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Single cell RNA sequencing 
reveals ferritin as a key mediator 
of autoimmune pre‑disposition 
in a mouse model of systemic lupus 
erythematosus
Subhi Talal Younes1, Kurt Showmaker2, Ashley C. Johnson2, Michael R. Garrett2 & 
Michael J. Ryan3*

Systemic lupus erythematosus (SLE) is a devastating autoimmune disorder characterized by failure 
of self-tolerance with resultant production of autoreactive antibodies. The etiology of this syndrome 
is complex, involving perturbations in immune cell signaling and development. The NZBWF1 mouse 
spontaneously develops a lupus-like syndrome and has been widely used as a model of SLE for over 
60 years. The NZBWF1 model represents the F1 generation of a cross between New Zealand Black 
(NZB) and New Zealand White (NZW) mice. In order to better understand the factors that contribute 
to the development of autoimmunity, single cell RNA sequencing was conducted using the bone 
marrow from female NZBWF1 mice prior to the development of overt disease. The results were 
contrasted with single cell RNA sequencing results from the two parental strains. The expected 
findings of B cell abundance and upregulation, and evidence of interferon signaling were validated in 
this model. In addition, several novel areas of inquiry were identified. Most notably, the data showed 
a marked upregulation of the ferritin light chain across all cell types in the NZBWF1 mice compared 
to parental controls. This data can serve as a gene expression atlas of all hematopoietic cells in the 
NZBWF1 bone marrow prior to the development of autoimmunity.

Systemic lupus erythematosus (SLE) is a multisystem autoimmune syndrome characterized in part by the produc-
tion of a variety of auto-reactive antibodies1. The etiology of this complex syndrome is multi-factorial, involving 
both genetic susceptibility2 and complex environmental factors3. Consequently, the study of SLE has leveraged 
a variety of similarly multi-factorial model systems4 including mouse strains with polygenic susceptibility to 
autoimmunity5,6. One such strain, the New Zealand Black-White F1 (NZBWF1), is produced by crossing a female 
New Zealand White (NZW) and male New Zealand Black (NZB). The resultant female F1 progeny exhibit an 
SLE-like phenotype characterized by production of anti-double stranded DNA antibodies and nephritis7.

Prior studies in the NZBWF1 model show multiple genetic susceptibility loci which collectively contribute 
to the phenotype6,8. However, the precise mechanisms which contribute to the autoimmune predisposition in 
this strain are not clear. Importantly, the identification of genes that impart susceptibility to autoimmunity in 
NZBWF1 mice led to the discovery of orthologous genes linked to autoimmunity in humans9. Thus, the contin-
ued study of underlying genetic factors contributing to SLE in NZBWF1 mice can lead to a better understanding 
of human SLE. In order to advance this cause, single cell RNA sequencing was conducted using the bone marrow 
from 9 to 10-week-old female NZBWF1 mice and the two parent strains, NZW and NZB. This age was selected 
because it precedes the development of overt autoimmunity. The purpose of this study was to define the genetic 
and cellular landscape of this model’s hematopoietic system prior to the development of any disease phenotype. 
In so doing, several areas of novel inquiry were identified while simultaneously validating its use as a faithful 
small animal model of SLE.
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Methods
Animals.  Seven-to-eight-week-old female New Zealand Black (NZB), New Zealand White (NZW), and New 
Zealand Black-White F1 (NZBWF1) mice (n = 3) were purchased from The Jackson Laboratory, and were deliv-
ered at the same time. Animals were maintained on a 12-h day/night cycle and allowed to feed (standard chow) 
and drink ad libitum until they reached 9–10 weeks of age to conduct the study. Twenty-four hours prior to 
euthanasia, mice were placed in metabolic cages for collection of urine. At approximately 7:00 am, isoflurane 
was administered at a high dose until respirations ceased; cervical dislocation was then performed, and tissues 
were harvested. All studies were reviewed and approved by the University of Mississippi Medical Center Animal 
Care and Use Committee and comply with ARRIVE guidelines. All methods were carried out in accordance with 
relevant guidelines and regulations.

Bone marrow cell collection.  The left and right femurs of the mice were disarticulated and dissected away 
from muscle. Each end of the bone was then clipped. Five milliliters of Hank’s Balanced Salt Solution was flushed 
through each end of the bone using a 30-gauge needle. This solution was passed through a 70-micron filter to 
remove large pieces of debris. The cells were spun down at 200 rcf for five minutes and re-suspended in 1 mL of 
phosphate-buffered saline (PBS) with 0.04% bovine serum albumin. Four milliliters of RBC lysis buffer from BD 
Biosciences (catalog number 555899) was added and the solution was incubated at room temperature for 5 min 
away from light. Cells were centrifuged again at 200 rcf for 5 min and resuspended in 1 mL of PBS with 0.04% 
BSA. The centrifuged cells were washed three times according to the following protocol: centrifuge at 150 rcf for 
3 min, remove the supernatant, resuspend the cells with a wide-bore pipette tip in 1 mL of PBS with 0.04% BSA. 
After the final wash and resuspension, cell concentration and viability was determined using a Bio-Rad TC20 
automated cell counter.

