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Abstract 12 

Alzheimer's disease (AD) manifests as a complex systems pathology with intricate interplay among 13 
various genes and biological processes. Traditional differential gene expression (DEG) analysis, while 14 
commonly employed to characterize AD-driven perturbations, does not sufficiently capture the full 15 
spectrum of underlying biological processes. Utilizing single-nucleus RNA-sequencing data from 16 
postmortem brain samples across key regions—middle temporal gyrus, superior frontal gyrus, and 17 
entorhinal cortex—we provide a comprehensive systematic analysis of disrupted processes in AD. We 18 
go beyond the DEG-centric analysis by integrating pathway activity analysis with weighted gene co-19 
expression patterns to comprehensively map gene interconnectivity, identifying region- and cell-type-20 
specific drivers of biological processes associated with AD. Our analysis reveals profound modular 21 
heterogeneity in neurons and glia as well as extensive AD-related functional disruptions. Co-expression 22 
networks highlighted the extended involvement of astrocytes and microglia in biological processes 23 
beyond neuroinflammation, such as calcium homeostasis, glutamate regulation, lipid metabolism, 24 
vesicle-mediated transport, and TOR signaling. We find limited representation of DEGs within 25 
dysregulated pathways across neurons and glial cells, indicating that differential gene expression alone 26 
may not adequately represent the disease complexity. Further dissection of inferred gene modules 27 
revealed distinct dynamics of hub DEGs in neurons versus glia, highlighting the differential impact of 28 
DEGs on neurons compared to glial cells in driving modular dysregulations underlying perturbed 29 
biological processes. Interestingly, we note an overall downregulation of both astrocyte and microglia 30 
modules in AD across all brain regions, suggesting a prevailing trend of functional repression in glial 31 
cells across these regions. Notable genes, including those of the CALM and HSP90 family genes 32 
emerged as hub genes across neuronal modules in all brain regions, indicating conserved roles as drivers 33 
of synaptic dysfunction in AD. Our findings demonstrate the importance of an integrated, systems-34 
oriented approach combining pathway and network analysis for a comprehensive understanding of the 35 
cell-type-specific roles of genes in AD-related biological processes.  36 
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Alzheimer’s disease (AD) is an increasingly prevalent neurodegenerative disorder with global cases 43 
surpassing 50 million, presenting an urgent need for understanding its complex pathology (1,2). The 44 
etiology of AD is characterized by hallmark molecular and cellular alterations, most notably the 45 
accumulation of senile amyloid-beta (Aβ) plaques and the presence of hyperphosphorylated Tau 46 
neurofibrillary tangles (NFTs) (2–6). Such pathological alterations often trigger neurotoxic cascades, 47 
resulting in synaptic dysfunction, pervasive neuronal loss, and subsequent functional disruption of 48 
neuronal networks (7–11). However, AD perturbations manifest heterogeneously across brain regions 49 
and cell types, contributing to the complexity of its pathology (12,13). Indeed, several lines of evidence 50 
indicate that AD inflicts selective disruptions to biological processes among cellular subpopulations in 51 
different brain regions, revealing a region- and cell-type-dependent susceptibility (14–17). This cellular 52 
and regional diversity in affected mechanisms poses significant challenges in the discovery and 53 
screening of candidate biomarkers and potential therapeutic strategies. 54 

Recent advancements in single-cell/single-nucleus RNA-sequencing (sc/snRNA-seq) present an 55 
opportunity to dissect the molecular basis of AD with unprecedented resolution (18,19). Leveraging 56 
these techniques, numerous studies have identified differential gene expression (DEG) patterns 57 
associated with AD, revealing insights into cellular states and their variations during disease progression 58 
(20–23). For instance, gene expression analysis of cells in the prefrontal cortex revealed that neurons 59 
primarily contain downregulated genes in AD, while glial cells, albeit to a lesser extent, exhibit opposite 60 
directionality (21). Indeed, top DEGs were cell type-specific, highlighting the distinct cell-type-specific 61 
transcriptional responses to AD-associated perturbations. Consistent with this, Grubman et al.(24) 62 
identified upregulated transcription factors in the entorhinal cortex that mediate cell-type-specific state 63 
transitions from control to AD. Similarly, comprehensive transcriptomic evaluations in human and mice 64 
models revealed a unique set of DEGs associated with a disease-associated microglia (DAM) state 65 
(22,23,25). Notably, these studies revealed that the DAM state is marked by downregulation of several 66 
homeostatic genes, recapitulating the notion that cell-type subpopulations can express distinct 67 
transcriptional alterations. Recently, Habib et al. (26) reported an AD-associated astrocyte 68 
subpopulation in the prefrontal cortex and hippocampus, characterized by elevated GFAP levels and 69 
increased expression of genes implicated in amyloid aggregation and inflammation (22,26).  Despite 70 
the detailed transcriptional landscape of AD outlined by these findings, such investigations 71 
predominantly focus on isolated differential gene expressions, lacking an integrated systems-level 72 
understanding of the relationships between these genes and their functions within broader biological 73 
processes. 74 

AD is recognized as a systems disease, where the pathology extends beyond molecular alterations to 75 
encompass complex interactions in gene networks (27,28). The pathological progression and 76 
perturbation of biological processes in AD are not merely driven in isolation by DEGs, but rather by 77 
the complex interplay of a robust sets of genes within biological processes or signaling cascades (29). 78 
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Thus, the collective molecular interactions observed across various cellular processes fundamentally 79 
shape the pathogenesis of AD (30). Gene co-expression network analyses have emerged as critical tools 80 
to capture these interactions, uncovering highly interconnected network of genes in AD and higher order 81 
network structures associated with the pathology. Notably, Morabito et al. (31) utilized this systems-82 
level perspective to identify consensus networks of microglia genes representing classical markers of 83 
homeostatic microglia or known DAM genes, indicating that microglia assume activated states due to 84 
the functional interplay of associated genes. Likewise, Miyoshi et al. (32) demonstrated unique 85 
dysregulation patterns in functional biological units in early sporadic AD, suggesting that dynamic 86 
modular changes in gene expression may play a crucial role in AD progression. These findings 87 
collectively offer a thorough characterization of the systems-level features of the AD brain. However, 88 
since functional perturbation of biological processes arises from the underlying network architecture of 89 
the comprising gene programs, it is still unclear whether and to what extent DEGs play a central role in 90 
the perturbation of these processes or whether they are merely partakers of their associated biological 91 
units (33,34). 92 

In this study, we leverage snRNA-seq data from key regions of postmortem AD brains to conduct a 93 
systems-level analysis of pathway perturbations. Our approach integrates pathway activity analysis with 94 
weighted gene co-expression patterns, providing insights into functional coherence and interplay among 95 
genes involved in perturbed biological processes in AD. To identify the complex systems-level changes 96 
in both neuronal and glial cell populations, we first comprehensively characterize region- and cell-type-97 
specific pathway dysregulation patterns associated with AD. This nuanced approach reveals an 98 
expanded role for astrocytes and microglia in a variety of biological processes than previously 99 
appreciated in neuron-centric models of AD. We also highlight the dysregulation of calcium (Ca2+) 100 
signaling across different cell types and regions, representing an axis of disruption that has been 101 
consistently implicated in AD pathology.  Next, we qualitatively demonstrate that DEGs are not 102 
robustly distributed in the curated set of genes comprising the biological processes (gene programs) 103 
implicated in AD. Finally, we employ a weighted gene co-expression strategy to uncover gene modules 104 
and highly connected hub genes underlying the perturbed gene programs. This approach revealed 105 
distinct dynamics of hub DEGs (hub-DEGs) in neuronal versus glial modules, which suggests that 106 
DEGs exert a more pronounced influence on neurons than on glial cells in driving pathway perturbations 107 
in AD. By offering a comprehensive, systems-driven perspective of AD pathology, our findings refine 108 
the current understanding of the disease and opens new avenues for targeted therapeutic and diagnostic 109 
strategies. 110 

 111 

Methods 112 
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Study Design and Data Acquisition  113 

Here, we leveraged pre-processed snRNA-seq data obtained from two independent studies (20,35) 114 
comprising three different brain regions: Middle Temporal Gyrus (MTG), Superior Frontal Gyrus 115 
(SFG), and Entorhinal Cortex (ETC) (Fig. 1). We reasoned that using samples matched for pathological 116 
status would minimize the technical variation due to data composition and allow for meaningful 117 
comparison across the brain regions. To accomplish this, we selected a cohort of 10 male individuals 118 
form the Gabitto et al. (MTG) (35) study based on their level of AD neuropathologic change (ADNC). 119 
Donors from the Gabitto et al. study (35) were specifically chosen to align with corresponding cases 120 
from the Leng et al. (SFG & ETC) study (20). ADNC stage is evaluated using the robust “ABC” scoring 121 
system, considering the Thal phases (A) to gauge the overall Aβ burden; Braak stage (B) for 122 
neurofibrillary tangles (NFT) load, and neuritic plaque score (C) (36). The combination of A, B, and C 123 
scores are used to categorize individuals into distinct pathological stages, denoted as “Not AD”, “Low”, 124 
“Intermediate” and “High” ADNC stages. It is worth mentioning that accumulation of Aβ plaques and 125 
extent of NFT inclusions have consistently proven to be the most reliable correlates of 126 
neuropathological staging and AD diagnosis (37–39). Consequently, “Intermediate” or “High” AD 127 
neuropathologic stages are typically associated with dementia. To ensure a balanced representation 128 
across ADNC stages, each study cohort comprised four individuals with a “Not AD” descriptor, 129 
representing cognitively healthy controls, while the remaining six were equally distributed among 130 
Low/Intermediate and High ADNC stages, allowing us to capture the cortical-free, early, and late stages 131 
of AD pathology in our analysis (Fig. 1). The pre-processed data (obtained after quality-control 132 
filtering) from (35) contained 154,368 snRNA-seq profiles from the MTG, while a total of 106,136 133 
nuclei (SFG = 63,608 & ETC = 42,528) were obtained from (20) (Fig. 1). Predefined cell-type 134 
annotations were used to restrict analysis to six different cell types: excitatory neurons, inhibitory 135 
neurons, astrocytes, microglia, oligodendrocytes, and oligodendrocyte precursor cells (OPCs).  136 

