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Abstract

Introduction The in vitro invasive properties of rheumatoid
arthritis (RA) fibroblast-like synoviocytes (FLSs) have been
shown to correlate with disease severity and radiographic
damage. We recently determined that FLSs obtained from
pristane-induced arthritis (PIA)-susceptible DA rats are also
highly invasive in the same in vitro assay through Matrigel. The
transfer of alleles derived from the arthritis-resistant F344 strain
at the arthritis severity locus Cia5d (RNO10), as in
DA.F344(Cia5d) congenics, was enough to significantly and
specifically reduce the invasive properties of FLSs. This
genetically controlled difference in FLS invasion involves
increased production of soluble membrane-type 1 matrix
metalloproteinase (MMP) by DA, and is dependent on increased
activation of MMP-2. In the present study we aimed to
characterize the pattern of gene expression that correlates with
differences in invasion in order to identify pathways regulated by
the Cia5d locus.

Methods Synovial tissues were collected from DA and
DA.F344(Cia5d) rats 21 days after the induction of PIA. Tissues
were digested and FLSs isolated. After a minimum of four
passages, FLSs were plated on Matrigel-covered dishes at
similar densities, followed by RNA extraction. Illumina RatRef-12
expression BeadChip arrays were used. Expression data were
normalized, followed by t-test, logistic regression, and cluster

analysis. Real-time PCR was used to validate the microarray
data.

Results Out of the 22,523 RefSeq gene probes present in the
array, 7,665 genes were expressed by the FLSs. The expression
of 66 genes was significantly different between the DA and
DA.F344(Cia5d) FLSs (P < 0.01). Nineteen of the 66
differentially expressed genes (28.7%) are involved in the
regulation of cell cycle progression or cancer-associated
phenotypes, such as invasion and contact inhibition. These
included Cxcl10, Vil2 and Nras, three genes that are
upregulated in DA and known to regulate MMP-2 expression
and activation. Nine of the 66 genes (13.6%) are involved in the
regulation of estrogen receptor signaling or transcription. Five
candidate genes located within the Cia5d interval were also
differentially expressed.

Conclusions We have identified a novel FLS invasion
associated gene expression signature that is regulated by
Cia5d. Many of the genes found to be differentially expressed
were previously implicated in cancer cell phenotypes, including
invasion. This suggests a parallel in the behavior of arthritis FLSs
and cancer cells, and identifies novel pathways and genes for
therapeutic intervention and prognostication.

Introduction
Rheumatoid arthritis (RA) is a common chronic autoimmune
disease that affects approximately 1% of the population [1]. It
is a complex trait, in which genetic and environmental factors
mediate disease susceptibility and severity [1]. Basic joint

pathology in RA is characterized by pronounced synovial
hyperplasia, also called 'pannus', which produces several
proinflammatory cytokines and proteases and, like a malignant
tumor, invades and destroys cartilage and bone [2-4].
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CXCR: C-X-C chemokine receptor; DMEM: Dulbecco's modified Eagle's medium; ER: estrogen receptor; FLS: fibroblast-like synoviocyte; GAPDH: 
glyceraldehyde-3-phosphate dehydrogenase; MMP: matrix metalloproteinase; MT1: membrane-type 1; PCR: polymerase chain reaction; RA: rheuma-
toid arthritis.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18706093
http://arthritis-research.com/content/10/4/R92
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/info/about/charter/


Arthritis Research & Therapy    Vol 10 No 4    Laragione et al.
The formation of the synovial pannus is regulated by complex
interactions between synovial resident cells and infiltrating
inflammatory cells [5,6], and their production of paracrine and
autocrine factors such as cytokines and growth factors [7-9],
nuclear factor-kB activation [10], and angiogenesis [11]. The
fibroblast-like synoviocyte (FLS) is a key player in this process,
and its numbers are markedly increased in the hyperplastic
synovial pannus of RA and rodent models of arthritis [4]. RA
FLSs invade cartilage [12] and produce increased amounts of
several proteolytic enzymes that further contribute to joint
destruction [2,3]. The invasive properties of RA FLSs have
also been associated with radiographic damage in RA, a
parameter of disease severity, which emphasizes their direct
clinical relevance [13].

We have previously identified Cia5d as an arthritis severity
locus and showed that DA.F344(Cia5d) rats congenic for this
interval developed significantly milder arthritis, with nearly no
pannus formation and neither bone nor cartilage destruction,
as compared with highly susceptible DA rats [14]. We also
determined that Cia5d regulates the invasive properties of
FLSs, thus providing an explanation for its role in joint damage
[15]. The arthritis gene located within Cia5d controls the FLS
production of soluble membrane-type 1 (MT1)-matrix metallo-
proteinase (MMP) and activation of MMP-2 [15]. This was the
first time that FLS phenotypes were found to be genetically
regulated.

In the present study we took advantage of this genetically reg-
ulated FLS invasive phenotype and compared highly invasive
with minimally invasive cells' gene expression signatures using
microarrays. The study of more than 22,000 genes identified a
gene expression signature related to invasion that is differen-
tially regulated between FLSs from DA and DA.F344(Cia5d)
rats. The novel FLS invasion pathways described here resem-
ble those described in cancer cell lines and have the potential
to become novel targets for therapeutic intervention.

Materials and methods
Rats
DA (DA/BklArbNsi, arthritis-susceptible) inbred rats (originally
from Bentin & Kingman, CA, USA) were maintained at the
Arthritis and Rheumatism Branch (Arb; National Institutes of
Health) and then transferred to the Feinstein Institute (previ-
ously named North Shore-LIJ Institute; Nsi). The genotype-
guided breeding of DA.F344(Cia5d) was previously
described in detail [14]. Briefly, a 37.2 megabase interval on
rat chromosome 10 was transferred from F344 into the DA
background over 10 backcrosses followed by at least five
intercrosses (Figure 1). The experiments were conducted with
rats homozygous at the congenic interval. All experiments
involving animals were reviewed and approved by the Fein-
stein Institute for Medical Research Institutional Animal Care
and Use Committee. Animals were housed in a pathogen free

environment, on 12-hour light and dark cycles, with free
access to food and water.

