (2.49 Å, 2.05 Å), which shows a small difference from that obtained at the PM6/MM
level and also manifests the strong asynchronism of this reaction. As listed in Table 1, Jorgensen and
coworkers showed that the activation free energy for this DA reaction is 34.0 ± 0.5 kcal/mol under
PM3/MM Hamiltonian [7], and 24.7 kcal/mol under AM1/MM Hamiltonian [6]. In the current work,
we found the activation free energy to be 30.9 ± 0.1 kcal/mol under PM6/MM Hamiltonian. These
semi-empirical methods significantly overestimate the activation barrier for this DA reaction, which
has an experimental value of 22.2 kcal/mol [3]. The large deviations in the activation barrier lie in the
limited accuracy of these semi-empirical methods, as pointed out in Ref. [7]. An activation barrier
of 20.5 ± 0.6 kcal/mol is obtained at the B3LYP/MM level via the weighted TP correction from the
PM6/MM free energy landscape, which is much closer to the experimental value of 22.2 kcal/mol [3]
than those semiempirical methods. It is interesting to note that B3LYP/IEF-PCM overestimates
the activation free energy by 8.1 kcal/mol, whereas MP2/IEF-PCM underestimates the activation
free energy by 4.6 kcal/mol. Both of them had worse performance than B3LYP/MM in the explicit
solvent model. In terms of the reaction free energy, the B3LYP/MM method yielded a value of
−15.7 ± 0.6 kcal/mol, which is much closer to the value of −15.8 kcal/mol at the MP2/IEF-PCM
level, compared to −26.2 kcal/mol at the AM1/MM level, −16.7 ± 0.6 kcal/mol at the PM3/MM
level and −17.5 ± 0.1 kcal/mol at the PM6/MM level. Surprisingly, B3LYP/IEF-PCM significantly
underestimates the exothermicity of this reaction, which may come from an inadequate description of
the solvent by the continuous solvent model.

As listed in Table 2, the projection of the solvent electric field on M1 (the midpoint of C1–C3 bond)
has a magnitude of −14.6× 10−4 a.u. at the B3LYP/MM level. This electric field facilitates the charge
transfer and stabilizes the transition state. As listed in Table 3, from the reactant to the transition state,
the charge of C1 atom increases by 0.12e, and that of C3 atom decreases by 0.18e, which generates a
large dipole moment change along this C1–C3 bond. The projection of the solvent electric field has
a magnitude of −19.7× 10−4 a.u. on M2, which is even stronger than that along the C1–C3 bond.
Although this electric field also facilitates the charge transfer from the diene to the dienophile, we
observed an inverse flow of electron from C4 to C2. The charge of C2 atom decreases by 0.02e, and that
of C4 increases by 0.09e, which also generates a dipole moment change along this C2–C4 bond. These
two dipole–electric field interactions stabilize the transition state by about 0.4 kcal/mol in total.
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Figure 3. The free energy surfaces under the PM6/MM Hamiltonian (left) and under the
B3LYP/MM Hamiltonian after Gaussian process regression (right) for Diels–Alder reaction between
cyclopentadiene and acrylonitrile.

Table 1. Activation free energy ∆G‡, reaction free energy ∆G (in kcal/mol) and the structure of the
transition state at 298.15 K for the Diels–Alder reactions between cyclopentadiene and acrylonitrile
(ACR), 1-4-naphthoquinone (NAP).

Dienophile Method ∆G‡ ∆G (η1, η2) a

ACR

PM3/MM b 34.0 ± 0.5 −16.7 ± 0.6 (2.28, 2.00)
AM1/MM c 24.7 −26.2
PM6/MM 30.9 ± 0.1 −17.5 ± 0.1 (2.41, 1.92)

B3LYP/MM 20.5 ± 0.6 −15.7 ± 0.6 (2.49, 2.05)
B3LYP/IEFPCM 30.3 −2.69 (2.54, 2.04)
MP2/IEFPCM 17.6 −15.8 (2.40, 2.18)

Exp. d 22.2

NAP

PM3/MM b 26.0 ± 0.5 −20.1 ± 0.6 (2.25, 2.22)
AM1/MM c 27.6 −4.4
PM6/MM 29.6 ± 0.1 −16.7 ± 0.1 (2.14, 2.18)

B3LYP-D3/MM 14.3 ± 0.7 −11.5 ± 0.7 (2.23, 2.19)
B3LYP-D3/IEFPCM 20.7 −2.62 (2.18, 2.18)

MP2/IEFPCM 6.6 −13.9 (2.26, 2.26)
Exp. e 16.6

a Transition state position in Å; b Ref. [7] by Jorgensen et al. using PDDG/PM3/MM/MC; c Ref. [6] with
one-dimensional reaction coordinate; d Ref. [3] at 303.15 K; e Ref. [2].