The overall cohort of 20 male individuals were originally enrolled in the Adult Changes in Thought 137 
(ACT) Study, the University of Washington Alzheimer’s Disease Research Center (ADRC) (35), the 138 
Neurodegenerative Disease Brain Bank (NDBB) at UCSF, or the BBAS from the University of Sao 139 
Paulo (20,40). These individuals were part of a larger cohort previously reported in (20,35). Notably, 140 
brain specimens from the Leng et al. study (20) were obtained from NDBB and BBAS, representing 10 141 
of the male participants from the postmortem cohort used in this study. Brain slices were obtained from 142 
ETC and SFG (Brodmann area 8). All individuals underwent rigorous neuropathological assessments 143 
following established protocols, ensuring that selected brain samples exhibited pronounced AD-type 144 
pathology while excluding non-AD pathologies, such as Lewy body disease, TDP-43 proteinopathies, 145 
primary tauopathies, and cerebrovascular changes. 146 
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 147 
Fig. 1. Schematic overview of study workflow and analytical methods. Sample and nuclei distribution 148 
across pathological and study groups are shown in the left panel, while the right panel illustrates the 149 
bioinformatics pipeline employed for the identification of perturbed gene ontology (GO) biological 150 
processes and their associated gene co-expression networks (Methods), created using BioRender.com. 151 
The workflow begins with computing pseudo-bulked averages of normalized gene expression profiles 152 
for single-cell expression profiles of each cell type (Steps 1 & 2). Subsequently, pathway activity scores 153 
were calculated (Steps 3 & 4), using gene set variation analysis (GSVA) as previously described (41). 154 
Differential pathway activity was then estimated for each pathway-cell type combination, employing a 155 
multivariate linear model (Step 5). Construction of co-expression networks, performed with hdWGCNA 156 
(31) was specifically limited to gene programs comprising perturbed pathways (Steps 6—8). 157 

 158 

The study cohort comprised 10 male participants subjected to snRNA-seq, presenting a diverse 159 
spectrum of Braak stages (ranging from 0 to 6), ADNC categories (comprising Not AD [n=4], Low 160 
[n=3], and High [n=3]), and consistently harboring APOE ε3/ε3 genotypes. The isolation of nuclei was 161 
extensively documented in (20). Briefly, postmortem frozen brain tissue was dounce-homogenized with 162 
the addition of IGEPAL-630, followed by gradient centrifugation for nuclei filtration and purification. 163 
Subsequently, sequencing libraries were constructed utilizing droplet-based snRNA-seq with 10X 164 
Genomics' Chromium Single Cell 3' Reagent Kits v2, targeting a total of 10,000 nuclei per sample. The 165 
resulting sequencing data underwent demultiplexing through Cell Ranger, utilizing a customized pre-166 
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mRNA GRCh38 reference genome designed to accommodate introns. Alignment and gene expression 167 
quantification were performed using cellranger count under default settings.  168 

Brain specimens from the study by Gabitto et al. (35) were obtained from the ACT Study and the UW 169 
ADRC. The study cohort was carefully selected, encompassing a wide spectrum of AD severity while 170 
excluding individuals diagnosed with Frontotemporal Dementia, Frontotemporal Lobar Degeneration, 171 
Down Syndrome, Amyotrophic Lateral Sclerosis, or other degenerative disorders (except Lewy Body 172 
Disease). The cohort consisted of 84 participants aged 65 and above, representing various stages of 173 
Alzheimer's disease severity. Rapid autopsies were conducted to ensure a postmortem interval of less 174 
than 12 hours. Tissue processing involved uniform coronal slicing of one hemisphere, fixed or frozen 175 
slabs, and subsequent processing of Superior and Middle Temporal Gyrus tissue samples. As in (20), 176 
the study rigorously adhered to neuropathological assessments, tissue processing, and 177 
immunohistochemical analyses, providing clinical, cognitive, and demographic data. Specifically, the 178 
study comprised a cohort of 84 ACT/ADRC donors spanning a broad range of ADNC levels and 179 
comorbid pathologies, including Lewy Body Disease, vascular brain injury, and hippocampal sclerosis. 180 
Notably, the cohort tended to skew towards more advanced stages of the disease, with 58% of 181 
participants exhibiting a Braak stage of 5 or higher (Braak Stage: 0 [n=2], 2 [n=4], 3 [n=6], 4 [n=23], 5 182 
[n=34], 6 [n=15]) and 61% having a Thal Phase of 4 or higher (Thal Phase: 0 [n=9], 1 [n=5], 2 [n=7], 183 
3 [n=12], 4 [n=30], 5 [n=21]). Demographically, the cohort displayed a slight female bias (51 females 184 
and 33 males), particularly among donors with high ADNC (Not AD [N=9], Low [n=12], Intermediate 185 
[n=21], High [n=42]). Furthermore, the cohort was characterized by advanced age, with an average age 186 
at death of 88 years, and half of the donors received a clinical diagnosis of dementia. Genetic analysis 187 
revealed the presence of the APOE ε4 genotype, a primary risk factor for AD, in 23 donors, while the 188 
remaining donors possessed ε3 and ε2 alleles in various combinations. Sequencing libraries were 189 
constructed following standard guidelines for 10x Genomics kits. RNA isolation from nuclei was 190 
performed with subsequent evaluation of RNA integrity. The isolated nuclei and high-quality RNA 191 
samples were then employed for snRNA-seq, snATAC-seq, and MERFISH. The selection of 192 
individuals from this study for our work was based on their alignment with corresponding cases from 193 
the participants in (20), considering their level of ADNC. For the present analysis, participants were 194 
stratified based on the ADNC spectrum, encompassing individuals from "Not AD" to various stages of 195 
AD pathology as outlined above.  196 

Data Processing 197 

The processed droplet-based snRNA-seq profiles, amounting to a total of 260,504 profiles, were 198 
obtained from (42,43). Quality control and filtering steps were previously detailed in each study. In 199 
Leng et al. (20), raw gene-barcode matrices were converted into SingleCellExperiment (SCE) objects 200 
in R using DropletUtils. Nuclei from empty droplets or with fewer than 200 UMIs were discarded, 201 
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followed by data merging and normalization based on the strategy in (44).  High-variance genes were 202 
identified for dimensionality reduction using the Seurat package, but as individual origin influenced 203 
results, the scAlign tool was adopted for cross-sample alignment, prioritizing biological over technical 204 
factors. Clusters were mapped to major brain cell types using specific marker genes, with ambiguous 205 
clusters removed, and fine-grained subclustering performed by isolating cells from primary cell types. 206 
In the study Gabitto et al. (35), nuclei gene expression data were mapped to a reference transcriptome 207 
using gene expression and chromatin accessibility profiles, discarding nuclei with fewer than 500 208 
detected genes from upstream of cell type mapping. The filtered nuclei were then classified into classes, 209 
subclasses, and supertypes using scANVI, with predictions evaluated against known marker gene 210 
expressions. Regions with variable expression were examined for potential contamination, and data 211 
were further refined using high-resolution Leiden clustering. Clusters with undesirable metrics were 212 
subsequently flagged and removed to further improve quality. 213 

The samples from the ETC and SFG of autopsied brains generated by Leng et al. (20) is accessible for 214 
download from Synapse.org (42) under the Synapse ID syn21788402. Gabitto et al. (35)  data, generated 215 
from the MTG, was obtained from the Seattle Alzheimer’s Disease (SEA-AD) Brain Cell portal (43,45). 216 
We categorized participants into three distinct groups: 8 individuals with "Not AD" designation served 217 
as cognitively healthy controls, while 12 individuals manifested mild to severe AD-pathology. Out of 218 
these 12 AD-pathology group, 6 participants with "Low" or "Intermediate" ADNC scores are designated 219 
as 'early-pathology' group, whereas the remaining 6 with a "High" ADNC scores are designated as 'late-220 
pathology' group. As reported in the source studies, informed consent was obtained for all participants, 221 
and ethical approvals for the use of human tissues were obtained from the respective institutional review 222 
boards. All post-mortem neuropathological assessments, clinical evaluations, and pathological 223 
grouping are detailed in Supplementary Table 1. 224 

Differential gene expression  225 

Cell type-specific differential gene expression analysis was evaluated using a customized version of the 226 
Libra R package (46) accessible via GitHub. The source package implements 22 unique differential 227 
expression methods that can all be accessed from a singular function call. Given the susceptibility of 228 
cell-based differential expression methods to the drop-out events and overdispersion intrinsic to single-229 
cell data, we mitigated against these limitations by using a method designed specifically for bulk 230 
sequencing data. Specifically, we adopted the DESeq2 (47) routine with the Wald test for differential 231 
expression analysis between the control group and the AD group. To ensure that the analysis accounted 232 
for true biological replication—that is variability at the level of individual objects—unique molecular 233 
identifier (UMI) counts from cells belonging to the same individual and specific cell type were 234 
aggregated to create 'pseudo-bulk' samples. Genes with negligible expression in a given cell type, 235 
indicated by a nonzero detection rate below 10% in the aggregated pseudo-bulk, were precluded from 236 
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further analyses to mitigate false-positive discoveries. Preliminary assessment of the principal 237 
components of these individual-level aggregated gene expression profiles corroborated the decision to 238 
exclude additional covariates, such as age at death and post-mortem interval. Therefore, the pathological 239 
status served as the sole covariate in our differential expression model. Genes were identified as 240 
significantly differentially expressed if they exhibited an absolute log fold change exceeding 0.25 and 241 
a false discovery rate (FDR) below 0.01. The table of p-values and log fold changes for all genes across 242 
all brain regions and cell types is provided in Supplementary Tables 2—4. 243 

Pathway analyses  244 

The compendium of Gene Ontology biological processes (2018 edition) was retrieved from the Mayaan 245 
laboratory repository (48). Certain pathways were renamed to optimize clarity and standard 246 
nomenclature, with specific modifications enumerated in Supplementary Table 5.  247 