Induction of PIA and arthritis scoring
Rats aged 8 to 12 weeks received 150 μl of pristane by intra-
dermal injection divided into two sites at the base of the tail
[14,16]. The animals were scored on days 14, 18 and 21 after
pristane induction using a previously described arthritis scor-
ing system [17,18]. On day 21 after injection, the animals were
killed and synovial tissue was collected from the ankles for FLS
isolation.

Isolation and culture of primary FLS
FLSs were isolated by enzymatic digestion of the synovial tis-
sue. Briefly, tissues were minced and incubated with a solution
containing DNase 0.15 mg/ml, hyaluronidase type I-S 0.15
mg/ml, and collagenase type IA 1 mg/ml (Sigma-Aldrich, St.
Louis, MO, USA) in Dulbecco's modified Eagle's medium
(DMEM; Gibco, Invitrogen Corporation, Carlsbad, CA, USA)
for 1 hour at 37°C. Cells were washed and re-suspended in
DMEM supplemented with 10% fetal bovine serum (Gibco),
glutamine 30 mg/ml, amphotericin B 250 μg/ml (Sigma), and
gentamicin 10 mg/ml (Gibco). After overnight culture, nonad-
herent cells were removed and adherent cells were cultured.
All experiments were performed with cells after passage four
(95% FLS purity).

Flow-cytometric characterization of FLSs
Freshly trypsinized FLSs (105) were re-suspended in phos-
phate-buffered saline with 0.02% azide (Sigma-Aldrich) and

Figure 1

Map of Cia5d congenic intervalMap of Cia5d congenic interval. Markers used in the breeding of 
DA.F344(Cia5d) congenics and their positions on chromosome 10. 
Numbers represent the position in the chromosomes. Mb, megabases.
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1% bovine serum albumin (P Biomedicals, Aurora, OH, USA),
and incubated with 1 μg anti-CD32 (Pharmingen, San Diego,
CA, USA) to block Fcγ II receptors. Cells were stained with
saturating concentrations of CD90 (OX-7; PerCP, Pharmin-
gen) or isotype control. Stained cells were fixed with 1% para-
formaldehyde in phosphate-buffered saline and analyzed by
flow cytometry in a FACSCalibur (Becton Dickinson, Franklin
Lakes, NJ, USA), using the BD Cell-Quest™ Pro version 4.0.1
software (Becton Dickinson).

FLS culture on Matrigel
We previously studied the invasive properties of FLSs through
a collagen matrix (Matrigel). Cell interactions with the extracel-
lular matrix are known to influence the expression of several
genes, including activation of MMP-2 [19], which is a key
mediator of the FLS invasive phenotype. Therefore, in order to
study the gene expression signature of highly invasive and min-
imally invasive FLSs, cells were cultured under the same con-
ditions as used in the invasion studies. Specifically, 100%
confluent 75 cm2 FLS culture flasks were trypsinized (trypsin
0.25% with EDTA 0.1%). The rates of cellular proliferation dif-
fered among cell lines, and we previously showed that FLS
proliferation does not correlate with the FLS invasive behavior.
In order to have similar cell confluence at the time of FLS har-
vesting for RNA extraction, 10% to 50% of the high-density 75
cm2 cell culture flasks (depending on the cell line) were plated
in Matrigel-coated 10 cm culture dishes (Becton Dickinson)
with DMEM, 10% fetal bovine serum, antibiotics, and
glutamine. Cell cultures were maintained at 37°C with 5% car-
bon dioxide for 24 hours. After 24 hours, FLSs were harvested
using a cell scraper (Corning, Acton, MA, USA) followed by
digestion of the Matrigel with 10 ml collagenase D 1 mg/ml
(Roche Applied Science, Indianapolis, IN, USA) at 37°C for 10
minutes. FLSs were then collected by centrifugation, washed
twice with ice-cold phosphate-buffered saline. Cell pellets
were re-suspended in RLT lysis buffer (RNeasy Mini Kit; Qia-
gen, Valencia, CA, USA) with 1% (vol/vol) β-mercaptoethanol
(Sigma). Cell-lysis buffer suspension was vortexed, frozen in
liquid nitrogen and stored at -80°C until RNA extraction.

RNA extraction and quality assessment
Cells in RLT buffer were disrupted using QIAshredder spin
columns (Qiagen), and total RNA was extracted using the
RNeasy Mini Kit (Qiagen), in accordance with the manufac-
turer's instructions. Samples were digested with DNase (Qia-
gen) and eluted with 30 μl RNase-free water. RNAs were
quantified and assessed for purity using a NanoDrop spectro-
photometer (Rockland, DE, USA). RNA integrity was verified
with a BioAnalyzer 2100 (Agilent, Palo Alto, CA, USA).

RNA preparation and microarray experiments
The RatRef-12 Expression BeadChip contains 22,524 probes
for a total of 22,228 rat genes selected primarily from the
NCBI RefSeq database (Release 16; Illumina, San Diego, CA,
USA), and was used in accordance with the manufacturer's

instructions. All reagents have been optimized for use with Illu-
mina's Whole-Genome Expression platform. Total RNA 200
ng was used for cRNA in vitro transcription and labeling with
the TotalPrep™ RNA Labeling Kit using Biotinylated-UTP
(Ambion, Austin, TX, USA). Hybridization is carried out in Illu-
mina Intellihyb chambers at 58°C for 18.5 hours, which is fol-
lowed by washing and staining, in accordance with the
Illumina Hybridization System Manual. The signal was devel-
oped by staining with Cy3-streptavidin. The BeadChip was
scanned on a high resolution Illumina BeadArray reader, using
a two-channel, 0.8 μm resolution confocal laser scanner.