Table 2. The projections of electric fields on points M1 and M2, respectively, along unit vectors~e1 and
~e2 (in 10−4 a.u. where 1 a.u. = 51.42 V/Å) for the Diels–Alder reactions between cyclopentadiene and
acrylonitrile (ACR), 1-4-naphthoquinone (NAP).

Dienophile Method Locations Projection of E-Field

ACR B3LYP/MM M1 −14.6 ± 0.3
M2 −19.7 ± 0.4

NAP B3LYP−D3/MM M1 −28.0 ± 0.5
M2 −36.2 ± 0.7
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Table 3. The Mulliken partial charges (in a.u.) of all atoms shown in Figure 2 for the Diels–Alder
reactions between cyclopentadiene and acrylonitrile (ACR), 1-4-naphthoquinone (NAP).

Dienophile Method Atoms Reactant State Transition State Product State

ACR B3LYP/MM

C1 −0.13 −0.01 −0.05
C2 −0.15 −0.17 −0.05
C3 −0.18 −0.36 −0.13
C4 −0.20 −0.11 −0.28
R1 0.29 0.35 0.22
R2 0.38 0.29 0.28

NAP B3LYP−D3/MM

C1 −0.15 −0.06 −0.04
C2 −0.14 −0.04 −0.03
C3 −0.21 −0.26 −0.25
C4 −0.23 −0.26 −0.26
R1 0.30 0.34 0.26
R2 0.44 0.29 0.32

3.2. DA Reaction between CP and NAP

From the FE surfaces, as shown in Figure 4, the transition state can be located at (η1, η2) =

(2.14 Å, 2.18 Å) at the PM6/MM level, which has a slight deviation from (η1, η2) = (2.25 Å, 2.22 Å) at
the PM3/MM level obtained by Jorgensen et al. The transition state is located at (η1, η2) = (2.23 Å,
2.19 Å) at the B3LYP-D3/MM level [53]. These small differences in these two RC come from statistical
noise in the samples. PM3/MM agrees with B3LYP-D3/MM better than PM6/MM does. All the
transition state positions obtained by different methods indicate a symmetrical and synchronous
process of this reaction [7]. As listed in Table 1, the activation free energy for this DA reaction is
26.0 ± 0.5 kcal/mol under the PM3/MM Hamiltonian [7], and 27.6 kcal/mol under the AM1/MM
Hamiltonian [6] according to Jorgensen et al. In contrast, our results was 29.6 ± 0.1 kcal/mol under
the PM6/MM Hamiltonian. Thus, similar to the CP-ACR reaction, all semi-empirical methods
again overestimate the activation barrier for this DA reaction, which has an experimental value
of 16.6 kcal/mol [2]. Encouragingly, an activation barrier of 14.3 ± 0.7 kcal/mol at the B3LYP-D3/MM
level was obtained via weighted TP from the PM6/MM free energy landscape, which is very close to the
experimental value. With IEF-PCM, B3LYP-D3 overestimates the activation free energy by 4.1 kcal/mol,
while MP2 significantly underestimates the activation free energy by 10.0 kcal/mol. In the meantime,
B3LYP-D3/MM gives a reaction free energy of −11.5 ± 0.7 kcal/mol, which is also very close to the
value of −13.9 kcal/mol calculated at the MP2/IEF-PCM level. Those from AM1/MM, PM3/MM
and PM6/MM calculations are −4.4 kcal/mol, −20.1 ± 0.6 kcal/mol, and −16.7 ± 0.1 kcal/mol,
respectively, showing larger deviations. Again, B3LYP-D3/IEF-PCM significantly underestimates the
exothermicity of this reaction.

As listed in Table 2, the projection of the solvent electric field on M1 has a large magnitude of
−28× 10−4 a.u. at the B3LYP-D3/MM level. This electric field facilitates the charge transfer and
stabilizes the transition state. As listed in Table 3, from the reactant to the transition state, the charge
of C1 atom increases by 0.09e, and that of C3 atom decreases by 0.05e. This local dipole moment
stabilizes the transition state by interacting with the solvent-generated electric field. The projection of
the solvent electric field on M2 has a magnitude of −36.2× 10−4 a.u., which is even stronger than that
along the C1–C3 bond. The charge of C2 atom increases by 0.10e, and that of C4 decreases by 0.03e.
This dipole moment also lowers the energy of the transition state in the electrostatic environment
of the solvent molecules. These two dipole–electric field interactions stabilize the transition state by
about 1.1 kcal/mol in total.
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Figure 4. The free energy surfaces under the PM6/MM Hamiltonian (left) and under the
B3LYP-D3/MM Hamiltonian after Gaussian process regression (right) for Diels–Alder reaction between
cyclopentadiene and 1-4-naphthoquinone.