Pathway activity scores were computed in accordance with protocols outlined in (49). This method 248 
effectively retrieved cell type-specific signatures, not accounted for by randomly sampled gene set 249 
enrichment analysis (50). In brief, we first computed cell-type-level normalized gene expression 250 
profiles for each individual using the ACTIONet normalization procedure (51). Subsequently, pathway 251 
activity scores were computed as previously implemented in the R package GSVA (version 1.46.0) 252 
(41). GSVA executed with the following parameters: mx.diff=TRUE, kcdf=c("Gaussian"), min.sz=5, 253 
max.sz=500. To minimize the discovery of false positive, gene sets were filtered to exclude genes with 254 
insufficient expression in the designated cell type, defined by a nonzero detection rate less than 10%. 255 
For each pathway and cell type, activity scores were modeled using a multivariate linear regression, 256 
taking the form: activity score ~β0 × pathology.group. No additional covariates were incorporated, as 257 
PCA revealed no significant association with pathological status, thus not accounting for observed 258 
variances in overall gene profiles. The "pathology.group" variable stratifies samples into 'no-pathology,' 259 
'early-pathology,' or 'late-pathology' categories. Linear models were fitted using the lmfit() function, 260 
and corresponding t-statistics were generated through the eBayes() function, both from the Limma R 261 
package (version 3.50.3). Differential expression between the ‘no-pathology’ and ‘AD-pathology’ 262 
groups was estimated by setting the contrast argument as makeContrast = (early + late)/2 – no. 263 
Pathways were identified as significantly differentially expressed based on a nominal p-value cut-off of 264 
0.05 (as depicted in Figure 1). The procedure resulted in the identification of prioritized candidate 265 
pathways across major cell types. Estimates of β0 coefficients, along with additional statistics as 266 
outlined in Figure 1, are comprehensively documented in Supplementary Tables 6—8, including both 267 
nominal p-values and FDR-corrected p-values. 268 

 269 

 270 
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Gene Co-expression Network Analysis 271 

Network construction and module identification 272 

To generate robust gene-gene correlations, we employed hdWGCNA (version 0.2.18) (31), specifically 273 
tailored for single-cell and scRNA-seq data. We first generated a Seurat object (version 4.3.0.1) (52) 274 
using the `SetupForWGCNA` function, setting the “gene_select” parameter to custom. We confined 275 
our analysis to functionally relevant gene programs, extracted from the gene sets comprising the 276 
pathways that were dysregulated (with nominal p-values less than 0.05) in each cell type. Metacells, 277 
which are essentially aggregates of transcriptionally similar cells originating from the same biological 278 
replicate, were constructed using the k-Nearest Neighbors (KNN) algorithm, with default parameters 279 
(k=25, max_shared=10). This step mitigated data sparsity inherent to scRNA-seq data and generated a 280 
metacell gene expression matrix conducive for robust network construction. Subsequently, the optimal 281 
soft power threshold was determined using TestSoftPowers function in a ‘signed’ network, conducting 282 
a parameter sweep over a range of 1 to 30. This specifies the degree to which gene-gene correlations 283 
are scaled in order to reduce the amount of noise present in the correlation matrix and prioritize strong 284 
correlations.  The selected soft power thresholds, demonstrating a fit to the scale-free topology model, 285 
are reported in Supplementary Figures 3—5. Network construction and module detection were 286 
performed using the ConstructNetwork function, which employs the scaled correlations to compute a 287 
topological overlap matrix (TOM), reflecting the network of shared neighbors between genes. Module 288 
dendrograms were visualized using the PlotDendrogram function (Supplementary Figures 6—8).  289 

Module signatures and hub gene identification 290 

To summarize the gene signatures within each module, module eigengenes (ME) were calculated using 291 
the ModuleEigengenes function with default settings. This effectively represents the first principal 292 
components of the subset of the gene expression matrix comprising each module, allowing us to obtain 293 
the module feature genes. The intra-modular connectivity (kME), a metric representing the correlation 294 
of each gene with its ME, was determined using the SignedKME algorithm, essentially determining the 295 
highly connected genes in each module.  296 

Network visualization 297 

For a comprehensive low-dimensional visualization, we applied the RunModuleUMAP function on the 298 
TOM, confining it to the top 5 hub genes per module based on kME values. This resulted in a UMAP 299 
representation where the organization was primarily determined by the hub genes, and only the top 10 300 
hub genes in each module were annotated in the UMAP space. 301 

 302 
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Differential module analysis and functional enrichment 303 

To discern modular differences between control and diseased group in each cell type, a differential 304 
module eigengene analysis was performed using the FindAllMarkers function in Seurat, applying the 305 
Wilcoxon test. Results are depicted in lollipop diagrams, with non-significant modules marked “X” 306 
(nominal P > 0.05). Supplementary Tables 9—11 contains additional statistics for each cell type across 307 
tested brain regions. Furthermore, the overlap of co-expression modules with DEGs or AD-associated 308 
genes from the Open Targets Platform (53), KEGG Alzheimer’s disease pathways (54), and 309 
Harmonizome (55) was calculated using the R package GeneOverlap (version 1.34.0) via Fisher’s exact 310 
test. Finally, functional enrichment analysis was conducted on hdWGCNA modules using the R 311 
package enrichR, focusing on Gene Ontology processes exhibiting differential expression in specific 312 
cell types. 313 

 314 

 315 

 316 

 317 

 318 

 319 

 320 

 321 

 322 

 323 

 324 

 325 
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Results 327 

Cell-type- and region-specific perturbations in molecular processes define the heterogeneous 328 
responses to AD 329 

To comprehensively characterize perturbed molecular processes in AD, we performed differential 330 
pathway activity analysis, leveraging Gene Ontology biological processes (Fig. 1, Methods). To 331 
enhance the sensitivity in detecting subtle changes in pathway activity, we first aggregated gene 332 
expression values into pathway activity scores (Fig. 1, Methods) (49). These scores effectively 333 
summarize the collective gene expression levels within each pathway and improved statistical power 334 
for subsequent analyses. We then examine whether there are qualitative changes in the aggregated 335 
scores due to AD using a multivariate linear model with pathological status as the only covariate. 336 
Preliminary analysis of the principal components of the aggregated expression data revealed that other 337 
covariates, such as age at death and post-mortem interval, are not correlated with biological or technical 338 
variation (Supplementary Fig. 1), and as a result were excluded from the design matrix, ensuring that 339 
the data modeling focused solely on the biologically relevant factors (56). Pathology groups were 340 
defined based on the ADNC levels (Supplementary Table 1, Methods), with individuals categorized as 341 
early-pathology (low or intermediate ADNC) or late-pathology (high ADNC). These two groups 342 
correspond to the pathological progression of AD. early-pathology individuals have discernible amyloid 343 
load coupled with mild neurofibrillary tangles and cognitive deficit. Conversely, the late-pathology 344 
individuals show higher amyloid burden, elevated NFT deposits, pervasive pathology, and pronounced 345 
cognitive impairment (37–39). Both pathology groups were combined in the contrast analysis to assess 346 
differential expression between AD-pathology and control groups (Methods).  347 

Our analysis revealed that AD inflicts a wide range of perturbations in molecular process (P < 0.05) 348 
across the three brain regions (Fig. 2—4), ranging from cell-type-specific alterations, exclusive to a 349 
single cell type (Fig. 2), to broadly dysregulated pathways affecting at least two cell types (Fig 3). 350 
Remarkably, the affected pathways displayed substantial similarity across brain regions, with some 351 
showing consistent directional changes across cell types, while others exhibited complex patterns of 352 
distinct alterations in each cell type (Supplementary Fig. 2; see Supplementary Table 12 for full list of 353 
overlapping pathways).  354 

 355 
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 356 

Figure 2. Cell-type-specific pathway perturbations in AD. (a—c). Heatmaps representing select Gene 357 
Ontology biological processes dysregulated in individual cell types (nominal P < 0.05). Each column 358 
represents data for a particular brain region. Unique alterations denote evidence of pathway alteration 359 
in a single cell type, with red indicating upregulation and blue signifying downregulation. Pathways 360 
discussed in the Article are highlighted in bold text. (d—f), Distribution of up- and down-regulated 361 
pathways across each cell type. Black indicates upregulation and grey indicates downregulation. (g—362 
i), Upset plots displaying the distribution of uniquely perturbed pathways. 363 

 364 

Specifically, in the MTG, cell-type-specific perturbations were particularly evident in excitatory 365 
neurons, manifesting predominantly in dysregulation of synaptic-related processes, including 366 
upregulation of pre- and post-synaptic membrane organization, synaptic vesicle recycling, and Ca2+ -367 
mediated synaptic signaling (Fig. 2a). Conversely, inhibitory neurons in the MTG showed a distinct 368 
pattern of downregulation in processes like excitatory postsynaptic potential, Ca2+ ion transport, and 369 
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cell communication. Additionally, we observed cell-type-specific dysregulations in astrocytes (vesicle-370 
mediated transport, P=0.0149), microglia (inflammatory response, P=0.0003), oligodendrocytes 371 
(nervous system development, P=0.0049), and OPCs (TORC1 signaling, P=0.0001), each 372 
demonstrating unique pathway alterations pertaining to their cellular functions. For instance, astrocytes 373 
exhibited upregulation of endosomal-related vesicle transport, while microglia showed alterations in 374 
protein localization and endoplasmic reticulum stress response (Fig. 2a). Oligodendrocytes were 375 
affected in nervous system development, and OPCs displayed perturbed glycolipid synthesis (Fig. 2a). 376 
However, a considerable number of processes were uniquely altered in specific cell types, highlighting 377 
the highly cell type-specific nature of pathway perturbations in the MTG (Fig. 2g). 378 

Surprisingly, synaptic-related alterations were not exclusive to neurons; Ca2+ ion-dependent exocytosis 379 
was consistently downregulated across neuronal cells, while dysregulated neurotransmitter receptor 380 
transport and internalization were observed in OPCs and inhibitory neurons, among other broadly 381 
dysregulated processes (Fig. 3a). In addition, processes involved in the regulation of Ca2+ ions, voltage-382 
gated Ca2+ channel activity and signaling, as well as myelination, exhibited distinct patterns of 383 
perturbation in excitatory, inhibitory, oligodendrocytes, and OPCs (Fig. 3g). Notably, 60%  (n=333, 384 
P<0.05) and 57% of pathways are downregulated in excitatory and inhibitory neurons (n=355, P<0.05), 385 
respectively. In contrast 58-76% of pathways are upregulated in astrocytes (n=195, P<0.05), microglia 386 
(n=340, P<0.05), oligodendrocytes (n=287, P<0.05), and OPCs (n=199, P<0.05) (Fig. 2d). These 387 
findings together highlight the highly cell type-specific nature of pathway perturbations in the MTG, 388 
suggesting divergent mechanisms between neuronal and glial cells.  389 