Data extraction and normalization
The Illumina BeadStudio software (Version 2.0) was used to
extract and normalize the expression data (fluorescence inten-
sities) for the mean intensity of all 12 arrays. Genes expressed
in all 12 arrays were selected for analyses. Normalized data
were analyzed using the t-test and logistic regression.

Statistics and analyses
The t-test was used to compare means of the log-transformed
and non-log-transformed data. Genes with a P value under
0.01 between DA and DA.F344(Cia5d) were considered sig-
nificant and included in additional analysis. The logistic regres-
sion model fitting was carried out as previously described
[20,21] using the filtered gene list. The statistical significance
of a logistic regression result was obtained by comparing the
deviance with the 'null deviance'. This null deviance is the (-
2)log-likelihood of a random model in which the probability for
a sample to belong to a group (for example, DA) is equal to the
proportion of DA samples in the dataset. The difference
between the deviance and the null deviance follows the χ2 dis-
tribution with one degree of freedom by chance alone, and this
χ2 distribution was used to determine the P value. The R sta-
tistical package [22] was used for t-test and logistic regres-
sion analyses.

The Ingenuity IPA 5.5.1 program (Ingenuity, Redwood City,
CA, USA) and PubMed and GEO (Gene Expression Omni-
bus) searches were used for pathways detection. CLUSTER
[23] and TREEVIEW [24] were used for cluster analysis and
generation of a heat map.

Quantitative real-time PCR
The same RNA used for the microarray experiments was also
used for the quantitative real-time PCR confirmation experi-
ments. Total RNA 200 ng from each sample was used for
cDNA synthesis using the Superscript III kit (Invitrogen). Prim-
ers and probe sequences were designed to target the same
exon as used in the Illumina RatRef-12 Expression BeadChip.
We used Exiqon (Woburn, MA, USA) and Taqman (ABI,
Applied Biosystems, Foster City, CA) probes (Table 1).
GAPDH was used as endogenous control. Probes were
labeled with FAM at the 5' end and TAMRA at 3' end and used
at a final concentration of 100 nmol/l. Primers were used at
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200 nmol/l concentration with Eurogentec quantitative real-
time PCR mastermix (Eurogentec, San Diego, CA, USA). The
ABI 7700 quantitative real-time PCR thermocycler was used
at 48°C for 30 minutes, 95°C for 10 minutes, and 45 cycles of
95°C for 0.15 minutes and 60°C for 1 minute. Samples were
run in duplicates and the means used for analysis. Data were
analyzed using Sequence Detection System software version
1.9.1 (ABI). Results were obtained as Ct (threshold cycle) val-
ues. Relative expression of all the genes was adjusted for
GAPDH in each sample (ΔCt), and ΔCt used for t-test analy-
sis. Quantitative real-time PCR fold differences were calcu-
lated with 2-ΔΔCt [25].

Results
Characterization of the FLS cell lines used
In previous studies we determined that DA FLSs were highly
invasive, and that alleles derived from the arthritis-resistant
strain F344 at the Cia5d interval, as in DA.F344(Cia5d) con-
genics (Figure 1), specifically reduced the invasive properties
of FLSs. Additionally, FLSs from DA and DA.F344(Cia5d)
strains expressed similar mRNA levels of transforming growth
factor-β, tumor necrosis factor-α, IL-1β and IL-6, as well as
MMP-1, MMP-2, MMP-3, MMP-9, MMP-13, MT1-MMP and
MT2-MMP [15]. Both strains had similar collagenase and
MMP-3 activity, but levels of soluble MT1-MMP and active
MMP-2 were increased in DA. MMP-2 inhibition reduced DA
FLS invasion to levels similar to those of DA.F344(Cia5d).
Cytoskeleton characteristics were also similar in DA and
DA.F344(Cia5d) FLSs [15].

In the present study FLSs were stained with CD90, a marker
for FLS [26], and analyzed by flow cytometry. Comparable
numbers of CD90+ cells were detected both in five different
DA and five different DA.F344(Cia5d) rats (percentage of
CD90+ cells [mean ± standard deviation]: DA 95.46 ± 8.9 and
DA.F344 [Cia5d] 96.51 ± 5.9), demonstrating that the cell
lines were homogeneously CD90+.

Genes expressed by FLSs and filtering criteria
A total of 7,665 genes out of 22,228 genes represented in the
Illumina RatRef-12 BeadChip were expressed by both DA and
DA.F344(Cia5d) FLSs. Log transformation did not signifi-
cantly affect the list of differentially expressed genes, and
therefore results are shown from analyses done with non-log-
transformed data.

Genes differentially expressed between DA and 
DA.F344(Cia5d) FLSs
Sixty-six genes had a P value under 0.01 (Tables 2 and 3) and
were used for fold change calculations and pathway detection
analyses. Thirty-six genes were expressed in increased levels
by DA FLSs, and the presence of F344 alleles at the Cia5d
interval, as in DA.F344(Cia5d) congenics FLSs, was enough
to reduce their expression significantly (Table 2). Thirty genes
were expressed in reduced levels in DA and significantly
increased in DA.F344(Cia5d) FLSs (Table 3). These observa-
tions demonstrate that alleles within the Cia5d interval, the
only genetic difference between DA and DA.F344(Cia5d), are
directly or indirectly involved in the regulation of the expression
of several genes, and the difference in gene expression corre-
lates with the difference in invasive properties of FLSs. Fur-

Table 1

Genes studied with QPCR for confirmatory studies, primers and probe sequences

Accession number Gene symbol Target exonb Probe Forward primer Reverse primer

Up-regulated in DA

NM_139089.1 Cxcl10 4 Exiqon Universal probe 67 TTCGGACCAGCTCTTAGAGAA GCCTGGTCCTGAGACAAAAG

XM_220552.3 Trim16 6 Exiqon Universal probe 1 GTGAACTCCTTCCCACTCCA CAGCTGCATTTCTGGAAACA

