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ABSTRACT The contribution of ubiquitin-mediated mechanisms in the regulation
of the Toxoplasma gondii cell cycle has remained largely unexplored. Here, we de-
scribe the functional characterization of a T. gondii deubiquitinase (TGGT1_258780)
of the ovarian-tumor domain-containing (OTU) family, which, based on its structural
homology to the human OTUD3 clade, has been designated TgOTUD3A. The
TgOTUD3A protein is expressed in a cell cycle-dependent manner mimicking its
mRNA expression, indicating that it is regulated primarily at the transcriptional level.
TgOTUD3A, which was found in the cytoplasm at low levels in G1 parasites, in-
creased in abundance with the progression of the cell cycle and exhibited partial lo-
calization to the developing daughter scaffolds during cytokinesis. Recombinant
TgOTUD3A but not a catalytic-site mutant TgOTUD3A (C229A) exhibited activity
against poly- but not monoubiquitinated targets. This activity was selective for
polyubiquitin chains with preference for specific lysine linkages (K48 � K11 � K63).
All three of these polyubiquitin linkage modifications were found to be present in
Toxoplasma, where they exhibited differential levels and localization patterns in a
cell cycle-dependent manner. TgOTUD3A removed ubiquitin from the K48- but not
the K63-linked ubiquitinated T. gondii proteins independently of the modified target
protein, thereby exhibiting the characteristics of an exodeubiquitinase. In addition to
cell cycle association, the demonstration of multiple ubiquitin linkages together with
the selective deubiquitinase activity of TgOTUD3A reveals an unappreciated level of
complexity in the T. gondii “ubiquitin code.”

IMPORTANCE The role of ubiquitin-mediated processes in the regulation of the
apicomplexan cell cycle is beginning to be elucidated. The recent analysis of the
Toxoplasma “ubiquitome” highlights the importance of ubiquitination in the parasite
cell cycle. The machinery regulating the ubiquitin dynamics in T. gondii has re-
mained understudied. Here, we provide a biochemical characterization of an OTU
(ovarian tumor) family deubiquitinase, TgOTUD3A, defining its localization and dy-
namic expression pattern at various stages of the cell cycle. We further establish
that TgOTUD3A has activity preference for polyubiquitin chains with certain
lysine linkages—such unique activity has not been previously reported in any
apicomplexan. This is particularly important given the finding in this study that
Toxoplasma gondii proteins are modified by diverse lysine-linked polyubiquitin
chains and that these modifications are very dynamic across the cell cycle, point-
ing toward the sophistication of the “ubiquitin code” as a potential mechanism
to regulate parasite biology.
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Toxoplasma gondii, a protozoan parasite of veterinary and human importance, causes
toxoplasmosis, which presents as symptomatic disease in immunocompromised

humans or animals and can be vertically transmitted during pregnancy (1, 2). About a
third of the human population worldwide is infected by this organism, where the
control of acute infection results in the establishment of a latent encysted form within
the host that is capable of reactivation in the context of immune suppression (3, 4). At
the heart of the clinical manifestations of these diseases is the capacity to replicate
within the host, resulting in the destruction of infected cells and cycles of reinfection
(5). T. gondii replicates in a unique mechanism called endodyogeny, in which two
daughter buds are formed within the mother during cytokinesis (5, 6). While elements
of the mother parasite, including genome-containing organelles (nucleus, mitochon-
drion, and apicoplast), are duplicated and inherited, other maternal components are
degraded and formed de novo in the daughters (5, 7). The degradation of maternal
components provides the building blocks of developing daughter parasites and must
be tightly regulated. Both selective ubiquitin (Ub)-mediated turnover and bulk turnover
by autophagy are likely involved in maternal degradation (8). Regardless of the mech-
anism underlying maternal degradation, the process has to be selective for maternal
components while avoiding the turnover of the daughters to ensure their survival. Such
regulation can be facilitated by selective marking of maternal components for degra-
dation and/or the spatial segregation of the maternal and daughter components by
selective access to the degradative machinery. Such functional control is further
necessitated as demonstrated by the fact that uncontrolled activation of autophagy
leads to the programmed cell death pathway in Toxoplasma (9).