We next examined the pathway dysregulation patterns in the SFG and ETC. Similar to findings in the 390 
MTG, we observed a diverse set of AD-induced pathway alterations uniquely or broadly perturbed in 391 
the SFG and ETC (Fig 2&3b,c), further highlighting the heterogeneity of cellular responses to AD 392 
pathology. These include processes like synaptic transmission and membrane organization in neurons, 393 
amyloid beta formation and amyloid precursor protein (APP) catabolism in microglia, astrocytes, and 394 
oligodendrocytes, and axon maintenance processes regulated by OPCs. Interestingly, all cell types in 395 
both SFG and ETC exhibit a strong signature of repression, with 53-80% of pathways showing 396 
downregulation. This consistent alteration pattern across all cell types suggests a more pervasive 397 
disruption of molecular processes in these regions compared to the MTG. Moreover, a significant 398 
proportion of processes (53% in the SFG and 55% in the ETC) were perturbed either in neurons or a 399 
glial cell type, indicating a trend toward broader AD-driven disruption of molecular processes in the 400 
ETC and SFG (Fig 3d—f). Indeed, top differentially expressed pathways relevant to neuronal functions, 401 
such as Ca2+ -mediated signaling,  Ca2+ ion transmembrane transporter activity, synaptic vesicle 402 
endocytosis, synaptic transmission, neuronal synaptic plasticity, and synaptic vesicle recycling, were  403 
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 404 

Figure 3. Broadly dysregulated processes in AD. (a—c). Heatmaps representing select Gene Ontology 405 
biological processes dysregulated in more than one cell type (nominal P < 0.05). Shared alterations 406 
are indicated as evidence of dysregulation in multiple cell types, with red representing upregulation 407 
and blue for downregulation. Pathways discussed in the Article are highlighted in bold text. (d—f), 408 
Upset plots displaying the broadly dysregulated pathways. (g—i), Selected pathways exhibiting 409 
different dysregulation patterns across cell types. 410 

 411 

consistently downregulated across all cell types in the SFG and ETC (Fig 3b,c). These pathways were 412 
predominantly downregulated in neurons, indicating that neuronal dysregulation dominates the AD-413 
driven pathway alterations in the SFG and ETC. Concurrently, the observed changes in non-neuronal 414 
cell types appear to be closely associated with these neuronal perturbations.  415 
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To identify consistently perturbed processes across the three brain regions, we assessed the overlap of 416 
differentially perturbed pathways in a cell-type-specific manner (Supplementary Fig. 2; see 417 
Supplementary Table 12 for full list of overlapping pathways). We observed considerable concordance 418 
of altered cellular process across the three brain regions, with particularly notable overlaps between the 419 
SFG and ETC, likely reflective of reduced subject-specific variations. Interestingly, excitatory and 420 
inhibitory neurons showed the most pronounced concordance in disrupted processes (Supplementary 421 
Fig. 2a), with 31 pathways in excitatory neurons and 84 pathways in inhibitory neurons showing 422 
consistent dysregulations across the three regions. Alterations in inhibitory neurons include consistent 423 
downregulation of VGCC activity across all regions, and other key processes like Ca2+ -regulated 424 
signaling and exocytosis, potassium ion (K+) homeostasis, and neurotransmitter receptor maintenance. 425 
Excitatory neurons, on the other hand, consistently expressed disruptions in pathways related to 426 
mitochondrial autophagy and Ca2+-dependent exocytosis, underscoring the role of Ca2+ signaling in 427 
AD-associated cellular perturbations (Supplementary Fig. 2b). In contrast, glial cells exhibited less 428 
overlap in perturbations, with microglia cells, showing the least concordance. This suggests a broader 429 
spectrum of cellular disruptions and region-specific sensitivities to microglial dysregulation in AD. 430 
Among the affected processes were intracellular pH regulation, mitochondrial autophagy, and 431 
neurotransmitter receptor transport (Supplementary Fig. 2b). This variability among glial cells suggests 432 
a more complex and region-specific landscape of glial involvement in AD pathology.  433 

Together, these findings elucidate the complex nature of cellular responses to AD, demonstrating that 434 
the cellular context in which AD manifests leads to markedly divergent molecular perturbations. The 435 
observed cell-type and region-specific perturbations highlight the complexity inherent in the regulatory 436 
landscape comprising the diverse molecular processes following AD pathogenesis.  437 

Unraveling AD-associated pathway alterations at systems level 438 

We next ask whether molecular perturbations at the gene level are well represented in the biological 439 
processes dysregulated in AD. To accomplish this, we estimated cell-specific differences in gene 440 
expression between individuals with AD-pathology and healthy controls (Methods) and evaluated the 441 
enrichment of DEGs in perturbed processes. Surprisingly, our results reveal that only a small proportion 442 
of DEGs across all cell types (Fig. 4a—c) were associated with the gene programs (the curated set of 443 
genes comprising a biological process) implicated in the perturbed pathways earlier reported (Fig. 444 
2&3a—c). Notably, among the three brain regions, excitatory neurons in the ETC displayed the most, 445 
yet still limited representation, with only 16% of the 3,279 gene programs being DEGs (Fig. 4d—f). 446 
Neurons consistently showed the most significant degree of DEG representation with a combined 12% 447 
overlap in the MTG, 13% in the SFG, and 12% in the ETC. In contrast, astrocytes and microglia 448 
demonstrated markedly lower degree of DEG overlap, ranging from 0.5% to 13% across the three 449 
regions. These findings illustrate a sparse and varied representation of DEGs within perturbed 450 
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processes, suggesting that relying solely on DEG analysis may not suffice to capture the full complexity 451 
of AD-related molecular changes.   452 

 453 

Figure 4. DEGs are underrepresented in perturbed gene programs (a—c). Circular heatmaps 454 
illustrating cell-type specific dysregulation pattern of active genes amongst all perturbed pathways 455 
(unique and broad). Yellow and purple strips represent upregulated and downregulated genes 456 
respectively (false discovery rate (FDR) < 0.01 and abs(log2(fold change)>0.25), while grey regions 457 
represent non-DEGs, suggesting sparse presence of DEGs relative to total genes within the gene 458 
programs. (d—f). Table showing number of DEGs in the gene programs comprising perturbed 459 
pathways in each cell type. 460 

 461 

Given the sparse and varied distribution of the DEGs within dysregulated processes, we sought to 462 
understand the extent to which DEGs influence the AD-associated perturbations at a systems-level. To 463 
achieve this, we examined the potential regulatory networks and overarching differences characterizing 464 
pathway disruption in AD across all cell types in these brain regions. We interrogated co-expression 465 
networks individually for each cell type in each brain region (Fig 1, 5—8), identifying groups of genes 466 
(gene modules) with high co-expression, suggesting potential co-regulatory mechanism or convergent 467 
biological functions. Specifically, network construction was confined to gene programs comprising 468 
earlier reported perturbed pathways (Fig. 2,3) enabling a fine-grained exploration of the molecular 469 
phenotypes governing the complex polygenic perturbations characteristic of AD. Traditional co-470 
expression analysis methods developed for bulk transcriptomic data are not well suited to handle the 471 
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inherent sparsity and noise in single-cell data (57,58). As a result, inferred networks are prone to 472 
spurious gene-gene correlations, thereby complicating the extraction of meaningful systems-level 473 
insights (59). To overcome these limitations, we estimate the gene-gene co-expression using 474 
hdWGCNA (31), a framework for co-expression network analysis tailored specifically for scRNA-seq 475 
data. hdWGCNA accounts for these considerations by aggregating highly similar cells into "metacells", 476 
allowing for more accurate co-expression estimations, and facilitating the extraction of meaningful 477 
systems-level insights while preserving cellular diversity. 478 

Neuron-specific co-expression signatures in AD 479 

Using hdWGCNA, we obtained a collection of gene-gene co-expression relationships across neuronal 480 
cells in each brain region (Fig 5&6a—c). Specifically, in the MTG, we identified 6 distinct excitatory 481 
co-expression modules (referred to as EXC-M1 to EXC-M6) (Fig. 5a) and inhibitory modules (INH-482 
M1 to INH-M6) (Fig. 6a). Since functional insights within a co-expression network often stems from a 483 
selected set of nodes possessing high centrality (called hub genes), we reasoned that these hub genes 484 
are likely to play pivotal roles in cellular functions due to their extensive network interactions 485 
(31,60,61).  The network plots highlight the top hub genes within each module, some of which exhibited 486 
differential expression (hDEGs, where h indicates that the gene is both a DEG and a hub gene; see 487 
Supplementary Table 13 for full list of hub genes).  488 

Strikingly, in the MTG, our results show a concentration of downregulated hDEGs in EXC-M1 (Fig. 489 
5a) and INH-M3 (Fig. 6a), primarily associated with cytosolic-localized RNA, such as MT-CO1, MT-490 
ND3, and MT-ATP8. These genes encode essential subunits for oxidative phosphorylation in the 491 
electron transport chain, consistent with previous reports highlighting mitochondrial dysfunction, 492 
oxidative stress, and impaired cellular metabolism as key processes perturbed during AD pathogenesis 493 
(62). Similarly, we identified hDEGs in INH-M4 (Fig. 6a) and EXC-M3 (Fig. 5a), including members 494 
of the calmodulin gene family CALM2 and CALM3, recognized as regulators of intracellular Ca2+ 495 
signaling, with vital roles in synaptic processes. Previous studies have linked these hub genes to AD 496 
(Liu et al., 2020; Morabito et al., 2020; Wang et al., 2010), further substantiating the central role of Ca2+ 497 
signaling dysregulation in hippocampal AD pathogenesis, in accordance with the  Ca2+ hypothesis of 498 
AD (63,66). 499 

Furthermore, additional hDEGs were distributed across three excitatory neuron co-expression modules 500 
(EXC-M2, EXC-M5, EXC-M6) (Fig. 5a). Among these is the upregulated WASF1 in EXC-M5 (Fig. 501 
5a), with a distinct regulatory role in actin assembly. Notably, downregulation of WASF1 has been 502 
linked to substantial reduction of amyloid levels within the hippocampus, indicating a negative feedback 503 
mechanism involving the APP intracellular domain—WASF1 pathway (67). The  504 
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  505 

 506 

Figure 5. Disease-associated gene modules in excitatory neurons using co-expression networks 507 
derived from AD-dysregulated gene programs. (a—c). UMAP plot of the topological overlap matrix 508 
(TOM) illustrating neuronal co-expression networks constructed from genes programs comprising 509 
dysregulated pathways in excitatory neurons in the (a) MTG, (b) SFG, and (c) ETC. Nodes represent 510 
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genes, color-coded by module membership, linked by edges depicting co-expression strength, with node 511 
size reflecting gene eigengene-based connectivity (Methods). Top hub genes are annotated within each 512 
module, with bold labels and directional arrows indicating hub-DEGs (hDEGs) as up- or down-513 
regulated. Network visualization is simplified by edge downsampling for clarity. (d—i). Gene overlap 514 
analysis showing overlap of DEGs (d, f, h) and AD-associated genes (Methods) (e, g, i) with genes 515 
within co-expression modules, using Fisher’s exact test. An “X” indicates nonsignificant overlap (FDR 516 
> 0.05). (j—l). Lollipop plots representing the fold-change of differential expression for Module 517 
Eigengenes (DMEs), with the dot size corresponding to the number of genes in the respective module. 518 
An “X” overlays modules without statistically significant expression changes (FDR > 0.05). (m—o). 519 
Gene Ontology (GO) term enrichment within differentially expressed co-expression modules. Bar plots 520 
illustrate the log-scaled enrichment scores; blue arrows indicate downregulated, and red arrows 521 
indicate upregulated processes. 522 