Single cell RNA sequencing.  Bone marrow cells were isolated using the 10 × Genomics Chromium Single 
Cell controller according to the manufacturer’s instructions using the 10 × Chromium Single Cell 3’ v3.1 Reagent 
Kit (10 × Genomics Product Code 1000268) followed by cell lysis, and library preparation including barcoded 
RNA reverse transcription, cDNA amplification, addition of sample index, and Illumina P5/P7 adapters. The 
libraries were sequenced using an Illumina NextSeq 500 instrument. Reads from the NextSeq instrument were 
initially analyzed using the 10 × Genomics Cell Ranger software v3.1. FastQ files were generated, samples de-
multiplexed, and gene counts obtained using the Cell Ranger mkfastq, count, and aggr commands. Resulting 
output tables were then imported into R statistical software for further analysis.

Data analysis.  Data analysis was performed using R and a variety of Bioconductor packages10–30 following 
many of the conventions described by Amezquita and colleagues in the book Orchestrating Single Cell Analysis 
with Bioconductor31. The code associated with this analysis is available on GitHub (https://​github.​com/​styou​nes/​
SLE_​scRNA​seq).

HDF5 (.h5) files for each sample were loaded using the read10xCounts function of the DropletUtils pack-
age. Most of the following downstream analyses were performed using a combination of the scran and scater 
packages. Per cell quality control metrics included total detected unique molecular identifies (UMI), number of 
expressed genes, and the percentage of mitochondrial genes. Cells with less than 1000 total UMIs, less than 500 
unique genes, or greater than 10% expression of mitochondrial genes were removed from the dataset. There was 
no difference in quality of cells among batches or across strains. These metrics exhibited a bimodal distribution 
(Supplementary Fig. 1A) with a clear inflection in between low- and high-quality cells, guiding the selection 
of thresholds. In order to ensure that highly metabolically active cells were not discarded by this approach, the 
total library size (i.e. total UMIs) was plotted against the percentage of mitochondrial genes for each cell (Sup-
plementary Fig. 1B). Given the fact that there were no cells with large library sizes (presumably high-quality 
cells) with concomitant large proportion of mitochondrial genes, it was concluded that this approach did not 
inadvertently discard any metabolically active cell populations. Finally, the enrichment of gene subsets within 
discarded cells was checked and, observing no such enrichment, demonstrated that quality control was not 
discarding a distinct population of cells (Supplementary Fig. 1C). Doublets (droplets which contained two or 
more cells) were identified using a simulated doublet approach whereby artificial doublets are constructed from 
the dataset and cells which lie close to these artificial doublets in high-dimensional space are removed (guilt 
by association), as implemented in the scDblFinder function with the following non-default parameters: nfea-
tures = 750, propRandom = 1.

Gene expression was normalized by pooling counts from related cells and calculating a size factor for each 
pool; cells were then deconvolved into cell-based size factors for normalization of each cell’s expression profile, 
using the functions quickCluster and computeSumfactors as implemented in the scran package. Genes with 
a high variance of expression after applying a correction factor for abundance were selected for use in several 
downstream analyses, most notably, dimensionality reduction. The top 20% of highly variable genes were selected.

Cell types were annotated using a curated set of marker genes garnered from the Cell Marker database (http://​
bio-​bigda​ta.​hrbmu.​edu.​cn/​CellM​arker/) (Supplementary Table 1). Equipped with these gene sets, an assignment 
score for each permutation of cell and cell type was computed using the function AUCell with the following non-
default parameters: aucMaxRank = 750. Diagnostic plots were inspected and score thresholds manually adjusted 
for optimal assignment in our dataset.

Differential gene expression among strains was determined by aggregating cell types across samples using 
the function aggregateAcrossCells implemented in the package edgeR. Samples with less than 10 cells for the 
given cell type were removed. Differential gene expression was computed by the function pseudoBulkDGE 
from the scran package. Briefly, this function loops across cell types and performs differential expression using 

https://github.com/styounes/SLE_scRNAseq
https://github.com/styounes/SLE_scRNAseq
http://bio-bigdata.hrbmu.edu.cn/CellMarker/
http://bio-bigdata.hrbmu.edu.cn/CellMarker/
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Figure 1.   Dimensionality reduction of bone marrow cell gene expression. All plots are of the Uniform Manifold 
Approximation and Projection (UMAP). (A) Colored by assigned cell type. All three major hematopoietic 
lineages are present. (B) Colored by strain of origin for each cell. Note how the NZBWF1 cells often fall in 
between the NZW and NZB strains. (C) Colored by phase of the cell cycle. There is no significant difference in 
cell cycle phases between different strains.
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a quasi-likelihood method as implemented in the package edgeR. For the design matrix NZB-NZBWF1-NZW, 
the coefficients were: − 0.5, 1, − 0.5. Similarly, differential abundance of cell populations was computed using 
quasi-likelihood method with a design matrix and coefficients as above. Phase of the cell cycle for each cell was 
inferred based on the expression of stereotypic cell cycle genes using the package cyclone.