In eukaryotes, posttranslational modification by conjugating monomeric ubiquitin
or polyubiquitin (poly-Ub) to a protein serves as a signal for selective degradation by
the proteasome (10). Ubiquitination may also have roles in signaling and directing
vesicular traffic (11–13). Using a cross-reacting human monoclonal antibody (MAb)
against the 20S proteasome, Paugam et al. (14) first demonstrated the existence of the
proteasome in T. gondii. Subsequent genome-wide bioinformatic analyses of apicom-
plexans, including Toxoplasma, have identified candidate genes encoding major players
of the ubiquitin proteasome system, which includes ubiquitin, ubiquitin-like peptides,
ubiquitin modifiers, ubiquitin ligases needed for ubiquitin activation/conjugation/
ligation reactions, and deubiquitinases (DUBs) (15). Together, these data point directly
to an important role for ubiquitin and ubiquitin-mediated processes in Toxoplasma.
These bioinformatics findings have been recently confirmed by the application of
proteomic approaches to catalog the “ubiquitome” of T. gondii (16). This study has not
only established that T. gondii encodes the capacity to ubiquitinate a significant
proportion of its proteome but further demonstrated that many target proteins which
get ubiquitinated are also transcriptionally regulated in a cell cycle-dependent manner
(16–18). While a few studies have looked into the ubiquitin ligases in Apicomplexa,
investigations on DUBs have been limited (15, 19, 20).

The T. gondii genome contains about 40 different DUBs, which can be categorized
into five different classes (USPs, UCHs, OTUs, Josephins, and metalloproteases) based
on the classification of human DUBs (15, 21). We were specifically interested in the
DUBs impacting the cell cycle and reasoned that DUBs exhibiting cell cycle-dependent
expression had a high likelihood of being involved in cell cycle-related regulation and
processes.

Examination of the genome at ToxoDB (http://www.toxodb.org) for cell cycle-
regulated expression (17) reveals that mRNA expression of one member of the OTU
family DUBs (TGGT1_258780) drops dramatically (8-fold) in parasites transitioning from
mitosis to the completion of cytokinesis (17). We have designated this gene T. gondii
OTUD3A (TgOTUD3A) as described below. Quite significantly, the Plasmodium falci-
parum ortholog (PF3D7_0923100) also has a cell cycle stage-specific transcript expres-
sion profile (22), suggesting a potential functional conservation of this OTU DUB across
apicomplexan species.
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In this study, we characterized the expression and biochemical activity profile of
TgOTUD3A against both synthetic substrates and parasite proteins. A detailed func-
tional characterization of TgOTUD3A reveals substrate specificity for different ubiquitin
linkages which were found to be present in Toxoplasma. This highlights a previously
unappreciated level of complexity of the “ubiquitin code” in Toxoplasma that suggests
that a considerable degree of sophistication for ubiquitin-mediated protein modifica-
tion exists in the parasite.

RESULTS
The T. gondii genome encodes several putative OTU cysteine proteases. The OTUs
are the members of a cysteine protease family of deubiquitinases, first identified in
Drosophila melanogaster, in which the misregulation of the founding member caused
ovarian tumors (23). OTU family deubiquitinases have also been found to be important
in mammals, where dysregulation is linked with defects in the cell cycle and is
associated with diverse cancers (24, 25). We focused on the OTU class of deubiquiti-
nases in T. gondii as a part of a broader aim to understand their role in ubiquitin
dynamics during the parasite cell cycle.