NM_017207.1 Trpv2 15 Exiqon Universal probe 6 CTCTTCCCACCTTATCTGAGGA GACCTGAAGGGGCAGATG

NM_019357.1 Vil2 13 CCCCAAGACCCAGTGGAA
TCCTCCa

AGGTACCGGGCGATGTTCT GGCCTGTTTGGCACTATGTGA

LOC309362 Dnmbp 16 Exiqon Universal probe 97 TTGTCTCAGCATGGGTCCTA ACCAGGATTTTAAGGCCACA

NM_001107408 Gins3 3–4 Exiqon Universal probe 17 GTCGTGGACCTCCACAAAAT GAACCGTCCAATAAAAGTCTGC

Down-regulated in DA

XM_235434.4 Gsdmdc1 13 Exiqon Universal probe 68 AGCACGTCTTGGAACAGAGC TCCTCATCCCAGCTGTCC

XM_222868.4 Olfml2b 8 Exiqon Universal probe 106 CTCCCTTCTTCCATGCTCTG GCAAGCCCCAGAGGAATAA

NM_001008321.1 Gadd45b 4 Exiqon Universal probe 25 ACAGGTGGTCGCCAAGAC CCAGGCCTTGGCTCTAAAGT

Estrogen receptors

NM_012689.1 Esr1 - Exiqon Universal probe 67 GCAAGAATGTCGTGCCTCTC TGAAGACGATGAGCATCCAG

NM_012754 Esr2 - Exiqon Universal probe 94 CCTTGAAGGCTCTCGGTGTA CAGAACCTTTCAGATGTTTCCA

aTaqman probe. bSame region used in the Illumina microarray.
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Table 2

Genes with reduced expression in synovial fibroblasts from DA.F344 (Cia5d) compared with highly invasive DA, including those 
associated with cancer-phenotypes and estrogen signaling

Gene Symbold Definitiona Accession number DA mean Cia5d mean Fold change P valueb Overall rankc

Cancer, Cell Cycle, DNA replication, recombination and repair

Trim16_predictede Tripartite motif protein 16 (predicted) XM_220552.3 262.14 82.27 -3.2 0.0033 23

Cxcl10 Chemokine (C-X-C motif) ligand 10f
NM_139089.1 1218.54 434.48 -2.8 0.0001 2

Dnmbp Similar to Dynamin binding protein 
(Scaffold protein Tuba)

XM_219860.3 739.97 385.61 -1.9 0.0088 62

Vil2 Villin 2 (Ezrin)f
NM_019357.1 1642.95 984.09 -1.7 0.0023 15

Nras Neuroblastoma RAS viral (v-ras) oncogene 
homologf

XM_579607.1 910.25 601.06 -1.5 0.0087 60

Brms1l_predicted Breast cancer metastasis-suppressor 1-like 
(predicted)

XM_216712.3 187.93 125.37 -1.5 0.0094 64

Hnrpde Heterogeneous nuclear ribonucleoprotein 
D (AU-rich element RNA binding protein 1, 
37 kDa)

NM_024404.1 2909.16 1959.49 -1.5 0.0010 8

Rpa2 Replication protein A2 NM_021582.1 1583.81 1154.73 -1.4 0.0074 48

Ube2d3 Ubiquitin-conjugating enzyme E2D 3 NM_031237.1 123.48 99.45 -1.2 0.0017 10

Lsm8_predictede LSM8 homolog, U6 small nuclear RNA 
associated (S. cerevisiae) (predicted)

XM_216102.3 3766.75 3121.49 -1.2 0.0024 16

Smc1l1 Structural maintenance of chromosomes 1 
like 1 (S. cerevisiae)

NM_031683.1 4648.45 3923.73 -1.2 0.0044 30

Rpa3_predicted Replication protein A3 (predicted) XM_216097.3 4013.83 3410.52 -1.2 0.0022 14

Cell Signaling

Stip1 Stress-induced phosphoprotein 1 
(Stip1)

NM_138911.2 3478.09 2568.75 -1.4 0.0028 18

Ubiquitination

Usp24_predicted Ubiquitin specific protease 24 (predicted) XM_233260.3 111.07 74.14 -1.5 0.0037 25

Stub1_predicted STIP1 homology and U-Box containing 
protein 1 (predicted)

XM_213270.3 4967.20 4164.69 -1.2 0.0034 24

Ribosomal Proteins

Rps6 Ribosomal protein S6 (Rps6) NM_017160.1 29305.46 24538.18 -1.2 0.0085 57

LOC300278 Similar to 40S ribosomal protein S9 XM_213106.3 28115.69 26209.24 -1.1 0.0086 59

LOC367102 Similar to 40S ribosomal protein S9 XM_345948.2 25678.47 23353.32 -1.1 0.0043 28

Others

Trpv2 Transient receptor potential cation channel, 
subfamily V, member 2

NM_017207.1 177.90 92.25 -1.9 0.0075 49

Gins3_predictede
GINS complex subunit 3 (Psf3 homolog) XM_226235.2 171.57 89.64 -1.9 0.0010 6

LOC499310 Similar to cell division cycle associated 5 XM_574612.1 450.69 270.81 -1.7 0.0061 44

LOC298186 Similar to hypothetical protein FLJ33868 
(predicted)

XM_238399.3 271.10 177.29 -1.5 0.0070 46

Terf1_predicted Telomeric repeat binding factor 1 
(predicted)

XM_238387.3 98.95 66.02 -1.5 0.0048 34

LOC308004 Similar to hypothetical protein FLJ13188 
(predicted)

XM_217663.3 573.01 383.19 -1.5 0.0083 56

LOC310177 Similar to RIKEN cDNA 0610040D20 XM_226872.2 85.32 58.03 -1.5 0.0044 29
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thermore, cluster analysis separated DA FLSs from
DA.F344(Cia5d) FLSs, demonstrating that the two strains
could be reliably differentiated by gene expression (Figure 2).