Subclustering.  B-cell subclusters were determined as follows. After appropriate subsetting of the global 
dataset, dimensionality reduction by principal component analysis was repeated. In order to minimize technical 
noise while maximizing identification of true biological differences, clustering was run using a subset of these 
principal components in keeping with the method described by Amezquita et al.30. The number of components 
was determined by first computing the number of clusters vs. the number of principal components used in clus-
tering. Next, the number of principal components which yields no more than PC + 1 clusters was selected, as it 
represents the inflection point between over- and under-clustering. A k-nearest-neighbor approach was applied 
to the dataset as implemented in the function buildSNNGraph in the igraph package (Supplementary Fig. 2A). 
Cluster stability was evaluated based on both cluster modularity and bootstrapping approaches (Supplementary 
Fig. 2B,C). One subcluster (label 1) was removed as this subcluster had a high library size and expressed both 
myeloid and lymphoid markers, suggesting it consisted mostly of doublets. Differential abundance and expres-
sion across B-cell subclusters was determined similar to that described above for other cell types.

Results
A high cell viability was obtained using the aforementioned isolation method, as NZB, NZW, and NZBWF1 mice 
had an average of 88, 94, and 94 percent viability, respectively. After initial quality control, 31,053 cells remained 
for downstream analysis. All three major hematopoietic lineages (immune, erythroid, and megakaryocytic) were 
represented across each individual strain (Fig. 1A,B). Interestingly, the gene expression of some NZBWF1 cell 
types—for example, erythroid and neutrophils—fell precisely in between the two parent strains (Fig. 1B), sug-
gesting that the phenotype of the NZBWF1 strain is contributed to equally by both parent strains. By assessing 
the expression of stereotypic cell cycle genes, the phase of the cell cycle was assigned to each cell in our dataset 
(Fig. 1C). As expected, intermediate cell types (e.g. granulocyte-monocyte progenitors) exhibited progression 
through the cell cycle. There was no significant difference in the number of cells in each phase when compared 
amongst different strains (data not shown).

Next, the identification of any particular cell type exhibiting differential abundance in the NZBWF1 strain as 
compared to the NZB or NZW strain was examined. As shown in Table 1, B-cells and plasma cells from NZBWF1 
mice exhibited an approximate onefold increase in abundance, supporting the key role of auto-antibody produc-
tion in the SLE-like phenotype of this strain. Given this finding, a sub-cluster analysis of this B-cell population 
was conducted in order to discern whether any particular B-cell subtype is enriched in the NZBWF1 strain. 
Based on unsupervised clustering, there were 14 subtypes of B-cells present in the dataset (Fig. 2A). There was 
no significant difference in the abundance of any of these subtypes across strains (Fig. 2B). However, it is pos-
sible that the dataset may not be sufficiently powered to detect significant differences in these sub-populations. 
Similar to results for the entire dataset, NZBWF1 B-cells were not enriched in any given phase of the cell cycle 
when compared to the parent strains (data not shown).

In order to assess gene expression, a pseudo-bulk analysis used to identify genes which were differentially 
expressed in the NZBWF1 as compared to NZB and NZW strains within each cell type. Overall, very few genes 
were differentially expressed (Table 2). For example, in B-cells only 14 genes were significantly upregulated and 
only 3 were downregulated. Thus, the unique auto-immune phenotype of the NZBWF1 strain may be driven 
by relatively small alterations in gene expression as compared to its parent strains. Given the relatively small 

Table 1.   Differential abundance of cell types across strains.

Cell type logFC logCPM F P value

B-cell 0.98817355 17.6832439 17.9897336 0.00122998

Plasma cell 1.27773038 14.113683 11.0312179 0.00703153

Mast cell − 0.4652928 12.7808536 3.31124615 0.0946657

T-cell 0.68143326 14.6009994 3.2124122 0.10125933

Neutrophil − 0.3182438 18.3413162 2.56346925 0.13619568

Erythroid cell − 0.5468718 15.7460808 2.25148264 0.1622982

Granulocyte-monocyte precursor − 0.4410333 15.4648248 1.82167637 0.2048745

Hematopoietic stem cell 0.35080046 12.5860995 1.75501409 0.2107284

Macrophage 0.19599014 15.1284366 0.66806655 0.43017882

Monocyte − 0.1525407 16.8989742 0.34377706 0.56914649

Megakaryocyte − 0.1586588 14.3942908 0.24953066 0.62748041

Unassigned 0.08894057 15.0939569 0.19374589 0.6678987

NK cell 0.1427398 14.3660814 0.18558034 0.67513879

Dendritic cell 0.05500362 16.0549614 0.07041496 0.79538582
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number of genes differentially expressed, gene ontology and reactome analyses failed to identify any significant 
enrichment for gene ontology terms or reactome pathways, respectively.