A search for OTU cysteine proteases in the Toxoplasma genome database (http://
www.toxodb.org) using motif and text searches (see Materials and Methods) revealed
15 putative hits, including two genes (TGGT1_271070 and TGGT1_266500) annotated
as hypothetical proteins and one (TGGT1_260510) annotated as a ubiquitin thioes-
terase. In order to further characterize and classify the putative hits, we performed a
BLAST search of primary amino acid sequences of TgOTUs against the sequence and
structural information of human OTUs in the Protein Data Bank (http://www.rcsb.org/
pdb). Phylogenetic analysis (Fig. 1A) distributes the human OTUs into four distinct
clades (OTUB/Otubain, OTUD, A20-like, and OTULIN clades) based on the homology of
the OTU domain (26). We classified and named the TgOTUs based on structure
prediction analysis (see Materials and Methods) with reference to the human OTU
domain-encoding genes (26). The TgOTUs have the highest structural homology to two
human ortholog clades (OTUD and OTUB), with neither the human A20-like proteins
nor OTULIN subfamily members being represented (Fig. 1B; Table 1) (26). Out of 15 hits
in the T. gondii genome, we identified the OTU domain in 12 protein sequences. Most
of the TgOTUs possess a C-terminal OTU domain (Pfam accession number PF02338)
(27), except for TGGT1_243430 and TGGT1_229710, which have the OTU domains in the
middle of the protein sequence (Fig. 1B). These two TgOTUs are also very large (1,395
amino acids [aa] and 987 aa, respectively) compared to other TgOTUs (in the range of
200 to 600 aa) (Fig. 1B). Of note, three TgOTUs (TgOTU7 [TGGT1_271070], TgOTU8
[TGGT1_216440], and TgOTU9 [TGGT1_266500]) possess predicted structures that did
not match with any of the known human OTU domain clades and so were designated
by numbers only. Three genes (TGGT1_410520, TGGT1_362240, and TGGT1_356210)
were previously annotated as putative TgOTUs in ToxoDB based on their homology to
different ortholog groups, but none of them have true OTU domains and they were
therefore excluded from further analyses.

TgOTUD3A expression is variable in the population but uniform within a
vacuole. Toxoplasma gondii tachyzoites (associated with the acute asexual phase) and
bradyzoites (associated with the chronic asexual phase) replicate predominantly by
endodyogeny, an internal budding mechanism where 2 daughters are formed within
the mother (5, 28). The functional organization of endodyogeny deviates from the
canonical eukaryotic cell cycle in that the specific stages overlap, as seen most
dramatically in the fact that cytokinesis is initiated before the completion of mitosis (29)
(Fig. 2A). Inner membrane complex 1 (TgIMC1) intensely labels developing and recently
emergent parasites (Fig. 2A), as was previously shown (30, 31). The staining pattern of
TgIMC1 has been used as a marker of different stages of cytokinesis. Microarray data
available in ToxoDB from a cell cycle study on thymidine-synchronized parasites
showed that the transcript expression patterns of TgOTUD3A (TGGT1_258780) exhib-
ited a dramatic cell cycle-regulated profile during endodyogeny (17). TgOTUD3A is
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significantly upregulated during S phase and the early stages of mitosis, following
which expression drops dramatically (about 8-fold) when the cell cycle moves from late
mitosis to cytokinesis. Expression levels are at their lowest in early G1 and subsequently
increase as the parasite enters S phase (17).

In order to examine if the transcriptional profile is accurately reflected at the protein
level, we epitope tagged TgOTUD3A in situ with a C-terminal 3� hemagglutinin (HA)
tag (32). Immunofluorescence analysis using anti-HA antibody indicates that there is a
range of expression in different vacuoles (Fig. 2B to D). Consistent with synchronous
replication within a vacuole, TgOTUD3A expression within any given vacuole remains