Genes upregulated in the highly invasive DA FLSs and 
downregulated in DA.F344(Cia5d) include cancer-
associated and invasion regulatory genes
Cluster analysis identified three main clusters among the
genes expressed in increased levels in DA (Figure 2). One of
the three clusters contained eight genes, three of which have
been implicated in cancer and cancer-related cellular pheno-
types such as invasion, and included Cxcl10, Vil2 and Dnmbp
(Figure 3). The other genes in this cluster are involved in ion
transport (Trpv2), mitosis (Smc1L1), or have incompletely
characterized functions (Trim16, Ranbp6 and Hnrpul2). In
total, 12 out of the 36 genes (33.3%) expressed in increased
levels by DA FLSs and downregulated in DA.F344(Cia5d) are
known to regulate cancer-associated processes, including cell
cycle progression (Rpa2 and Rpa3), cell invasion (Cxcl10,
Vil2, Nras, and Dnmbp), and metastasis (Vil2 and Brms1l),
respectively (Table 2). In fact, Cxcl10 was the second best
discriminator between DA and DA.F344(Cia5d) cell lines, as
per logistic regression (Table 2).

Of additional interest in relation to the MMP-2-dependent dif-
ference in FLS invasion that we have observed, three of these
genes – namely Cxcl10, Vil2 and Nras – are known to regulate
the synthesis or activation of gelatinases. Increased levels of
Cxcl10, Vil2, Dnmbp, Trim16, and Trpv2 in DA were con-
firmed using quantitative real-time PCR, with most of these
genes having a nearly fourfold or greater difference in expres-
sion (P < 0.05; Figure 4a).

Genes downregulated in the highly invasive DA FLSs and 
upregulated in DA.F344(Cia5d) include tumor 
suppressor and cell cycle check-point genes
The list of genes with reduced expression in DA, as compared
with increased expression in DA.F344(Cia5d) congenics,
included seven genes that are involved in tumor suppression-
like activity and cell cycle check-points, such as Aph1a,
Brwd3, Gadd45b, Gmfg, Lox, and Plekhg2 (Table 3).
Gadd45b was chosen for quantitative real-time PCR confirma-
tion (P < 0.05; Figure 4b). These observations, combined with
the 11 cancer and invasion associated genes upregulated in
DA, suggest an invasion-favoring profile similar to that
described in cancer cells, characterized by reduced expres-
sion cell cycle check-point and tumor suppressor genes com-
bined with increased expression of invasion genes.

Additional genes with reduced expression in DA FLSs
Additionally, Ubxd2, Fzd4, Fkbp7, Olfml2b, Gsdmdc1 and the
transcriptional co-repressor Ncor1 were among the genes
downregulated in DA and with increased expression in
DA.F344(Cia5d). Gtlf3b (predicted), a gene trap fragment
with unknown function, was among the most significantly dif-
ferentially expressed genes (P = 0.000025; 2.2-fold differ-
ence; Table 3). The greater than twofold difference in
expression of Olfml2b and Gsdmdc1 was confirmed with
quantitative real-time PCR (Figure 4b).

Increased number of estrogen-inducible and ER 
signaling regulatory genes among the differentially 
expressed genes
Nine genes or 13.6% of the 66 differentially expressed genes
were either estrogen-inducible genes, such as Cxcl10, Vil2,

LOC297821 Similar to F23N19.9 (predicted) XM_232684.3 1680.52 1185.76 -1.4 0.0052 36

LOC308443 Similar to CDNA sequence BC028440 XM_218345.2 426.63 301.59 -1.4 0.0059 41

Anp32b Acidic nuclear phosphoprotein 32 family, 
member B

NM_131911.2 454.58 323.06 -1.4 0.0082 55

Ranbp6_predicted RAN binding protein 6 (predicted) XM_219796.2 309.74 222.79 -1.4 0.0031 22

LOC297903 Similar to RIKEN cDNA 6720467C03 
(predicted)

XM_216357.3 1493.92 1088.11 -1.4 0.0075 50

Qdpr Quinoid dihydropteridine reductase NM_022390.1 983.32 728.72 -1.3 0.0045 33

Rnf134_predicted Ring finger protein 134 (predicted) XM_219963.3 952.04 717.85 -1.3 0.0059 42

LOC316731 Similar to hypothetical protein FLJ23017 
(predicted)

XM_237515.3 74.86 58.48 -1.3 0.0094 65

LOC309197 Similar to hypothetical protein XM_219560.3 1413.35 1112.64 -1.3 0.0050 35

LOC316732 Similar to RIKEN cDNA 4931400A14 
(predicted)

XM_244261.3 251.40 201.41 -1.2 0.0062 45

Bin2_predicted Bridging integrator 2 (predicted) XM_578696.1 57.42 47.13 -1.2 0.0076 51

aEstrogen; ER, estrogen-induced, or estrogen-receptor signaling or degradation are marked in bold. bt test. cOrder (logistic regression) in the list of 66 genes 
differentially expressed between DA and DA.F344(Cia5d). dCancer and invasion associated genes are in italics. eDifferentially expressed in prostate, breast, colon or 
pharyngeal cancers. fKnown to induce transcription or activation of gelatinases.