 523 

upregulated PIAS1 (EXC-M5), a known modulator of striatal transcription and DNA damage repair 524 
during SUMOylation, comprises critical parts of diverse cellular processes associated in 525 
neurodegenerative diseases like Huntington's disease, Parkinson's disease, and AD (68).  Interestingly, 526 
PIAS1 overexpression was found to inhibit several AD marker genes such as NEUROD1, NEUN, 527 
MAPK2, GSAP, MAPT, and APP (69). Likewise, the downregulated ZEB1 expressed in EXC-M6 (Fig. 528 
5a) underscores the role of transcriptional repression in regulating AD-associated correlations between 529 
accessible chromatin peaks and target genes (70). We next interrogated the distribution of DEGs and 530 
known AD-related genes using a comprehensive gene compendium from the Open Targets Platform 531 
(53), KEGG Alzheimer’s disease pathways (54), and Harmonizome (55) (Fig. 5&6d—i). Overlap 532 
analysis of modules in the MTG (Methods) revealed that, while up to 50 DEGs were distributed across 533 
excitatory and inhibitory co-expression modules, only EXC-M3 (Fig. 5a) exhibited significant 534 
enrichment for DEGs (Fig. 5d). Notably, three modules—EXC-M3, EXC-M6, and INH-M4—showed 535 
significant enrichment for AD-related genes (Fig. 5&6d,e). These results underscore the module-536 
specific associations of DEGs and AD-related genes, suggesting intricate and dynamic transcriptional 537 
changes within co-expression modules and their potential relevance to AD pathogenesis. Additionally, 538 
we identified several AD-related hub genes distributed across excitatory and inhibitory co-expression 539 
modules (Fig. 5&6a). For instance, hub genes in EXC-M3 (Fig. 5a) included AD-associated genes 540 
HSP90AA1, HSP90AB1 which have been linked to protein misfolding, chaperoning, autophagy, 541 
apoptosis, and stress response—processes central to the dysregulation of protein integrity implicated in 542 
AD pathogenesis (71–73). Likewise, the presence of PPP1R12A in EXC-M5 (Fig. 5a) highlights its 543 
significance in the context of tau hyperphosphorylation and NFT formation, a hallmark of AD (74). 544 
Interestingly, EXC-M2 (Fig. 5a) expressed RORB, a classical marker of selectively susceptible 545 
excitatory neurons (20), while RYR2, expressed in EXC-M6 (Fig. 5a), regulates  Ca2+ homeostasis and 546 
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neuronal activity, which is central to normal cognitive function (75–77). INH-M4 (Fig. 6a) was 547 
enriched with key AD-related genes including GAPDH, CLU, and FTH1, involved in oxidative stress, 548 
amyloidogenesis, elevated cytotoxicity, and iron dysregulation, processes associated with AD 549 
progression. (78–81). Similarly, INH-M6 (Fig. 6a) contained DPP10, known to influence K+ channel 550 
activity and exhibit pronounced reactivity in the vicinity of NFTs and plaque-associated dystrophic 551 
neurites (82).  552 

Next, we compared system-level differences in gene expression between AD and control groups using 553 
differential module eigengene (DME) analysis (Methods) (Fig. 5&6 j—l) (31). DME analysis of MTG 554 
derived neuronal modules revealed marked differences in the magnitude and direction of module 555 
expression from control to AD (Fig. 5&6j) (Wilcoxon rank-sum test Bonferroni-adjusted p <0.05; 556 
Supplementary Tables 9—11). These results suggest that AD-induced alterations in systems-level gene 557 
expression changes reflect either an enhancement of or decline in the functionality of co-regulated gene 558 
networks (83,84). Interestingly, all four down-regulated modules (Fig. 5&6j) (EXC-M3, EXC-M4, 559 
EXC-M5, INH-M4), exclusively comprised downregulated hDEGs (Fig. 5&6a). Conversely, 560 
upregulated modules (Fig. 5&6j) solely contained upregulated hDEGs (Fig. 5&6a), suggesting a pivotal 561 
role for hDEGs in perturbation of co-expression networks that characterize AD-related biological 562 
processes. Unsurprisingly, the downregulated excitatory module, EXC-M1, (Fig. 5j), enriched for 563 
mitochondrial-related hDEGs (Fig. 5a), was distinctively associated with differentially expressed 564 
pathways pivotal for numerous cellular processes and developmental functions (Fig. 5m).  These 565 
include the regulation of development, assembly of the beta-catenin-TCF complex, protein acetylation, 566 
neural tube closure, mitochondrial organization and distribution, TORC1 signaling, chromatin 567 
alterations, protein acylation, and peptidyl-serine phosphorylation (Fig. 5m). Similarly, INH-M3 (Fig. 568 
5a) was associated with genes that contribute to RNA processing, energy synthesis and metabolism, 569 
and protein stability (Fig. 6m) and was upregulated in AD (Fig. 6j). Moreover, other dysregulated 570 
modules (Fig. 5&6i) were found to be enriched for genes associated with a variety of biological 571 
processes crucial for normal neuronal functions, including synapse assembly (EXC-M2 & EXC-M6), 572 
vesicle transport (EXC-M3, EXC-M4, EXC- EXC-M7, EXC-M10, EXC-M13), Ca2+ transmembrane 573 
transport (EXC-M3, INH-M4), and synaptic vesicle exocytosis (INH-M2), which have been previously 574 
implicated in AD pathophysiology (Fig. 5&6m). 575 
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 576 

Figure 6. Disease-associated gene modules in inhibitory neurons using co-expression networks 577 
derived from AD-dysregulated gene programs. (a—c). UMAP plot of the TOM illustrating neuronal 578 
co-expression networks constructed from genes programs comprising dysregulated pathways in 579 
inhibitory neurons in the (a) MTG, (b) SFG, and (c) ETC. Nodes represent genes, color-coded by 580 
module membership, linked by edges depicting co-expression strength, with node size reflecting gene 581 
eigengene-based connectivity (see Methods). Top hub genes are annotated within each module, with 582 
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bold labels and directional arrows indicating hDEGs as up- or down-regulated. Network visualization 583 
is simplified by edge downsampling for clarity. (d—i). Gene overlap analysis showing overlap of DEGs 584 
(d, f, h) and AD-associated genes (Methods) (e, g, i) with genes within co-expression modules, using 585 
Fisher’s exact test. An “X” indicates nonsignificant overlap (FDR > 0.05). (j—l). Lollipop plots 586 
representing the fold-change of DMEs, with the dot size corresponding to the number of genes in the 587 
respective module. An “X” overlays modules without statistically significant expression changes (FDR 588 
> 0.05). (m—o). GO term enrichment within differentially expressed co-expression modules. Bar plots 589 
illustrate the log-scaled enrichment scores; blue arrows indicate downregulated, and red arrows 590 
indicate upregulated processes. 591 

 592 

Co-expression analysis of neuronal cells in the SFG, resulted in a total of 12 excitatory and inhibitory 593 
modules (Fig. 5b&6b). Interestingly, EXC-M1 and M3 were significantly enriched in AD-associated 594 
genes and DEGs (Fig. 5f,g). Consistent with our observations in the MTG, AD-related hDEGs in the 595 
downregulated EXC-M1 (Fig. 5k), include SNAP25, NRGN, THY1, and RTN3, which are implicated 596 
in various processes central to AD pathophysiology, including synaptic neurotransmission, synaptic 597 
plasticity, synaptic signaling, immune response, neuron development, and endoplasmic reticulum (ER) 598 
morphology and function (Fig. 5n). Moreover, EXC-M2, though upregulated in AD (Fig. 5k), was 599 
associated with synaptic function, neuronal development, and signal transduction (Fig. 5n). A hub gene 600 
identified in EXC-M2, PDE4D, has been previously shown to result in abnormalities in the topological 601 
organization of functional brain networks (85). As a phosphodiesterase, PDE4D plays a pivotal role in 602 
regulating cAMP dynamics in neurons and glial cells (86), which ultimately influence memory 603 
formation and neuroinflammation (85,87). We noted GAP43, expressed in EXC-M3, whose elevated 604 
expression is recognized as a marker for tau and amyloid-driven pathologies. GAP43 also has a 605 
significant role in neural cell development, axonal sprouting, and regeneration (88–90). We also found 606 
enrichment of other AD-associated genes that have been prioritized as target genes in AD such as 607 
LINGO1 (EXC-M1)  (91), NRGN (EXC-M1) (92), ADGRB3 (EXC-M2) (93), and RTN4 (EXC-M3) 608 
(94). This supports the notion that hub genes in these co-expression modules of the SFG are indicative 609 
markers of pathway dysregulation in excitatory cells in AD.  610 

A total of 6 inhibitory modules were significantly enriched for DEGs or AD-related genes (Fig. 6f,g). 611 
In contrast to our observation in excitatory cells (Fig. 5f,g), none of these modules displayed 612 
simultaneous enrichment for both DEGs and AD-related genes (Fig. 6f,g). We observed a consistent 613 
pattern—either upregulation or downregulation—in the directionality of the hDEGs within their 614 
respective modules (INH-M1, INH-M2, INH-M4, INH-M6, INH-M8, and INH-M9) (Fig 6b). 615 
Surprisingly, and contrary to observations in the MTG (Fig. 5&6a), all hDEGs in both excitatory and 616 
inhibitory networks were counter-directional to the differentially expressed module eigengenes (DMEs) 617 
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(Fig. 5&6b). This finding emphasizes the central role of hDEGs in the dysregulation of co-expression 618 
networks within AD-related pathways and suggests a robust region-specific association between 619 
hDEGs and module dysregulation. Notably, upregulated hDEGs such as SNAP25 and DNM1 in the 620 
INH-M2 (Fig. 6b), play critical roles in regulating synaptic vesicle fusion and recycling (95,96). Also, 621 
PKM, which is upregulated in INH-M1 (Fig. 6b) and is involved in glycolysis, is associated with 622 
aberration role in the regulation of metabolism and synaptic function in AD (Fig. 6n) (97–99). 623 
Moreover, the presence of upregulated PSAP in INH-M1 (Fig. 6b), underscores its role in lysosomal 624 
catabolism of glycosphingolipids (Fig. 6n) (100), and further highlights its significance in lysosomal 625 
dysfunction and neuronal survival in AD (101). We also observed enrichment of other key AD-related 626 
hub genes, particularly those regulating synaptic function in INH-M5 and INH-M4 (Fig. 6b,n). These 627 
include DLG1, a hDEG in INH-M4, DLG2, GRIA2, NLGN1, and NRXN1, in INH-M5 (102). Similar 628 
to the enrichment of RNA processing observed in EXC-M3, we detected a significant presence of 629 
ribosomal related genes in INH-M6, notably the downregulated hDEGs RPL6 and RPL10 (Fig. 6b,n). 630 
These genes are critical for protein synthesis and have been linked to regulation of metal ion 631 
homeostasis and cell death in AD (102–104).  632 