The specific genes which were differentially expressed were remarkably consistent across all cell types (Fig. 3, 
Table 3, and Supplementary Table 2). Among the most significant genes was Ftl1 and Ftl1-ps1, encoding ferritin 
light polypeptide 1 and ferritin light polypeptide 1 pseudogene 1, respectively. Additional genes which exhibited 
consistent upregulation across multiple cell types were Ifitm2, Apobec3, and Ifi202b, all genes which are regulated 
by the interferon pathway. Ctse, the gene encoding Cathepsin E, a protein involved in MHC class II antigen 
presentation, was also consistently upregulated.

Several genes of cryptic functional significance were similarly upregulated including Tpm3-rs7, Htatip2, and 
Gm42031. Tpm3-rs7 (tropomyosin-related sequence 7) is a heretofore uncharacterized protein with putative 
actin filament binding. Gm42031 is an uncharacterized locus (postulated to be a lncRNA) whose downregula-
tion in macrophages has been previously linked to neuroinflammation32. However, the dataset of this highly 
inflammation-prone strain shows that it is upregulated. Htatip2 is an oxidoreductase with a role in nuclear import 
signaling. There were no genes which exhibited consistent downregulation across all cell types.

Some genes were selectively altered in only specific cell types. For example, Ly6c2 expression was upregu-
lated across myeloid cell types. Monocytes over-expressed several complement genes namely, C1qa and C1qb. 
Dendritic cells over-expressed Klk1 (kallikrein). As expected, there were very few T cells in the bone marrow; 

Figure 2.   Dimensionality reduction of B-cells colored by cluster (A) and strain (B). There is no enrichment of 
any one cluster in the NZBWF1 strain as compared to the parent strains.
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thus, the lymphoid lineage was unable to be assessed as a whole. Regarding B-cells, Bcl2a1b, an anti-apoptotic 
protein, was significantly downregulated in B-cells, suggesting that pro-survival signals may bypass immune 
checkpoints within the NZBWF1 mice. Plasma cells over-expressed Ighg2b and Ighg2c, further underscoring the 
central role of antibody production in the SLE-like phenotype.

Discussion
SLE is a multifactorial syndrome which involves a complex interaction of genetic susceptibility and environ-
mental factors/exposures. By conducting single cell RNA sequencing on the bone marrow of the SLE-prone 
NZBWF1 mouse strain and contrasting it to its two parent strains, neither of which develop overt autoimmunity 
to the degree of their progeny, this study sought to unravel immune factors which contribute to this syndrome. 
Importantly, this analysis was conducted prior to the development of the disease phenotype, allowing for the 
identification of potential predisposing factors which contribute to later autoimmunity.

First, the results showed enrichment of B cells and plasma cells in the bone marrow of NZBWF1 mice. These 
B cells expressed genes associated with activation and inflammation while the associated plasma cells exhibited 
upregulation of immunoglobulin G heavy chain. Taken together, these results underscore the central role of B 
cell activation and antibody production to the autoimmune phenotype of NZBWF133,34. A prior single cell RNA 
sequencing study of human peripheral blood in SLE35 similarly identified alterations in B cells, noting enrich-
ment of particular subpopulations of memory and activated B cells within the peripheral blood of SLE patients.

The interferon pathway is a well-known mediator of SLE in both mouse models36 and humans37–39. The 
finding of interferon activation further supports a key role for this pathway in the NZBWF1 and validates its 
use as a small animal model of SLE. The same study cited above35 also identified upregulation of the interferon 
pathway as of particular importance across a variety of cell types, including T-cells, monocytes, and dendritic 
cells in patients with SLE.

Of particular importance, our data showed marked upregulation of the ferritin light chain across all cell types 
in NZBWF1 mice relative to parental controls. Prior quantitative trait loci mapping identified a QTL associated 
with the SLE-like phenotype encompassing the Ftl1 locus on chromosome 76,8. Playing a central role in iron 
uptake and storage40, the ferritin light chain is also a well-known acute phase reactant with important immune 
signaling actions41. Indeed, the ferritin light chain has been shown to be the primary circulating form of ferritin 
and mediates many of its immune functions42. Canonically, monocytes are the primary source of ferritin light 
chains in this context. Indeed, in the setting of autoimmunity, high levels of circulating ferritin are associated 
with the macrophage activation syndrome43,44. Thus, the marked upregulation across all cell types in this dataset 
is notable and represents a potentially novel avenue of scientific and therapeutic investigation. Whether ferritin 
upregulation is a cause of underlying NZBWF1 autoimmune predisposition remains to be elucidated.