Table 2 (Continued)

Genes with reduced expression in synovial fibroblasts from DA.F344 (Cia5d) compared with highly invasive DA, including those 
associated with cancer-phenotypes and estrogen signaling
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Table 3

Genes with increased expression in synovial fibroblasts from DA.F344 (Cia5d) compared with DA

Gene Symbold Definitiona Accession number DA mean Cia5d mean Fold change P valueb Overall rankc

Cancer, Cell Cycle, DNA replication, recombination and repair

Gadd45b Growth arrest and DNA-
damage-inducible 45 beta 

NM_001008321.1 214.12 412.97 1.9 0.00572 39

Gmfg Glia maturation factor, 
gamma (Gmfg)

NM_181091.2 1359.39 2261.87 1.7 0.00817 54

Plekhg2_predicted Pleckstrin homology domain 
containing, family G (with 
RhoGef domain) member 2 
(predicted)

XM_214862.3 91.97 147.62 1.6 0.00784 52

Lox Lysyl oxidase XM_579391.1 15755.11 24559.79 1.6 0.00198 12

Brwd3_predicted Similar to bromo domain-
containing protein disrupted 
in leukemia (LOC317213)

XM_228518.3 43.85 52.99 1.2 0.00596 43

Aph1a Similar to anterior pharynx 
defective 1 homolog A (C. 
elegans)

XM_345251.2 2820.66 3246.28 1.2 0.00046 4

Pex19_predictede Peroxisome biogenesis 
factor 19 (predicted)

XM_225711.3 119.41 135.98 1.1 0.00561 38

Cell Signaling

Fkbp7_predicted FK506 binding protein 7 
(predicted)

XM_215758.3 784.02 1450.53 1.9 0.00578 40

Ncor1 Nuclear receptor co-
repressor 1

XM_577103.1 420.35 679.65 1.6 0.00454 32

Tap1 Transporter 1, ATP-binding 
cassette, sub-family B 
(MDR/TAP)

NM_032055.1 190.32 288.49 1.5 0.00878 61

Prnp Prion protein XM_579340.1 17242.89 24050.29 1.4 0.00029 3

Fzd4 Frizzled homolog 4 
(Drosophila)

NM_022623.1 44.45 60.14 1.4 0.00406 26

Gene expression

H1f0 H1 histone family, member 0 NM_012578.2 150.12 229.40 1.5 0.00707 47

Cell-Cell Interaction

Fath Hypothetical gene 
supported by NM_031819; 
Fath fat tumor suppressor 
homolog (Drosophila)

XM_579538.1 3803.04 5806.86 1.5 0.00206 13

Extracellular Matrix

Col5a1 Collagen, type V, alpha 1 
(Col5a1)

NM_134452.1 7240.26 9852.22 1.4 0.00807 53

Others

Gtlf3b_predicted Gene trap locus F3b 
(predicted)

XM_343907.2 78.16 175.41 2.2 0.00003 1

Olfml2b_predicted Olfactomedin-like 2B 
(predicted)

XM_222868.3 1336.30 2949.43 2.2 0.00241 17
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Trim16, Gins3 (predicted), and Gadd45b, or genes involved
in modulating the estrogen receptor (ER) signaling such as
Stub1 and Stip1. Ncor1 negatively regulates ER-mediated
transcription and its levels were also reduced in DA, further
suggesting unopposed ER-mediated transcription. The
differential expression of Cxcl10, Vil2, Trim16, Gins3, and
Gadd45b was confirmed with quantitative real-time PCR (Fig-
ure 4a, b). The ERs Esr1 and Esr2 were not differentially
expressed in the microarray analysis, and those results were
confirmed with quantitative real-time PCR (Figure 4b). There
was a trend toward increased expression Esr2 in
DA.F344(Cia5d), but that difference did not reach statistical
significance (P = 0.093; Figure 4b). Taken together, this pat-
tern of gene expression suggests that the invasive DA FLSs
have an enhanced ER activity regulated at different levels that
could include reduced degradation of the ER, reduced inhibi-
tion of the ER-mediated transcription, and increased levels of
estrogen-inducible genes.

Five of the differentially expressed genes are located 
within the Cia5d interval
Five out of the 66 differentially expressed genes were located
within the Cia5d interval (Table 4). The number of genes
located within the Cia5d interval found to be differentially
expressed between DA and DA.F344(Cia5d) FLSs was
greater than would be expected by chance (3.3% observed
versus 0.8% expected by chance; P = 0.0044 by χ2 with
Yates correction; Table 5).

Trim16, Trpv2, and Ncor1 are closely located on chromosome
10q23, raising the possibility that a polymorphism in a regula-
tory region or intron in this region, or even in one of these
genes, could account for the difference in expression detected
between the two strains.

Discussion
RA histology is typically characterized by pronounced synovial
hyperplasia, also called 'pannus'. The RA pannus produces
proinflammatory cytokines and proteases, and invades carti-
lage and bone leading to joint destruction and deformities [4].
The FLS is a key player in RA pannus and joint pathology, and
has increased invasive properties, compared with osteoarthri-
tis, even after several passages in vitro [12,27]. Furthermore,
the increased invasive properties of RA FLSs have been asso-
ciated with increased radiographic joint destruction [13],
underscoring the relevance of this in vitro phenotype to dis-
ease outcome.

We recently described the first evidence that the invasive
properties of FLSs are genetically regulated [15]. We deter-
mined that a gene located within the arthritis severity regula-
tory Cia5d interval specifically controls the invasive properties
of FLSs via the regulation of the production of soluble MT1-
MMP and activation of MMP-2 [15]. Levels of active MMP-2
are also increased in the synovial fluid of patients with RA, and
correlate with disease severity and radiographic damage [28].
Therefore, understanding the regulation of cell invasion and

Gsdmdc1_predicted Gasdermin domain containing 1 
(predicted)

XM_235434.3 458.74 831.39 1.8 0.00295 20

Trim41_predicted Tripartite motif-containing 41 
(predicted)

XM_220357.3 422.66 732.37 1.7 0.00100 7

LOC498815 Hypothetical gene supported by 
AY771707

XM_579873.1 243.56 366.68 1.5 0.00281 19

LOC304860 Similar to N-acetylneuraminate 
pyruvate lyase

XM_222736.3 270.64 401.65 1.5 0.00176 11

Setdb2_predicted SET domain, bifurcated 2 
(predicted)

XM_224248.3 94.38 136.31 1.4 0.00945 66

LOC361448 Similar to cDNA sequence 
BC013529 (predicted)

XM_341726.2 2852.12 4043.46 1.4 0.00071 5

LOC360899 Similar to SERTA domain 
containing 4

XM_341174.2 1771.29 2489.20 1.4 0.00886 63

Ormdl2_predicted ORM1-like 2 (S. cerevisiae) 
(predicted)

XM_213832.3 1996.56 2773.15 1.4 0.00549 37

LOC498067 Similar to RIKEN cDNA 
2310003P10 (LOC498067), 
mRNA.