FIG 1 Phylogenetic analysis of human and putative Toxoplasma OTUs. (A) Phylogenetic tree of human (Hs) OTUs based on the
sequence homology of their OTU domains. Human OTU domain sequences which were used to define this relationship have been
described in the work of Mevissen et al. (26). The members of the same OTU clade are marked with the same color. The sequence
of and structural information on human OTU domains were used to classify the Toxoplasma OTUs (TgOTUs). (B) Phylogenetic tree of
putative Toxoplasma OTU domains based on the homology of amino acid sequences of the OTU domains. TgOTUs were designated
on the basis of SMART alignment to the closest human OTU domains (color codes indicate predicted structural similarity with HsOTU
domains). Homologs are designated TgOTU-clade-A/B/C to indicate the members with similar OTU domain structures. The predicted
structures of 3 Toxoplasma OTUs do not match any human OTU domains, and these have been designated TgOTU7, -8, and -9. The
protein length (number of amino acids) and the predicted locations of OTU domains within the individual TgOTU genes are
schematically represented. The sequence accession numbers of three OTUs that show cell cycle-associated transcript expression (17)
have been marked with a red box. Nucleotide sequence accession numbers for Toxoplasma genes were obtained from ToxoDB.
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uniform (Fig. 2B to D). Costaining the TgOTUD3A-HA parasites with anti-TgIMC1 (green)
and anti-HA (red) antibodies (Fig. 2B to E) unambiguously identified a differential
expression pattern which correlates with the nuclear staining (grayscale image) and the
stages of the cycle occurring within individual vacuoles. The parasites that are in G1

(based on the lack of daughter buds along with small tightly packed nuclei) had lower
levels of TgOTUD3A-HA expression (G1, Fig. 2B) than did the ones that progressed
through S phase, based on larger nuclear size and higher labeling intensity (S/M,
Fig. 2B), and are at early cytokinesis as evidenced by the emergence of daughter buds
(E, Fig. 2B). The parasites that are in the advanced stages of cytokinesis (I, Fig. 2C, and
L, Fig. 2D) showed higher levels of TgOTUD3A-HA expression than did the ones in early
cytokinesis or G1/S. Finally, a strong TgOTUD3A-HA signal was observed in the residual
bodies (RBs), where all remaining maternal components are targeted after the daugh-
ters become separated from the mother (RB, Fig. 2D). We further measured the
TgOTUD3A-HA signal intensity in the parasites from different stages of the cell cycle.
The mean intensity of TgOTUD3A-HA signals appears to be significantly different
(Fig. 2F and G) across the stages of the cell cycle and follows the transcript expression
pattern as shown previously (17).

TgOTUD3A is localized to the cytoplasm and partly colocalizes with devel-
oping daughter (TgIMC1) scaffolds. The examination of the distribution of
TgOTUD3A-HA in the tagged parasites reveals that TgOTUD3A is localized in the
cytoplasm and distributed as distinct granular puncta (Fig. 2B to E). Of note, no
significant nuclear staining was observed. The distribution of TgOTUD3A-HA in gravid
parasites appears to be somewhat concentrated on early-, intermediate-, and late-stage
daughter scaffolds (E/I/L, Fig. 2E) with additional labeling observed within the cyto-
plasm of daughters and the mother parasite. Notably, there appears to be no localiza-
tion of TgOTUD3A-HA on the maternal scaffold. In the vacuoles where the residual
bodies were found, TgOTUD3A-HA was also found to be localized to the residual bodies
(RB, Fig. 2D and E).

Recombinant TgOTUD3A has selective activity against polyubiquitin but
not monoubiquitinated targets. TgOTUD3A is predicted to be a member of the
cysteine protease superfamily. Based on the sequence analysis, we have identified the
amino acids (aspartate [D226], cysteine [C229], and histidine [H341]) in TgOTUD3A
which are predicted to form the catalytic triad, a unique feature of all cysteine protease
family proteins. We aligned the amino acid sequences of the OTU domain of TgOTUD3A
with the closest human (OTUD3; GenBank accession number NP_056022.1), Saccharo-

TABLE 1 Catalog of Toxoplasma OTUs based on amino acid sequence homology and
predicted structural similarity relative to characterized human OTUsa