Several genes of enigmatic function were also identified, suggesting potentially interesting areas of further 
study. Gm42031 was previously identified in a study of microglial activation. In that study, Wilson et al. identified 
its downregulation to be associated with neuro-inflammation32. Thus, the current finding of marked upregulation 
in the NZBWF1 strain in the context of inflammation is intriguing. Further characterization of Gm42031 and 
its functional impact on immune regulation may be a novel area of investigation.

To our knowledge, this is the first study to leverage single cell RNA sequencing in examining the bone mar-
row of the NZBWF1 mouse strain. Prior studies in this model have examined single cell transcriptomics in the 
kidney and lung of affected mice later in the disease course45,46. There, the author’s identified extensive immune 
cell infiltration and activation, consisting of nearly all major immune cell types. Thus, our study uniquely exam-
ines the developmental milieu of these immune cells at an early time point, prior to the development of overt 
autoimmunity.

Our study has several limitations. First, we examined only a single time point. It is possible earlier time points 
would have identified more proximate genetic contributors to autoimmune predisposition in the NZBWF1 strain. 

Table 2.   Number of differentially expressed genes across cell types.

Downregulated Not Significant Upregulated NA

B-cell 3 9674 14 21,362

Dendritic cell 2 6511 22 24,518

Erythroid cell 2 8421 25 22,605

Granulocyte-monocyte precursor 0 6900 14 24,139

Hematopoietic stem cell 0 770 2 30,281

Macrophage 0 5049 6 25,998

Mast cell 0 927 2 30,124

Megakaryocyte 0 4586 4 26,463

Monocyte 16 8886 45 22,106

Neutrophil 0 7930 24 23,099

NK cell 1 2567 5 28,480

Plasma cell 0 1410 5 29,638

T-cell 0 2024 3 29,026

Unassigned 1 5495 6 25,551
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Similarly, given this cross-sectional design, we cannot establish whether the observed gene expression changes 
cause autoimmunity. Future studies could examine longitudinal gene expression changes to more comprehen-
sively chart the genetic and transcriptomic landscape of autoimmune development in the NZBWF1. Furthermore, 
targeted perturbations of the candidate pathways (e.g. ferritin light chain) could provide more insight into their 
causal role and establish therapeutic candidacy.

Taken together, the current data represent an atlas of hematopoietic phenotype early in the course of disease 
development of the NZBWF1 mouse. The data are not only consistent with the B cell activation and interferon 
signaling expected of SLE, but also identify several novel areas of interest, most notably, the ferritin light chain 
signaling axis. Data sets such as the one from this study may be useful for gaining a better understanding of this 
devastating disease leading to better therapeutic approaches.

Figure 3.   Volcano plots for each cell type.



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:24245  | https://doi.org/10.1038/s41598-021-03649-2

www.nature.com/scientificreports/

Table 3.   Top differentially expressed genes for each cell type as depicted in Fig. 3. The top 5 most significant 
genes are listed. For cell types with less than 5 significant genes, only those genes of statistical significance are 
shown.