3.3. Computational Expense

The estimated wall-clock time for the computations of the QM/MM FE surfaces at the B3LYP/MM
level are listed in Table 4. For the calculations of the QM/MM FE surfaces via weighted TP, the
wall-clock time includes both the time for generating the SE QM/MM trajectories and the time for
the single-point energy calculations at the B3LYP/MM level. The estimated wall-clock time for a
direct free energy calculation at the B3LYP/MM level is also listed. It can be seen that the calculation
efficiency is enhanced by about 139 and 376 times for CP/ACR and CP/NAP reactions, respectively,
via this indirect free energy calculation utilizing a dual-Hamiltonian approach. Because one out
every 1000 configurations are required for energy calculations at the ab initio level in this approach
(1000 configurations for each 1-ns window in the indirect approach vs. 1,000,000 configurations in
the direct approach), the efficiency enhancement can never exceed 1000. Besides, the computational
cost at the PM6/MM level is non-negligible relative to the B3LYP/MM calculations for such small
systems. It can also be seen that the efficiency enhancement is greater for the larger reaction system
(CP/NAP), because the cost for the low-level sampling becomes less significant relative to that for the
single-point energy evaluations at the ai level for larger molecules. Overall, an enhancement of two
orders of magnitude in efficiency is quite satisfactory.

Table 4. Estimated wall-clock time in a unit of hours for the computations of the QM/MM free energy
surfaces at the B3LYP/6-31G(d) level. Assuming one node with 16 cores of Intel Xeon CPU E5-2660
2.20 GHz was used.

PM6/MM to B3LYP/MM Indirect
Dienophile

Sampling Energy Evaluation Total
Direct B3LYP/MM a

ACR 5762 1459 7221 1,006,041
NAP 5945 3907 9852 3,704,062

a Using the same number of windows as in the semi-empirical simulations, and one 1-ns simulation for each window.

4. Conclusions

For the Diels–Alder reactions in solution, the computation of converged free energy (FE) surfaces
at ab initio (ai) QM/MM level is still far from being affordable. In this work, we applied our recently
proposed MBAR+wTP method to calculate the two-dimensional FE surfaces of two Diels–Alder
reactions of cyclopentadiene with either acrylonitrile or 1-4-naphthoquinone at ai QM/MM level
with much less computational expense. Due to some approximation lying in the semi-empirical (SE)
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method, the FE surfaces at SE QM/MM level deviate from experimental values by several kcal/mol in
terms of the activation and the reaction free energies. However, our method can yield the FE profile at
the ai QM/MM level without performing the expensive ai QM/MM MD simulations. Besides the FE
surface, other ensemble-averaged properties such as the amount of charge transferred and the external
electric potential/field are also readily available. The results agree much better with the experimental
measurements than those obtained by other methods for these two Diels–Alder reactions in terms of
the activation free energy. Care must be taken when using implicit solvent models, especially when
calculating the properties of transition state. Further validation of this method to systems of much
higher complexity such as enzymatic reactions will be carried out in future studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/23/10/
2487/s1. Figure S1: The overlap matrix elements at the PM6/MM level for the Diels–Alder reactions
between: (a) cyclopentadiene and acrylonitrile; and (b) cyclopentadiene and 1-4-naphthoquinone.; Figure
S2: The reweighting entropy values in reweighting from the PM6/MM Hamiltonian to the B3LYP(-D3)/MM
Hamiltonian for the Diels–Alder reactions between: (a) cyclopentadiene and acrylonitrile; and (b) cyclopentadiene
and 1-4-naphthoquinone.; Figure S3: The raw free energy surfaces under the B3LYP(-D3)/MM Hamiltonian
for the Diels–Alder reactions between: (a) cyclopentadiene and acrylonitrile; and (b) cyclopentadiene and
1-4-naphthoquinone before Gaussian Process Regression.
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wTP weighted Thermodynamic Perturbation
CP Cyclopentadiene
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NAP 1-4-Naphthoquinone
FEP Free Energy Perturbation
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EVB Empirical Valence Bond
SAMPL Statistical Assessment of the Modeling of Proteins and Ligands
RC Reaction Coordinate
GPR Gaussian Processes Regression
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MP2 2nd-Order Møller–Plesset Perturbation Theory
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