XM_573266.1 368.00 494.10 1.3 0.00860 58

Nit1 Nitrilase 1 NM_182668.1 3397.58 4472.84 1.3 0.00296 21

Fam18b_predicted Family with sequence similarity 
18, member B (predicted)

XM_219680.3 2915.92 3746.20 1.3 0.00447 31

Ubxd2_predicted UBX domain containing 2 
(predicted)

XM_573443.1 2018.75 2569.23 1.3 0.00411 27

aEstrogen; ER, estrogen-induced, or estrogen-receptor signaling or degradation are marked in bold. bt test. cOrder (logistic regression) in the list of 66 genes 
differentially expressed between DA and DA.F344(Cia5d). dCancer and invasion associated genes are in italics. eIncreased expression in invading breast cancers.

Table 3 (Continued)

Genes with increased expression in synovial fibroblasts from DA.F344 (Cia5d) compared with DA
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MMP-2 activation is highly relevant to RA. In addition, several
common cancers have increased levels of MMP-2, which cor-
relates with worse prognosis [29-36], suggesting that identi-
fying the Cia5d gene and the pathways controlled by it could
potentially generate novel targets relevant to cancer treatment
as well.

In the present study we used a novel strategy to identify differ-
ences in gene expression that correlate with the invasive prop-
erties of FLSs. First, two closely related strains were used.
These strains have identical DA genomes, except that
DA.F344(Cia5d) congenics have F344 arthritis-resistant
alleles in a 37.2 megabase interval on chromosome 10. This
strategy minimized noise related to allelic variations at other
regions of the genome that are not related to the phenotype of
interest. Second, instead of using synovial tissues, which have
mixed cellularities that interfere with the interpretation of the
results, we generate and used primary FLS cell lines. Third,
FLSs from DA and DA.F344(Cia5d) differ in their invasive
properties, thus providing a more precise phenotype. Finally,
the cells used for RNA extractions were cultured on the same
collagen matrix (Matrigel) used in the invasion experiments,
hence recreating the same in vitro environment. This latter
aspect is critical because extracellular matrix and cell influence
processes that are central to cell invasion, such as the expres-
sion of adhesion molecules and MMP-2 activation [19], and

Figure 2

Cluster analysis and heat map of 66 differentially expressed genesCluster analysis and heat map of 66 differentially expressed genes. DA 
and DA.F344(Cia5d) samples are clustered on columns and genes on 
rows. Bars on the left side of the figure identify the three clusters of 
genes with reduced expression (green) and the three clusters of genes 
with increased expression (red) in DA compared with DA.F344(Cia5d).

Figure 3

Cluster containing invasion and cancer-associated genesCluster containing invasion and cancer-associated genes. Detailed 
view of the cluster that contains genes implicated in invasion and other 
cancer-associated phenotypes, including Cxcl10, Vil2 and Dnmbp.
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are required for proper activation of the invasive phenotype,
including gene transcription. This strategy led to the identifica-
tion of new genes involved in FLS invasion.

A genome-wide analysis of gene expression conducted with
RA FLSs suggested two patterns that correlated with
increased or reduced inflammation in the tissues of origin [37].
Those RA FLSs were not studied for invasion, and there was
no control group without erosive changes for comparison. Fur-
thermore, the RNA was obtained from cells cultured on plastic
dishes and not on a collagen matrix such as Matrigel. There-
fore, it was not surprising that using different methodologies to
address a different question we detected a new FLS invasion
signature that is different from the two RA FLS gene expres-
sion patterns previously reported.

A genome-wide microarray-based gene expression analysis
was conducted to identify genes and pathways that are differ-
entially expressed between highly invasive DA and minimally
invasive DA.F344(Cia5d) FLSs. The analysis revealed that 66
genes out of the 7,665 genes expressed by FLSs were differ-
entially expressed between DA and DA.F344(Cia5d) FLSs (P
< 0.01). Nineteen of the 66 differentially expressed genes
(28.7%) had previously been implicated in tumor suppression
activity or other cancer cell phenotypes, but had not been
implicated in the invasive properties of the FLSs. These can-
cer-related phenotypes include malignant transformation
(Hnrpd) [38], tumor growth (Ach1a and Gfmg) [39,40], onco-
gene-like activity (Plekgh2) [41], tumor apoptosis (Gadd45b)

[42], tumor suppressor activity (Brwd3) [43], cancer cell
growth arrest (Ube2d3) [44], contact inhibition (Gmfg) [45],
and cell invasion (Lox, Ach1a, Cxcl10, Vil2, and Nras) [46-50].
Genetic variations in DNA synthesis gene Rpa3 have been
associated with susceptibility to carcinomas [51], whereas
increased cancer expression of Rpa2 is associated with
adverse outcome in colon cancer [52]. Some of these genes
were found to be expressed in increased levels in certain can-
cers (Hnrpd and Lsm8) [53,54], including highly invasive
types [55]. These observations suggest that FLSs derived
from arthritis joints and cancer cells share common processes
in the regulation of cell invasion, and that these processes are
in part regulated by a gene located within the arthritis severity
locus Cia5d.