TgOTU Gene identifier
Closest human
ortholog

% identity
(similarity)
to HsOTU
domain

Predicted linkage
specificity based
on HsOTU activity

TgOTUD1A TGGT1_207650 HsOTUD1 23 (39) K63
TgOTUD1B TGGT1_237894 HsOTUD1 23 (37) K63
TgOTUD1C TGGT1_323200 HsOTUD1 23 (37) K63
TgOTUD2 TGGT1_277990 HsOTUD2 43 (63) K27, K29, K33
TgOTUD3A TGGT1_258780 HsOTUD3 28 (46) K6, K11
TgOTUD3B TGGT1_229710 HsOTUD3 23 (40) K6, K11
TgOTUD3C TGGT1_243430 HsOTUD3 27 (48) K6, K11
TgOTUD5 TGGT1_243510 HsOTUD5 21 (40) K48, K63
TgOTUD7 TGGT1_271070 ND ND
TgOTUD8 TGGT1_216440 ND ND
TgOTUD9 TGGT1_266500 ND ND
TgOTUB1 TGGT1_260510 Otubain (HsOTUB1) 27 (49) K48
aPredicted substrate specificities of TgOTUs for poly-Ub linkage are based solely on the primary sequence
data and their relatedness to the human HsOTUs. These may not reflect true linkage specificities
determined by biochemical characterization. Such a functional deviation is evident for TgOTUD3A (in bold).
Some TgOTU domains lack sequence-based structural homology to human HsOTUs, noted as ND (not
determined). Predicted linkage specificity is based on HsOTU activity as reported by Mevissen et al. (26).
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myces cerevisiae (OTU1; Saccharomyces Genome Database [SGD] accession number
S000001850), and Arabidopsis thaliana (OTU7; GenBank accession number AFS88955.1)
orthologs and found TgOTUD3A to be 28.3%, 14.3%, and 30% identical, respectively, to
these evolutionarily divergent species. Despite this poor overall homology, the critical
amino acid residues of the catalytic triad were found to be highly conserved across
these species (Fig. 3A). We expressed both the wild type and a catalytic mutant (C229A)
form of recombinant TgOTUD3A full-length proteins in Escherichia coli for activity

FIG 2 TgOTUD3A expression and localization during endodyogeny. (A) Schematic representation of T. gondii endodyogeny: presence of overlapping cell
cycle phases. Patterns defining nuclear size, intensity of DNA labeling, and nuclear morphology establish the G1, S, and M phases. The staining pattern
of TgIMC1 was used as a guide for cytokinesis. The extent of TgIMC1 labeling of daughter scaffolds defines the early (E), intermediate (I), and late (L) stages
of cytokinesis. The maternal remnant, the residual body (RB), is indicated. (B) Expression dynamics and localization of TgOTUD3A in a TgOTUD3A-HA-
tagged clonal line. Expression of in situ-tagged TgOTUD3A-HA is uniform within a vacuole, but intensity differs in adjacent vacuoles, suggesting cell
cycle-dependent expression similar to the transcript expression profile. The parasites in G1 (left) have lower expression levels than do the ones with early
small daughter TgIMC1 scaffolds (E, right). The parasites with early daughter buds (E) transitioning from S phase to mitosis (S/M) are characterized by
larger, more intensely labeled nuclei (DNA). (C) The parasite on the right is in the intermediate (I) stage of cytokinesis (based on the length of daughter
TgIMC1 scaffolds) and expresses relatively more TgOTUD3A-HA than do ones in G1/S (four parasites on the left). (D) Parasites at the late stages of
cytokinesis (L; with mature daughter buds) exhibit a higher TgOTUD3A-HA signal than do the ones in G1. TgOTUD3A-HA signal is also evident within the
residual body (RB). Bars, 10 �m. (E) Enlarged merged images of four stages (G1, early, intermediate, and late, highlighted with the dashed boxes in the
other panels) show granular, punctate, and cytoplasmic TgOTUD3A-HA signal while showing partial colocalization with the early, intermediate, and late
daughter buds. There is no accumulation of TgOTUD3A-HA in the nucleus. The level of TgOTUD3A-HA appears to be highest in the parasites with mature
daughter buds (L). The residual body exhibits TgOTUD3A labeling without any significant TgIMC1 signal. (F) Images of HA/TgIMC1 double-labeled
TgOTUD3A-HA parasites were acquired at random at a fixed exposure. The HA signal intensity within whole individual parasites was measured in arbitrary
units (AU) using ImageJ software and plotted to show the distribution and range of signal intensity at different cell cycle stages based on the TgIMC1
staining pattern (as shown in the cartoon above). For the residual body category, only the signal intensity of the residual body was measured where it
was clearly present in the phase images. (G) One-way ANOVA shows that there is a significant difference in TgOTUD3A-HA expression across different
cell cycle stages. One-way ANOVA: F4,107 � 70.45 (P < 0.0001). The comparisons between cell cycle stages were done using Tukey’s pairwise
multiple-comparison test (� � 0.05). Where the mean fluorescence intensity differed significantly is indicated by Y (for yes), and the level of significance
is indicated by the number of asterisks. The letter N (for no) indicates that no significant difference exists between groups.
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assays. Before examining the biochemical activity of the recombinant proteins, we
performed a structure prediction analysis of both wild-type TgOTUD3A and its catalytic
mutant (C229A) in silico using homology-driven protein modeling (PyMOL program).
Our prediction analysis indicated that the catalytic cysteine mutation (C229A) should
not have any effect on overall predicted protein folding (Fig. 3B).