Interestingly, we observed a recurring theme in the neuronal co-expression networks in the ETC (Fig. 633 
5&6c). hDEGs identified in the SFG, including SNAP25, DNM1, CHN1, and DNM1 were also found 634 
to be hDEGs in EXC-M1 and INH-M1 in the ETC (Fig. 5&6c). In the same vein, all hDEGs across 635 
EXC-M1 and INH-M1 exhibited opposing directionality compared to the DMEs (Fig. 5&6c,l). 636 
Additionally, other AD-related hub genes were found to be shared across excitatory modules in both 637 
brain regions (Fig. 5b,c). These genes, including GRIN2A, NLGN1, NRXN1, and SLC6A1, play 638 
critical roles in synaptic formation, function, signaling, and plasticity. Notably, the heat shock protein 639 
HSP90AB1, essential for protein folding, was also identified as an AD-related hub gene shared among 640 
the excitatory modules. Similarly, we identified shared inhibitory hub genes with relevance to AD, such 641 
as CALM1, HSP90AA1, PDE4D, NRXN1, and RTN3. These genes assume particular significance in 642 
the perturbation of biological processes in AD due to their involvement in  Ca2+ signaling, tau pathology, 643 
synaptic function, cAMP modulation, protein aggregation, and neurotransmission. Furthermore, 644 
analysis of DME patterns across the three brain regions revealed a unique relationship between gene 645 
co-expression modules and associated pathways (Fig. 5&6j—o). Remarkably, dysregulated modules 646 
exhibited a predominant enrichment for pathways perturbed in a specific direction. For instance, across 647 
excitatory and inhibitory modules in the ETC, the top enriched pathways were either consistently 648 
downregulated (EXC-M1, EXC-M3, and INH-M1), consistently upregulated (EXC-M2 and INH-M2), 649 
or predominantly downregulated (EXC-M5) (Fig. 5&6o). Interestingly, while certain DMEs displayed 650 
opposing dysregulation patterns relative to their corresponding enriched pathways, others demonstrated 651 
concordant dysregulation with enriched processes (Fig. 5&6j—o).   652 
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Taken together, these findings highlight the centrality of hDEGs and other AD-associated hub genes in 653 
orchestrating neuronal perturbations underlying the biological processes disrupted in AD. Hub genes 654 
identified within these networks shed light on the mechanisms of synaptic function, protein folding, and 655 
signaling that are significantly perturbed in neurons in AD. Furthermore, the alignment between 656 
dysregulated modules, enriched pathways, and hDEGs reinforces the notion of AD as a systems disease, 657 
characterized by tightly linked alterations in gene networks and their associated functional pathways.  658 

Glial-specific co-expression signatures in AD 659 

To conceptualize the AD-driven systems-level perturbations in glial cells, we next probed the astrocyte 660 
(AST-M) and microglia (MIC-M) co-expression modules (Fig. 7&8). Contrary to the previously 661 
characterized neuronal co-expression patterns in the MTG (Fig. 5&6d,e), we observe that only one glial 662 
module, MIC-M5 (Fig. 8a), displayed significant enrichment for DEGs, and notably, was the only 663 
module containing hDEGs (Fig. 7a,b,c,f,g,h). This suggests a potentially limited role of DEGs in 664 
orchestrating systems-level differences in glial cells. While all astrocyte and microglia modules that 665 
displayed significant dysregulation in AD (Fig. 7&8j), contain AD-related hub genes (Fig. 7&8a), only 666 
AST-M3 and AST-M1 were predominantly enriched for AD-associated genes (Fig. 7e). Specifically, 667 
AST-M1, upregulated in AD (Fig. 7i), contained critical hub genes such as the glial high-affinity 668 
glutamate transporter, SLC1A2, a gene linked to altered glutamate homeostasis in AD and fundamental 669 
for preventing excitotoxicity in astrocytes and neurons (105,106); SLC4A4, a key regulator of neuronal 670 
pH homeostasis; and others including GPM6A, STXBP5, CACNB2, and ERBB4, which play roles in 671 
neurodevelopment, synaptic function and plasticity (107–111). Furthermore, AST-M2, which was 672 
upregulated in AD, contained hub genes linked to processes such as intracellular protein recycling 673 
(RAB11FIP3), immune response regulation, neuronal development, synaptic plasticity (IL1RAPL1, 674 
PTPRD), synaptic vesicle release (RIMS2, SYT1), and  Ca2+ signaling (RYR2) (Fig. 7a). Conversely, 675 
the downregulated astrocyte module M3 (Fig. 7j) was enriched for stress-response genes including heat-676 
shock genes (HSPA1A, HSPA1B), and genes critical for extracellular matrix organization and cellular 677 
adhesion (VCAN, CD44) (Fig. 7a). 678 

Remarkably, hub genes in MIC-M2 included classical markers of DAM, such as APOE, B2M, CST3, 679 
and CD81, along with genes involved in RNA and ribosomal processing (RPS27A, RPS15, RPS19, and 680 
RPS28) (Fig. 8a). This supports the notion that system-level upregulation observed in MIC-M2 is linked 681 
to the dysregulated immune response and activation of phagocytic states in microglia. Indeed MIC-M2 682 
displayed enrichment for processes related to microglial inflammatory activation, including pathways  683 
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 684 

Figure 7. Disease-associated gene modules in astrocytes using co-expression networks derived from 685 
AD-dysregulated gene programs. (a—c). UMAP plot of the TOM illustrating glial co-expression 686 
networks constructed from genes programs comprising dysregulated pathways in astrocytes in the (a) 687 
MTG, (b) SFG, and (c) ETC. Nodes represent genes, color-coded by module membership, linked by 688 
edges depicting co-expression strength, with node size reflecting gene eigengene-based connectivity 689 
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(see Methods). Top hub genes are annotated within each module, with bold labels and directional 690 
arrows indicating hDEGs as up- or down-regulated. Network visualization is simplified by edge 691 
downsampling for clarity. (d—i). Gene overlap analysis showing overlap of DEGs (d, f, h) and AD-692 
associated genes (Methods) (e, g, i) with genes within co-expression modules, using Fisher’s exact test. 693 
An “X” indicates nonsignificant overlap (FDR > 0.05). (j—l). Lollipop plots representing the fold-694 
change of DMEs, with the dot size corresponding to the number of genes in the respective module. An 695 
“X” overlays modules without statistically significant expression changes (FDR > 0.05). (m—o). GO 696 
term enrichment within differentially expressed co-expression modules. Bar plots illustrate the log-697 
scaled enrichment scores; blue arrows indicate downregulated, and red arrows indicate upregulated 698 
processes. 699 

like I−kappaB kinase/NF−kappaB signaling, ER stress response regulation, and ER−induced apoptotic 700 
signaling, along with modulation of adenylate cyclase activity and mitochondria autophagy (Fig. 8m). 701 
Similarly, hub genes in MIC-M5 were primarily associated with lipid processing and immune response 702 
(Fig. 8a). These included genes such as GPNMB, LRRK2, MITF, ABCA1, STARD13, ZBTB16, and 703 
PRKAG2. Notably, GPNMB, a critical regulator of microglial activation and neuroinflammation, has 704 
been demonstrated to stimulate the production of pro-inflammatory cytokines, thus contributing to the 705 
inflammatory cascade observed in AD (112–115). Further reinforcing the activated state of microglia, 706 
MIC-M4 contained critical hub genes like PICALM, which governs clathrin-mediated endocytosis and 707 
is fundamental to Aβ clearance (116,117); DOKC2, a key regulator of Rho GTPase activation, which 708 
are essential components in immune cell trafficking and microglial mobility (118,119); and TAB2, a 709 
multi-functional adaptor protein involved in multiple cellular stress response pathways including TGF-710 
beta and NF-kappaB signaling. Conversely, MIC-M3 and MIC-M1 were significantly downregulated 711 
(Fig. 8j) in AD and contained hub genes involved with protein folding, stress response, intracellular 712 
signaling, signal transduction, and synaptic function (Fig. 8a,m). Particularly, NLGN1 in MIC-M1, 713 
which is critical for the formation and maintenance of synapses, emphasizes the role of microglia in 714 
synaptic pruning and modulating neuronal connectivity. Additionally, the presence of RYR2 and 715 
PLCB1 in MIC-M1 suggests a crucial role for Ca2+ -mediated signaling pathways in modulating 716 
neuroinflammation and phagocytic activity of microglia. 717 

Co-expression analysis of astrocyte and microglial gene programs in the SFG revealed 6 distinct 718 
modules (Fig. 7&8a). Strikingly, DME analysis revealed that all astrocyte and microglia modules are 719 
downregulated in AD (Fig. 7&8k), consistent with the predominant pattern of pathway downregulation 720 
observed in SFG (Fig. 2e). 721 
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 722 

Figure 8. Disease-associated gene modules in microglia using co-expression networks derived from 723 
AD-dysregulated gene programs. (a—c). UMAP plot of the TOM illustrating glial co-expression 724 
networks constructed from genes programs comprising dysregulated pathways in microglia in the (a) 725 
MTG, (b) SFG, and (c) ETC. Nodes represent genes, color-coded by module membership, linked by 726 
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edges depicting co-expression strength, with node size reflecting gene eigengene-based connectivity 727 
(Methods). Top hub genes are annotated within each module, with bold labels and directional arrows 728 
indicating hDEGs as up- or down-regulated. Network visualization is simplified by edge downsampling 729 
for clarity. (d—i). Gene overlap analysis showing overlap of DEGs (d, f, h) and AD-associated genes 730 
(Methods) (e, g, i) with genes within co-expression modules, using Fisher’s exact test. An “X” indicates 731 
nonsignificant overlap (FDR > 0.05). (j—l). GO term enrichment within differentially expressed co-732 
expression modules. Bar plots illustrate the log-scaled enrichment scores; blue arrows indicate 733 
downregulated, and red arrows indicate upregulated processes. (m—o). Lollipop plots representing the 734 
fold-change of DMEs, with the dot size corresponding to the number of genes in the respective module. 735 
An “X” overlays modules without statistically significant expression changes (FDR > 0.05). 736 