Cell type Gene logFC P value FDR

B-cell

Ftl1-ps1 2.50174162 7.07E−13 6.86E−09

Ftl1 1.32126704 4.86E−12 2.35E−08

Gm42031 2.4329193 4.81E−11 1.17E−07

Tpm3-rs7 1.65835559 3.80E−11 1.17E−07

Apobec3 0.91044418 8.94E−09 1.73E−05

Dendritic cell

Ifitm2 1.85651713 6.29E−29 4.11E−25

Ftl1-ps1 2.33121597 8.69E−22 2.84E−18

Ftl1 1.53974644 9.65E−21 2.10E−17

Cd7 1.54503052 8.59E−16 1.40E−12

Klk1b27 4.08987062 2.93E−14 3.83E−11

Erythroid cell

Ftl1-ps1 2.72595882 9.11E−18 7.69E−14

Gm15915 3.21054274 9.91E−11 2.79E−07

BC023719 4.17275982 7.45E−11 2.79E−07

Gm11837 2.26635837 3.85E−10 8.14E−07

Hist1h4i 2.06363105 1.95E−08 3.29E−05

Granulocyte-monocyte precursor

Ftl1-ps1 2.63673211 9.33E−20 6.45E−16

Ftl1 1.41551313 2.22E−16 7.67E−13

Ly6c2 1.11070042 4.23E−12 9.74E−09

Gm42031 3.68043299 1.26E−09 2.17E−06

Hmox1 1.70928675 8.60E−08 0.00011017

Hematopoietic stem cell
Ftl1 1.98368353 2.70E−06 0.00104082

Ftl1-ps1 2.32695056 1.45E−06 0.00104082

Macrophage

Ftl1 1.75021657 1.53E−19 7.74E−16

Ftl1-ps1 4.06719941 2.59E−15 6.56E−12

Ifi202b 3.83046466 3.01E−10 5.07E−07

Gm42031 2.52142643 1.81E−05 0.02281615

Psme2b 3.3391237 3.31E−05 0.03350592

Mast cell
Ftl1-ps1 3.05990462 1.22E−10 1.13E−07

Ftl1 1.6133699 1.65E−07 7.66E−05

Megakaryocyte

Ftl1-ps1 3.354989 2.69E−22 1.23E−18

Ftl1 1.54781558 7.85E−15 1.80E−11

Hmox1 2.53794703 1.33E−06 0.00189498

Gm42031 1.8046175 1.65E−06 0.00189498

Monocyte

Ftl1-ps1 2.78859068 4.67E−26 4.18E−22

Ifi202b 4.72648063 8.41E−19 3.76E−15

Ftl1 1.48626521 2.47E−18 7.37E−15

Gm42031 2.22773198 7.12E−18 1.59E−14

Ly6c1 3.32351574 2.51E−13 4.49E−10

Neutrophil

Ly6c2 4.33353168 1.60E−12 1.27E−08

Ftl1-ps1 2.80701994 7.69E−12 3.06E−08

AC139671.1 2.77693183 3.03E−10 8.02E−07

Ctse 1.56917145 2.23E−08 3.99E−05

Ftl1 1.5759339 2.90E−08 3.99E−05

NK cell

Ftl1-ps1 2.73386052 1.11E−14 2.85E−11

Trbc1 3.92664566 4.52E−07 0.00038791

Ftl1 1.47947574 3.58E−07 0.00038791

Ifi202b 3.2806935 3.72E−06 0.00239273

Tpm3-rs7 2.34843827 9.22E−06 0.00474277

Plasma cell

Ftl1-ps1 2.6977062 9.79E−13 1.39E−09

Ftl1 1.82543793 2.12E−09 1.50E−06

Ifitm2 1.24298817 9.23E−08 4.35E−05

Ighg2c 8.93073673 2.95E−06 0.00104291

Ighg2b 4.82008471 2.36E−05 0.00666655

T-cell

Ftl1-ps1 2.60830889 2.32E−14 4.70E−11

Ftl1 1.37918593 1.27E−08 1.29E−05

Ly6c2 1.59713348 4.96E−05 0.03351994
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Data availability
Raw data has been deposited in the NCBI-GEO under accession number GSE174728 (https://​www.​ncbi.​nlm.​
nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE17​4728). Code for data analysis is available in GitHub (https://​github.​com/​
styou​nes/​SLE_​scRNA​seq).

Received: 20 May 2021; Accepted: 13 October 2021

References
	 1.	 Tsokos, G. C. Mechanisms of disease: Systemic lupus erythematosus. N. Engl. J. Med. https://​doi.​org/​10.​1056/​NEJMr​a1100​359 

(2011).
	 2.	 Moser, K. L., Kelly, J. A., Lessard, C. J. & Harley, J. B. Recent insights into the genetic basis of systemic lupus erythematosus. Genes 

Immun. 10, 373–379 (2009).
	 3.	 Cooper, G. S. et al. Hormonal, environmental, and infectious risk factors for developing systemic lupus erythematosus. Arthritis 

Rheum. https://​doi.​org/​10.​1002/​1529-​0131(199810)​41:​10%​3c171​4::​AID-​ART3%​3e3.0.​CO;2-U (1998).
	 4.	 Richard, M. L. & Gilkeson, G. Mouse models of lupus: What they tell us and what they don’t. Lupus Sci. Med. https://​doi.​org/​10.​

1136/​lupus-​2016-​000199 (2018).
	 5.	 Andrews, B. S. et al. Spontaneous murine lupus-like syndromes: Clinical and immunopathological manifestations in several 

strains*. J. Exp. Med. https://​doi.​org/​10.​1084/​jem.​148.5.​1198 (1978).
	 6.	 Morel, L., Rudofsky, U. H., Longmate, J. A., Schiffenbauer, J. & Wakeland, E. K. Polygenic control of susceptibility to murine 

systemic lupus erythematosus. Immunity 1, 219–229 (1994).
	 7.	 Dixon, F. J. et al. Etiology and pathogenesis of a spontaneous lupus-like syndrome in mice. Arthritis Rheum. https://​doi.​org/​10.​

1002/​art.​17802​10909 (1978).
	 8.	 Mohan, C., Yu, Y., Morel, L., Yang, P. & Wakeland, E. K. Genetic dissection of Sle pathogenesis: Sle3 on murine chromosome 7 

impacts T cell activation, differentiation, and cell death. J. Immunol. 162, 6492–6502 (1999).
	 9.	 Morel, L. Genetics of SLE: Evidence from mouse models. Nat. Rev. Rheumatol. 6, 348–357 (2010).
	10.	 Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. https://​doi.​org/​10.​21105/​joss.​01686 (2019).
	11.	 Amezquita, R. A. et al. Orchestrating single-cell analysis with bioconductor. Nat. Methods 17, 137–145 (2020).
	12.	 Lun, A. T. L. et al. EmptyDrops: Distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data. 