We tested both recombinant wild-type and TgOTUD3A (C229A) mutant forms of the
enzyme in an in vitro fluorometric deubiquitination activity assay (SenoLyte 520 DUB
assay kit; AnaSpec). This assay works on the basis of the deconjugation of the ubiquitin
from a quenched conjugated fluorophore, 7-amino-4-methylcoumarin (AMC), resulting
in fluorescence emission from the freed AMC. Neither the wild type nor the cysteine
mutant form of TgOTUD3A (C229A) showed any activity relative to either the no-

FIG 3 Sequence alignment and structure prediction of TgOTUD3A. (A) Schematic of TgOTUD3A structure, highlighting the position
of the OTU domain. Amino acid alignment of TgOTUD3A (TGGT1_258780), human OTUD3 (sequence accession number
NP_056022.1), Saccharomyces OTU1 (SGD accession number S000001850), and Arabidopsis OTU7 (sequence accession number
AFS88955.1). Despite evolutionary distances, critical amino acid residues forming the catalytic triad (aspartate, cysteine, and
histidine) are highly conserved across these species (red asterisks). The catalytic cysteine that was mutagenized to generate
TgOTUD3A (C229A) is highlighted (yellow). (B) Predicted protein structures of wild-type TgOTUD3A and the TgOTUD3A (C229A)
mutant were obtained in PDB (Protein Data Bank) file format using the RaptorX (http://raptorx.uchicago.edu/StructurePrediction)
program and were viewed and analyzed using the protein modeling software PyMOL1.7.4.4 Edu (educational product) (Schrodinger,
LLC). Structural alignment of the predicted wild-type (green) and mutant (purple) structures revealed no substantial difference in the
overall structure or in the active site (insets). The yellow arrowhead highlights the spatial location of the mutagenized residue.
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enzyme control or the positive control (a human DUB; UHC L3) (Fig. 4A). This finding
suggested three possibilities: (i) monoubiquitinated targets may not be the substrate of
this enzyme, (ii) the enzyme needs to bind both ubiquitin and a specific region or
scaffold of the substrate protein to cleave the conjugated ubiquitin, or (iii) alternatively
the lack of activity could be attributed to improper folding of the recombinant enzyme.