Nras [56,57], Vil2 (encoding the ezrin protein) [49,50], and
Cxcl10 [58] – three genes that are upregulated in DA but
downregulated in DA.F344(Cia5d) – have also been impli-
cated in the regulation of gelatinases' expression and activa-
tion, including MMP-2 (Figure 5). These observations provide
a direct link between the invasion and MMP-2 phenotypes that
we have been studying and the gene expression signature reg-
ulated by the Cia5d locus. Furthermore, studies with RA syn-
ovial tissues [59,60] and RA FLSs [60] have also
demonstrated increased expression of Cxcl10 both at mRNA
and protein levels. Cxcl10 has also been shown to increase
the production and activity of gelatinases in RA FLSs [61],
underscoring the direct relevance of our in vitro discoveries to
human disease.

Figure 4

Quantitative real-time PCRQuantitative real-time PCR. Presented are quantitative real-time PCR analysis of (a) genes upregulated in DA and downregulated in 
DA.F344(Cia5d), and (b) genes downregulated in DA and upregulated in DA.F344(Cia5d). These include invasion and cancer-associated genes 
and estrogen-inducible genes. Estrogen receptors Esr1 and Esr2 were also analyzed. *P < 0.05, #P < 0.07.
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In addition to the proinvasive and MMP-2 activating properties
associated with Cxcl10 in FLSs, this chemokine can also
attract C-X-C chemokine receptor (CXCR)3-expressing
inflammatory cells such as memory T cells [62] and mast cells
[59] into the joint, further contributing to disease severity.
Indeed, recent studies that either targeted Cxcl10 [63] or its
receptor CXCR3 [64] significantly ameliorated arthritis in
rodents.

Cxcl10 [65], Vil2 [66], and Trim16 [67] – three of the most
significantly upregulated genes in DA – are known to be
induced by estrogens (Figure 5). A complete analysis of all of
the 66 differentially expressed genes revealed that nine of
them (13.6%) were either regulated by estrogen (Cxcl10, Vil2,
Trim16, Gins3, Gadd45b, and Gmfg) [68] or are involved in
ER signaling (Stip1), ER ubiquitination (Stub1), or ER-medi-
ated transcription (Ncor1). These observations suggested that
abnormalities in the regulation of ER signaling and ER-medi-
ated transcription could contribute to the invasive properties
of DA FLSs. Indeed, estrogens have been shown to increase
levels of active MMP-2 in various tissues and cell types [69-
71], including breast cancers [72], and estrogen antagonists
reversed that effect [71,73]. Estrogens also increase the pro-
duction of active MMP-2 and the in vitro invasive properties of

RA FLSs [74] (Figure 5). Although estrogens are typically
thought of as having anti-inflammatory properties [75], our
observations suggest an intrinsic dysregulation in ER signaling
in DA FLSs. This dysregulation in ER is controlled by the
Cia5d gene, and could contribute to increased FLS invasion
and cartilage and bone erosive changes.

Five of the differentially expressed genes were located within
the Cia5d interval, and this number was greater than expected
by chance. Three of these were upregulated in
DA.F344(Cia5d) FLS (Ncor1, Trim41, and Gtlf3b) and two
were downregulated in DA.F344(Cia5d) (Trpv2 and Trim16),
raising the possibility that a polymorphism/mutation in one of
these genes could explain the arthritis and FLS invasive phe-
notypes attributed to Cia5d. Specifically, a polymorphism in a
regulatory element or intron in one of these genes, or in
another gene in the region, could influence transcription, thus
explaining differences in levels of mRNA and disease. This has
been the case in studies of two other autoimmune or inflamma-
tory diseases in which microarray analysis led to the identifica-
tion of the disease-causing polymorphism [76,77]. In the
present study only Ncor1, a transcriptional repressor regu-
lated by estrogens, appears to be an interesting candidate.
Trpv2 is a cation channel ubiquitously expressed, and the

Table 4

Differentially expressed genes located within the Cia5d interval on rat chromosome 10

Symbol Definition Accession 
number

Position (Mb) Cytogenetic DA mean Cia5d mean Fold change t test Overall 
rank

Reduced 
levels in Cia5d

Trim16 Tripartite motif protein 16 
(predicted) 
(Trim16_predicted)

XM_220552.3 48.95 10q23 262.14 82.27 -3.19 0.00326 23

Trpv2 Transient receptor potential 
cation channel, subfamily V, 
member 2 (Trpv2)

NM_017207.1 48.76 10q23 177.90 92.25 -1.93 0.00745 49

Increased 
levels in Cia5d

Ncor1 Nuclear receptor co-
repressor 1 (Ncor1)

XM_577103.1 48.62 10q23 420.35 679.65 1.62 0.00454 32

Gtlf3b Gene trap locus F3b 
(predicted) 
(Gtlf3b_predicted)

XM_343907.2 47.05 10q22 78.16 175.41 2.24 0.00003 1

Trim41 Tripartite motif-containing 
41 (predicted)

XM_220357.3 34.08 10q21 422.65 732.37 1.73 0.00099 7

Table 5

A greater than expected number of genes located within the Cia5d interval were differentially expressed in FLSa

Differentially expressed Not-differentially expressed

Genes located within Cia5d 5 (3.3%) 146

Genes located outside Cia5d 61 (0.8%) 7453

ap-value = 0.00442 (Chi-square with Yates correction).
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other three genes (Trim16, Trim41, and Gtlf3b) have less clear
functions. The Cia5d interval contains more than 100 genes,
and not all were present in the Illumina microarray. It would be
premature to exclude these genes at this point, and additional
studies with recombinant subcongenic strains are under way.

Conclusion
We have identified a novel invasion-associated gene expres-
sion signature and evidence suggesting a dysregulation in ER
signaling in arthritis FLSs, which are regulated by the arthritis
severity locus Cia5d. It is anticipated that the specific identifi-
cation of the Cia5d gene, and the continued characterization
of processes regulated by this gene, will generate new targets
for therapeutic intervention aimed at reducing cartilage and
bone destruction, and new prognostic markers for RA. The
parallels between our findings in FLSs and observations from
cancer studies suggest that the Cia5d gene might be impor-
tant for cancer biology as well.
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