 737 

This reinforces the link between gene co-expression networks and the orchestration of functional 738 
perturbations of biological processes in AD. Surprisingly, AST-M2 emerged as the only module 739 
exhibiting significant enrichment for AD-associated genes and DEGs (Fig. 7&8f,g), implying a critical 740 
role for AST-M2 in orchestrating astrocytic function in the context of AD. Specifically, AST-M2 741 
contained several AD-associated hub genes with distinct functional relevance. For instance, SYT1, a 742 
key regulator of synaptic vesicle exocytosis and neurotransmitter release (120), and LINGO1 associated 743 
with the perturbation of neural growth and AD-associated myelination defects in AD (91), are hub genes 744 
in AST-M2. In addition, ATP1A2, a gene essential for astrocytic regulation of neuronal excitability via 745 
the maintenance of \  K+ and Na+ homeostasis (121), was also identified as a hub gene in this module. 746 
Other hub genes included GLUL, essential for astrocytic clearance of synaptic glutamate (122), and 747 
PSAP, an upregulated hDEG, implicated in dysregulation of lysosomal function and lipid metabolism 748 
in AD (101,123). Notably, classical markers of reactive disease associate astrocytes (DAA), CST3 and 749 
CLU, were also hub genes in AST-M2, known for their involvement in the clearance and accumulation 750 
of Aβ (26). Indeed, GO term enrichment revealed a robust array of biological processes governed by 751 
AST-M2, including maintenance of synaptic plasticity, signaling cascades, neuronal growth and repair, 752 
intercellular communication, and Aβ aggregation and clearance (Fig. 7n). This spectrum of functions 753 
effectively contextualizes the role of AST-M2 in the astrocyte-mediated maintenance of synaptic 754 
function and overall neuronal health, thus highlighting the integral role of neuron-glial crosstalk in the 755 
perturbation of the functional dynamics underpinning AD-related processes (124–126). We also found 756 
enrichment of genes associated with synaptic organization, cellular communication, energy 757 
metabolism, and development of neural structures in AST-M1 and AST-M3 (Fig. 7b). Indeed, hub 758 
genes in these modules play crucial roles in AD-associated process, including FYN in AST-M3, 759 
implicated in abnormal phosphorylation of tau protein and mediation of Aβ toxicity (127,128). 760 
Additionally, MAPK10, a hub gene in AST-M1, is essential for signaling pathways that regulate various 761 
cellular processes, including synaptic plasticity, neuronal survival, and apoptosis (129–131). 762 
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Consistent with our findings in the MTG, the microglial networks in the SFG also contained hub genes 763 
involved in a variety of processes relevant to both AD and microglial activation (Fig. 8b). Hub genes 764 
in MIC-M1 included SPP1, NAIP, LINGO1, LRP4, TBC1D5, reflecting the enrichment for immune 765 
response, synaptic maintenance, and overall neuronal function (Fig. 8b,n). Notably, SPP in MIC-M1 is 766 
integral for the regulation of phagocytic markers, thus playing a vital role in synaptic engulfment in the 767 
presence of Aβ (132). Also involved in the regulation of autophagy is TBC1D5, a hub gene in MIC-768 
M1, functioning as a molecular switch for membrane trafficking between endosomal and 769 
autophagosomal pathways (133). MIC-M2 featured hub genes SORL1 and B2M, both implicated in a 770 
variety of AD-related processes such as trafficking of APP and resultant amyloidosis in AD (134–138). 771 
These genes further underscore the role of endolysosomal—autophagic network in regulating 772 
microglial activation (139). Additionally, MIC-M3 displayed enrichment for processes including 773 
synaptic assembly and axon development, consistent with the presence of hub genes MBP, PLP1, and 774 
PTPRD. This observation also underscores the notion that microglia, while often characterized 775 
primarily by their role in immune response in AD, also engage an array of processes vital for 776 
maintaining neuronal integrity, such as neural development, synaptic organization, myelin formation 777 
and maintenance. 778 

Glial co-expression patterns in ETC are similar to those observed in the SFG (Fig. 7&8c). Remarkably, 779 
all astrocytic and microglial modules in the ETC exhibited downregulation in AD (Fig. 7&8l) and were 780 
mostly enriched for downregulated pathways (Fig. 7&8o), reinforcing the prevailing theme of pathway 781 
downregulation witnessed in the ETC (Fig. 2e). AST-M1 in the ETC exhibited considerable 782 
concordance with AST-M2 in the SFG, with hub genes CLU, CST3, and APOE, reflecting the DAA 783 
signature (Fig. 7c). However, no microglia module showed significant enrichment for hub genes 784 
signaling activated microglia state (Fig. 8c). AST-M1 remained the only module demonstrating 785 
significant enrichment for both DEGs and AD-related genes (Fig. 7h,i). Consistent with previous 786 
observation in the SFG, this highlights a pivotal role for the observed co-expression patterns in 787 
regulating astrocytic functions in the context of AD. Additional astrocyte hub genes in  the ETC, 788 
including NRXN1, CADM1, MACF1, MAGI2, LRP4, GJA1 and ADGRL3, have been identified as 789 
markers of a reactive astrocyte state, implicating them in amyloidosis, regulation of neuroinflammation, 790 
cellular interactions (Dai et al., 2023). Notably, cellular adhesion hub genes, CADMI and NRXN1, have 791 
been previously noted as critical for maintaining the synaptic integrity and are hypothesized to 792 
contribute to excitotoxicity by impairing the function of reactive astrocytes in the regulation of 793 
extracellular ion balance, pH, and glutamate concentration (141–143). We also identified a compelling 794 
cross-regional consistency with the identification of shared hub genes—ANK2, ATP1A2, CLU, CST3, 795 
ERBB4, FMN2, GPM6A, LINGO1, LRP4, MACF1, MAGI2, SLC26A3, and SORBS1—between the 796 
ETC and SFG modules (Fig. 7b,c). Given the data for both regions were obtained from the same cohort, 797 
these hub genes emerge as potential brain-wide markers for astrocytic reactivity in AD. Likewise, 798 
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shared microglia hub genes include CHST11, FKBP5, GNAQ, ITPR2, LINGO1, MEF2A, MEF2C, 799 
NAV3, and TBC1D5 (Fig. 8b,c), revealing complex interplay of functional involvements, including 800 
extracellular matrix modification, G-protein signaling, and intracellular  Ca2+ regulation. 801 

These results provide a robust systems-level perspective on the functional diversity within astrocyte 802 
and microglial modules in AD. We identified specific modules in these glial cell types that exhibit 803 
perturbations and are enriched for glial-specific processes and hub genes, yet notably did not 804 
prominently feature hDEGs. This suggests that the pathophysiological mechanisms in astrocyte and 805 
microglia may rely more on the dysregulation of gene networks and associated pathways rather than 806 
isolated gene perturbations. For instance, microglial modules, such as MIC-M2 and MIC-M4 in the 807 
MTG, primarily feature non-DEGs linked to DAM activation and microglial inflammatory responses. 808 
This is complimented by the functional downregulation observed in MIC-M3 and MIC-M1, which, 809 
despite a lack of enrichment for DEGs, feature genes crucial for protein folding, cellular stress response, 810 
and synaptic maintenance. Likewise, astrocyte modules, though not enriched with hub-DEGs, display 811 
a spectrum of AD-related alterations peculiar to astrocytic functions, from glutamate homeostasis to 812 
intracellular protein recycling and stress response. Together, our results offer a robust framework for 813 
appreciating the role of genes in glial alterations associated with AD, extending beyond differential 814 
gene expression profiles to the broader systems-level interplay of gene interactions underpinning AD 815 
pathogenesis. 816 

Conserved molecular drivers underlying pathway dysregulation 817 

Our analysis reveals pronounced modular heterogeneity and extensive functional disruptions in neurons 818 
and glia across the brain regions. To further identify potential common drivers directing these pathway 819 
perturbations across regions, we examined recurrent hub genes within each cell type (Supplementary 820 
Table 14). Excitatory neurons showed substantial overlap of hub genes mostly participating in  Ca2+ 821 
regulation, autophagy, proteostasis, cell-cell adhesion, neuronal cell death, and synapse regulation. 822 
Notably, most of these hub genes were non-DEGs in at least one brain region yet are AD-related and 823 
co-expressed in similar modules across all three regions. This further reinforces the notion that 824 
coordinated dysregulation of genes within a module, rather than changes in select individual genes, may 825 
promote pathway perturbations. Particularly, 6 hub genes—ACTB, CALM1, CALM2, GAPDH, 826 
HSP90AB1, and UCHL1—consistently belong to the same module in each brain region. Given their 827 
known roles in Ca2+ signaling, protein homeostasis, and neuronal apoptosis, these genes likely serve as 828 
region-wide orchestrators directing alterations in neuronal pathways fundamental for normal function. 829 
Inhibitory neurons demonstrated comparable overlap of non-differentially expressed hub genes 830 
participating in Ca2+-mediated signaling and synaptic transmission. As with excitatory neurons, the 831 
majority of these hub genes are AD-related and co-expressed in the same module, including CALM1, 832 
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HSP90AA1, PDE4D, and NRXN1. Their function in regulating critical neuronal processes likely 833 
positions them as potential conserved mediators of pathway disruptions. 834 

Among glial cells, microglia exhibited the highest hub gene overlap consisting of GNAQ, MAML3, 835 
MEF2A, MTHFD1L, and TGFBR1. These genes govern an array of processes critical for microglial 836 
activation, including inflammation, immune responses, and signaling cascades, potentially indicating 837 
conserved mechanisms underlying microglial reactivity across brain regions affected in AD. Likewise, 838 
the only overlapping astrocytic hub genes, ERBB4 and GPM6A, assume extensive roles in pathways 839 
related to neuroinflammation and synaptic dysfunction.  840 