To test if the purified recombinant enzyme was correctly folded, we performed a
suicide probe assay where ubiquitin-propargylamine (Ub-PA; in which glycine-76 of
ubiquitin was replaced by an alkyne moiety, propargylamine) was used as a probe (33).
This alkyne probe forms a vinyl thioester bond with the catalytic cysteine of the enzyme
if it is correctly folded and thus possesses a structurally competent substrate binding
site (Fig. 4B). We used the Ub-PA probe in a 3 M excess for both the wild type and the
catalytic mutant (C229A) of TgOTUD3A and found that the majority (approximately
�70%) of the wild-type TgOTUD3A bound to the probe and made a covalent bond
with the catalytic cysteine while the mutant (C229A) was unable to bind to the suicide
substrate (Fig. 4C). This result clearly demonstrated that most of the recombinant
wild-type enzyme was correctly folded and that its catalytic pocket was able to bind
ubiquitin.

FIG 4 TgOTUD3A activity is directed specifically at polyubiquitin and is dependent on the catalytic cysteine (C229) in the active site. (A) Neither
recombinant wild-type TgOTUD3A nor mutant TgOTUD3A (C229A) exhibited any activity against monoubiquitinated target in a fluorescence cleavage
assay using an Ub-AMC substrate at 37°C for 1 h. Human HsUCH L3 was used as a positive control. (B) Schematic showing three possible scenarios to
explain outcome of suicide substrate assay. (C) The ability of ubiquitin to bind to the wild-type or mutant protein was established using an electrophoretic
mobility shift assay. Recombinant wild-type TgOTUD3A and the mutant TgOTUD3A (C229A) were incubated with suicide substrate (Ub-propargylamine
at a 3 M excess). After a 30-min incubation, reaction mixtures were resolved by SDS-PAGE and stained with Coomassie blue (upper panel). Duplicate
experimental samples for each reaction mixture were used to perform Western blotting using TgOTUD3A mouse polyclonal antiserum (lower panel). Both
Coomassie blue staining and immunoblotting indicated that roughly 60 to 70% of wild-type TgOTUD3A forms a cross-linked adduct with the suicide
substrate, resulting in a shift in mobility. This shift was not observed in the TgOTUD3A (C229A) mutant. (D) Deubiquitination assay with polyubiquitin
chains (a mix of Ub trimers to heptamers) demonstrates the breakdown of the Ub polymer predominantly into the monomeric form with some dimers
following incubation with TgOTUD3A for 15 min. The essentiality of the catalytic cysteine (C229A) is confirmed by the absence of any activity against
poly-Ub. Monoubiquitin and polyubiquitin were detected using antiubiquitin antibody in immunoblot analysis. (E) Schematic showing the predicted
pattern of time-dependent digestion of a polyubiquitin chain if the DUB is an exodeubiquitinase. The predicted pattern for an endodeubiquitinase would
be a more random, nonsequential degradation. (F) Digestion pattern of polyubiquitin chains (trimer to heptamer) in time course incubation using a 5-min
interval. The stair-like distribution, similar to that predicted in panel E, establishes that TgOTUD3A is an exodeubiquitinase.
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The absence of activity against a monoubiquitinated substrate led us to examine if
recombinant TgOTUD3A can remove ubiquitin monomers from polyubiquitin. Recom-
binant wild-type TgOTUD3A was able to digest polyubiquitin chains to ubiquitin
monomers (Fig. 4D), suggesting that it targets unanchored polyubiquitin or polyubiq-
uitinated substrates. The deubiquitinase activity was crucially dependent on the integ-
rity of the catalytic triad, as the mutant TgOTUD3A (C229A) enzyme was functionally
inactive (Fig. 4D).

In order to determine if TgOTUD3A was an exo- or an endodeubiquitinase, we
performed a time course experiment to establish the degradation pattern as a function
of time. An exodeubiquitinase activity will generate a laddering pattern by removing
ubiquitins sequentially one at a time from an end of a polyubiquitin chain (Fig. 4E), in
contrast to the activity of an endodeubiquitinase, where the pattern of ubiquitin
removal from the polyubiquitin chain would be more random. The observation of a
time-dependent laddering pattern by sequential release of ubiquitin monomers indi-
cates that TgOTUD3A is an exodeubiquitinase (Fig. 4F).