Genome Biol. 20, 63 (2019).
	13.	 Griffiths, J. A., Richard, A. C., Bach, K., Lun, A. T. L. & Marioni, J. C. Detection and removal of barcode swapping in single-cell 

RNA-seq data. Nat. Commun. 9, 2667 (2018).
	14.	 McCarthy, D. J., Campbell, K. R., Lun, A. T. L. & Wills, Q. F. Scater: Pre-processing, quality control, normalization and visualization 

of single-cell RNA-seq data in R. Bioinformatics https://​doi.​org/​10.​1093/​bioin​forma​tics/​btw777 (2017).
	15.	 Morgan, M. & Carlson, M. AnnotationHub: Client to access AnnotationHub resources. R package version 2.22.0. (2020).
	16.	 Lun, A. T. L., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with 

bioconductor. F1000 Res. 5, 2122 (2016).
	17.	 Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A bioconductor package for differential expression analysis of digital gene 

expression data. Bioinformatics 26, 139–140 (2010).
	18.	 McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-Seq experiments with respect to 

biological variation. Nucleic Acids Res. 40, 4288–4297 (2012).
	19.	 Blighe, K. & Lun, A. PCAtools: Everything Principal Components Analysis. R package version 2.2.0. (2020).
	20.	 Morgan, M., Obenchain, V., Lang, M., Thompson, R. & Turaga, N. BiocParallel: Bioconductor facilities for parallel evaluation. R 

package version 1.24.1. (2020).
	21.	 Kolde, R. pheatmap: Pretty Heatmaps. R package version 1.0.12. (2019).
	22.	 Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 

20, 163–172 (2019).
	23.	 Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. 

Biotechnol. https://​doi.​org/​10.​1038/​nbt.​2859 (2014).
	24.	 Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).
	25.	 Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).
	26.	 Germain, P. scDblFinder. R package version 1.4.0. (2020).
	27.	 Alexa, A. & Rahnenfuhrer, J. topGO: Enrichment analysis for gene ontology. R package version 2.42.0. (2020).
	28.	 Blighe, K., Rana, S., Turkes, E., Ostendorf, B. & Lews, M. EnhancedVolcano: Publication-ready volcano plots with enhanced 

colouring and labeling. R package version 1.8.0.
	29.	 Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 

https://​doi.​org/​10.​1093/​nar/​gkv007 (2015).
	30.	 R Core Team. R: A Language and Environment for Statistical Computing. (R Core Team, 2021).
	31.	 Amezquita, R., Lun, A., Hicks, S. & Gottardo, R. Orchestrating single-cell analysis with bioconductor. Bioconductor 14, e1006378 

(2020).
	32.	 Wilson, K., Miranda, K., Kaul, M., Nagarkatti, P. & Nagarkatti, M. Single cell profiling illustrates down-regulation of GM42031 in 

macrophages and microglia as a potential mechanism of neuroinflammation in transgenic GFAP-gp120 mice. J. Immunol. 204, 
225 (2020).

	33.	 Haas, K. M. et al. Protective and pathogenic roles for b cells during systemic autoimmunity in NZB/W F 1 mice. J. Immunol. https://​
doi.​org/​10.​4049/​jimmu​nol.​09023​91 (2010).

	34.	 Taylor, E. B., Barati, M. T., Powell, D. W., Turbeville, H. R. & Ryan, M. J. Plasma cell depletion attenuates hypertension in an 
experimental model of autoimmune disease. Hypertension https://​doi.​org/​10.​1161/​HYPER​TENSI​ONAHA.​117.​10473 (2018).

	35.	 Nehar-Belaid, D. et al. Mapping systemic lupus erythematosus heterogeneity at the single-cell level. Nat. Immunol. 21, 1094–1106 
(2020).

	36.	 Liu, Z. et al. IFN-α confers resistance of systemic lupus erythematosus nephritis to therapy in NZB/W F1 mice. J. Immunol. https://​
doi.​org/​10.​4049/​jimmu​nol.​10041​42 (2011).

	37.	 Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. 
Natl. Acad. Sci. USA. https://​doi.​org/​10.​1073/​pnas.​03376​79100 (2003).