Overall, our analysis of recurrent hub genes points to potential conserved orchestrators of pathway 841 
disruptions across brain regions in AD. Experimental validation of these predictions remains vital to 842 
firmly establishing their functional significance. Nonetheless, our multi-region analysis provides a 843 
foundation to guide future investigations into common mechanisms directing AD pathogenesis. 844 

 845 

Discussion 846 

Here, we leverage pathway activity and gene co-expression analyses to delineate the complex, systems-847 
level alterations that characterize AD neuropathology. While scRNA-seq has been pivotal in revealing 848 
the molecular signatures of AD, much emphasis has been placed on differentially expressed genes 849 
without a comprehensive examination of the role and functional interconnectivity among these genes 850 
in biological processes across brain regions and cell types. This limitation largely renders associated 851 
studies insufficient for capturing the complexity of AD as a systems disease. Utilizing snRNA-seq data 852 
profiled from postmortem brain samples of the middle temporal gyrus, superior frontal gyrus, and 853 
entorhinal cortex, we reveal an intricate dynamics of perturbed gene networks underpinning the 854 
pathology in both neuronal and glial cell types. 855 

The pathophysiological landscape of AD is distinctly marked by cellular and regional heterogeneity, as 856 
demonstrated in this study. In the MTG, for instance, AD-induced dysregulations in synaptic functions 857 
were significantly more prevalent in neurons compared to glial cells, corroborating previous findings 858 
that implicate synaptic dysfunction as a key pathological feature of AD (10). Additionally, our 859 
observations of unique pathway dysregulations in glial cells in the MTG contribute to the emerging 860 
discourse on the role of glial cells in mediating synaptic impairment in AD etiology (144–146). In the 861 
SFG and ETC, we detect a broad downregulation of molecular pathways across multiple cell types, 862 
suggesting a more advanced and pervasive pathological state. This is consistent with the known 863 
sequential propagation of AD-related pathology across different brain regions (147,148). Interestingly, 864 
Ca2+ signaling emerged as a shared hub of dysregulation but manifests variably among cell types and 865 
regions, underlining opportunities for cell type- and region-specific interventions. This is of 866 
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considerable interest as  Ca2+ homeostasis is critical for various cellular functions and its disruption has 867 
been considered central to AD pathogenesis (63). We argue that such cellular and regional specificity 868 
could not only serve as unique biomarkers for disease states but may also be exploited for targeted drug 869 
development.  870 

A critical observation in our study is the limited distribution of DEGs among the gene programs 871 
comprising the perturbed pathways. This underscores the limitation and inadequacy of conventional 872 
pathway analyses or DEG-centric approaches in fully elucidating the complex systems-level alterations 873 
characteristic of AD. Thus, our work here expands upon traditional differential expression analyses to 874 
capture intricate interplay within gene co-expression networks. As a result, we delineate AD-related 875 
hub genes within enriched co-expression modules, implicating a range of biological processes from 876 
cellular metabolism to oxidative stress and Ca2+ homeostasis. Such an expansive approach broadens the 877 
spectrum of putative therapeutic targets and underscores the necessity for systems-level intervention 878 
strategies. Importantly, our results demonstrate that AD inflicts a broad spectrum of functional 879 
perturbations of gene co-expression across the three brain regions. This heterogeneity in modular 880 
responses provides compelling evidence that AD represents collective molecular perturbations, 881 
encompassing a spectrum of disruptions across neuronal and glial cells. Notably, we identify distinct 882 
patterns of hub-DEGs in specific modules, with a predominant distribution in both excitatory and 883 
inhibitory modules, but markedly less presence in glial modules. This pattern suggests that while DEGs 884 
have a substantial impact on neuronal cells in the context of AD, their influence on glial cells appears 885 
more limited. Given the propensity of co-expression networks to operate as integrated biological units, 886 
these findings lend support to the hypothesis that DEGs exert a disproportionately significant impact 887 
on neuronal dysfunction vis-à-vis the broader systems-level perturbations characteristic of AD.  888 

Our study revealed a significant degree of functional heterogeneity among identified hDEGs. For 889 
instance, the upregulated hDEGs, WASF1 and PIAS1 are associated with actin assembly and DNA 890 
repair, respectively—mechanisms previously implicated in various neurodegenerative conditions, 891 
including AD (67,68). Additionally, the downregulated ZEB1 points to the role of epigenetic 892 
modifications, like accessible chromatin peaks, in AD pathology (70). We also identified certain 893 
modules particularly enriched for known AD-related genes, highlighting module-specific correlations 894 
with AD-driven pathway alterations. Hub genes in these enriched modules, including HSP90AA1 and 895 
HSP90AB1, GAPDH, CLU, and FTH1, implies a complexity that may signify both causative and 896 
reactive changes in AD pathogenesis. Moreso, our analysis revealed a prominent theme of 897 
mitochondrial dysfunction, underscored by the downregulation of hDEGs such as MT-CO1, MT-ND3, 898 
and MT-ATP8 in neuronal modules. The presence of these hDEGs lends compelling credence to the 899 
hypothesis that aberrations in mitochondrial dysfunction, cellular metabolism, and oxidative stress are 900 
key features of the AD pathological cascade (62). We also observed key hDEGs belonging to the 901 
calmodulin gene family (CALM2 and CALM3) in neuronal modules. Given the well-established role 902 
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of these genes in regulating intracellular Ca2+ signaling, this observation adds a new perspective to the  903 
Ca2+ hypothesis of AD and is consistent with earlier works implicating them in disrupted  Ca2+ signaling 904 
(13,63–66). 905 

Differential module eigengene analysis further reinforced the notion that AD-associated perturbations 906 
result in both upregulation and downregulation of gene modules, consequently affecting a range of 907 
cellular processes. This further illuminates the collective behavior of genes within each module, 908 
emphasizing either an enhancement or decline of the functional output of co-regulated modules in AD. 909 
For instance, in the MTG, the downregulated neuronal modules exclusively comprised downregulated 910 
hDEGs and vice versa, implicating these genes in the system-level disruptions of cellular processes, 911 
which are essential for normal neuronal functions. This exclusive alignment underscores a strong 912 
functional coherence within these modules, suggesting that these hDEGs could be critical regulators in 913 
the onset and progression of AD, likely indicating a coordinated modular response to AD. Remarkably, 914 
our findings show intriguing patterns of interregional consistency and complexity. Across all brain 915 
regions, dysregulated modules exhibited a predominant enrichment for pathways perturbed in a specific 916 
direction. Interestingly, while certain DMEs displayed opposing dysregulation patterns relative to their 917 
corresponding enriched pathways, others demonstrated concordant dysregulation with enriched 918 
processes. Moreover, we observe region-specific counter-directionality of hDEGs in relation to the 919 
DMEs in the SFG versus MTG. 920 

Our analysis of glial co-expression signatures across the brain regions elucidates the complex and 921 
dynamic roles of astrocytes and microglia in AD. We observed that only a single microglial or astrocyte 922 
module in each brain region showed significant enrichment for DEGs and reason that these modules 923 
represent critical functional drivers of pathway dysregulation. Consistent with this, we observed a 924 
significantly reduced number of hDEGs across all glial modules, pointing towards a potentially 925 
diminished role of DEGs in orchestrating glial-associated systems-level differences in AD. Contrary to 926 
extant narratives that largely assign a neuroinflammatory role to glial cells, our data unveil robust 927 
enrichment for AD-related genes involved in a range of biological processes, from synaptic pruning 928 
and stress response to glutamate homeostasis and  Ca2+ signaling. This suggests that alterations in 929 
modular gene expression contribute significantly to the pervasive involvement of glial cells in AD. 930 
Specifically in microglia, we noted the critical role of modules governing dysregulated immune 931 
responses, phagocytic activities, and synaptic function. Such findings underscore the multi-932 
functionality of microglia in AD, highlighting their involvement in preserving neuronal integrity 933 
through synaptic maintenance, myelin formation, and other mechanisms. Additionally, our findings 934 
reveal the critical role of disease-associated glial states in AD pathology. We observed that hub genes 935 
in the AD-enriched glial modules were fundamentally associated with reactive astrocyte and microglia 936 
states, indicating that glial cells assume activated states due to the complex systems-level interactions 937 
among these genes. 938 
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Cross-regional analysis between the MTG, SFG, and ETC, reinforced the theme of overall 939 
downregulation of both astrocytic and microglial modules in AD, indicating a prevailing trend of 940 
functional repression in these glial cells. These observations collectively strengthen the notion of AD 941 
as a systems disease, characterized by tightly linked alterations in gene networks and their associated 942 
functional pathways. We also notably identified shared hub genes across these brain regions, with more 943 
prominent overlap in neurons. These conserved hubs likely orchestrate directing modular dysregulation 944 
and pathway perturbations linked to critical neuronal processes like Ca2+ signaling, proteostasis, 945 
inflammation, and synaptic function. Though not always differentially expressed themselves, their 946 
coordinated behavior within modules may underpin consistent pathway disruptions in AD. Glial cells 947 
express more limited overlap, but shared genes govern diverse glial activation-related processes, 948 
potentially serving as brain-wide markers for astrocytic or microglial reactivity for disease diagnostics 949 
or targeted therapeutic interventions. Nevertheless, experimental validation remains essential to confirm 950 
the role of these putative hub genes as conserved, causal drivers of AD pathogenesis. In summary, 951 
integrated analyses of cell type-specific co-expression modules across multiple affected brain regions 952 
hold significant potential for elucidating key network regulators and pathways that may offer new 953 
therapeutic targets for AD. 954 

 955 

Conclusions 956 

Our study provides a comprehensive systems-level analysis of the pathway perturbations associated 957 
with AD across multiple brain regions and cell types. Leveraging snRNA-seq data, we integrate 958 
pathway activity analysis with WGCNA, revealing profound heterogeneity in the dysregulation of 959 
biological processes in neurons and glia. Synaptic dysfunction and dysregulated Ca2+ signaling 960 
emerging as convergent axes of pathogenesis. Surprisingly, we observe limited overlap between DEGs 961 
and disrupted gene programs, suggesting DEGs alone do not adequately represent the collective 962 
modular alterations driving AD pathology. Indeed, we demonstrate that DEGs have a more pronounced 963 
role in driving modular dysregulation in neurons compared to glial cells. We also identified conserved 964 
hub genes across modules and brain regions which offers potential brain-wide cell-type-specific 965 
therapeutic targets and biomarkers. Overall, these findings underscore the necessity of integrated, 966 
systems-oriented models to fully capture the complexity of molecular interactions underlying AD and 967 
other polygenic systems neurodegenerative disorders.  968 

 969 

 970 

 971 
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