	38.	 Berry, M. P. R. et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 
https://​doi.​org/​10.​1038/​natur​e09247 (2010).

	39.	 Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. https://​doi.​org/​10.​
1084/​jem.​20021​553 (2003).

	40.	 Arosio, P. & Levi, S. Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage. 
Biochim. Biophys. Acta Gen. Subj. https://​doi.​org/​10.​1016/j.​bbagen.​2010.​02.​005 (2010).

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE174728
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE174728
https://github.com/styounes/SLE_scRNAseq
https://github.com/styounes/SLE_scRNAseq
https://doi.org/10.1056/NEJMra1100359
https://doi.org/10.1002/1529-0131(199810)41:10%3c1714::AID-ART3%3e3.0.CO;2-U
https://doi.org/10.1136/lupus-2016-000199
https://doi.org/10.1136/lupus-2016-000199
https://doi.org/10.1084/jem.148.5.1198
https://doi.org/10.1002/art.1780210909
https://doi.org/10.1002/art.1780210909
https://doi.org/10.21105/joss.01686
https://doi.org/10.1093/bioinformatics/btw777
https://doi.org/10.1038/nbt.2859
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.4049/jimmunol.0902391
https://doi.org/10.4049/jimmunol.0902391
https://doi.org/10.1161/HYPERTENSIONAHA.117.10473
https://doi.org/10.4049/jimmunol.1004142
https://doi.org/10.4049/jimmunol.1004142
https://doi.org/10.1073/pnas.0337679100
https://doi.org/10.1038/nature09247
https://doi.org/10.1084/jem.20021553
https://doi.org/10.1084/jem.20021553
https://doi.org/10.1016/j.bbagen.2010.02.005


10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:24245  | https://doi.org/10.1038/s41598-021-03649-2

www.nature.com/scientificreports/

	41.	 Wang, W., Knovich, M. A., Coffman, L. G., Torti, F. M. & Torti, S. V. Serum ferritin: Past, present and future. Biochim. Biophys. 
Acta Gen. Subj. https://​doi.​org/​10.​1016/j.​bbagen.​2010.​03.​011 (2010).

	42.	 Cohen, L. A. et al. Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway. Blood https://​
doi.​org/​10.​1182/​blood-​2009-​11-​253815 (2010).

	43.	 Allen, C. E., Yu, X., Kozinetz, C. A. & McClain, K. L. Highly elevated ferritin levels and the diagnosis of hemophagocytic lympho-
histiocytosis. Pediatr. Blood Cancer https://​doi.​org/​10.​1002/​pbc.​21423 (2008).

	44.	 Wong, K. The acute lupus hemophagocytic syndrome. Ann. Intern. Med. 114, 387 (1991).
	45.	 Bates, M. A. et al. Mapping of dynamic transcriptome changes associated with silica-triggered autoimmune pathogenesis in the 

lupus-prone NZBWF1 mouse. Front. Immunol. 10, 632 (2019).
	46.	 Der, E. et al. Single cell RNA sequencing to dissect the molecular heterogeneity in lupus nephritis. JCI Insight 2, 9 (2017).

Acknowledgements
This work was supported by National Institutes of Health Grants R01-HL136684 (to M. J. Ryan), P01-HL-051971 
and U54-GM-115428 (to the University of Mississippi Medical Center Department of Physiology and Biophys-
ics). The work performed through the UMMC Molecular and Genomics Facility is supported, in part, by funds 
from the NIGMS, including Mississippi INBRE (P20GM103476), Obesity, Cardiorenal and Metabolic Diseases-
COBRE (P20GM104357).

Author contributions
M.J.R. and S.T.Y. conceived of the study. M.J.R., M.R.G., and S.T.Y. designed the study. S.T.Y. and A.C.J. collected 
data and performed the experiments. S.T.Y., K.S., and M.R.G. analyzed the data. S.T.Y. wrote the first draft of the 
manuscript. All authors contributed to the interpretation of the results, revised the manuscript, and have read 
and approved the final manuscript for submission.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​021-​03649-2.

Correspondence and requests for materials should be addressed to M.J.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

https://doi.org/10.1016/j.bbagen.2010.03.011
https://doi.org/10.1182/blood-2009-11-253815
https://doi.org/10.1182/blood-2009-11-253815
https://doi.org/10.1002/pbc.21423
https://doi.org/10.1038/s41598-021-03649-2
https://doi.org/10.1038/s41598-021-03649-2
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Single cell RNA sequencing reveals ferritin as a key mediator of autoimmune pre-disposition in a mouse model of systemic lupus erythematosus
	Methods
	Animals. 
	Bone marrow cell collection. 
	Single cell RNA sequencing. 
	Data analysis. 
	Subclustering. 

	Results
	Discussion
	References
	Acknowledgements