TgOTUD3A exhibits a preference for specific lysine-linked polyubiquitin
chains. Ubiquitin has seven lysine residues (K6, K11, K27, K29, K33, K48, and K63) which
can participate in forming isopeptide bonds with the terminal glycines (Gly-75 and -76)
of another ubiquitin molecule (34). Involvement of a specific lysine in the formation of
isopeptide bonds produces linkage specificity and structurally diverse branched-chain
conformations (35, 36). In contrast, when the ubiquitins are conjugated in a head-to-tail
fashion (between the initiator N-terminal methionine and the C-terminal glycine), a
linear ubiquitin polymer chain is formed (35, 36). The specific lysine linkage of the
polyubiquitin chains confers various conformations on the overall structure of the
polymer. The K48- and K11-linked chains adopt a “closed” confirmation, while the K63-
linked and linear chains present an “open” confirmation (36, 37) (Fig. 5A).

We tested the ubiquitin linkage-specific activity of recombinant TgOTUD3A against
the unanchored synthetic ubiquitin trimer of the three most prevalent mammalian
nonlinear chains (K48, K63, and K11) and a linear chain in an in vitro digestion reaction.
In a 30-min reaction, recombinant TgOTUD3A digested ubiquitin trimers of different
lysine-linked chains (K11, K48, and K63) into dimer and monomer with a different level
of efficiency but was not able to digest the trimer of linear chains under the same
reaction conditions (Fig. 5A). To further determine the precise linkage specificity of
TgOTUD3A among these 3 nonlinear polyubiquitin chains, we performed a kinetic
analysis by using a fixed amount of substrate (ubiquitin trimer) and a fixed amount of
recombinant enzyme, stopping the reaction at 5-min intervals. We found that within
10 min, all K48-linked ubiquitin trimers were digested into ubiquitin monomers,
whereas it took 30 min to have similar levels of accumulation of ubiquitin monomers
from the breakdown of K11-linked ubiquitin trimers. Even in 30 min, a significant
amount of ubiquitin dimers was present in the digestion of K63-linked chains (Fig. 5B).
To confirm this result, we tested the activity preference in another assay in which we
used a fixed concentration of the ubiquitin trimer (1 �g) and different dilutions of the
enzyme for determining the efficiency of the enzymes in a 10-min reaction. At a 1:3
dilution (0.57 �M), TgOTUD3A digested all the K48-linked ubiquitin trimers to mono-
mers within 10 min. In the same dilution range, the reactions with the K11-linked chains
and K63-linked chains had significant accumulation of undigested dimers and trimers,
respectively (Fig. 5C). The efficiency of digestion from dimer to monomer is also higher
for the K48- than for the K11-linked chains, although at a 1:9 dilution (0.19 �M), the
reaction kinetics appear to be similar for K48-linked and K11-linked chains. These results
are in agreement with the findings of a previous activity preference assay (Fig. 5A and
B). Altogether, we have determined that the preference for linkage-specific activity of
TgOTUD3A is K48 � K11 � K63. This biochemical activity profile of TgOTUD3A is
different from that of its structural human ortholog, Homo sapiens OTUD3 (HsOTUD3)
(Table 1) (26).

T. gondii proteins are modified by linkage-specific ubiquitination. The
diversity of polyubiquitin linkages present in T. gondii is not known. The TgOTUD3A
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activity profile suggests the existence of specific K-linked polyubiquitin in T. gondii. In
order to establish the presence and diversity of polyubiquitin modifications in T. gondii,
we used an immunoblotting approach with ubiquitin linkage-specific antibodies. To
minimize contamination from ubiquitinated host proteins, we extensively washed the

FIG 5 TgOTUD3A exhibits linkage specificity for different K-linked polyubiquitin chains. (A) A fixed amount of
recombinant TgOTUD3A was incubated for 30 min with Ub trimers possessing different lysine-linked (K11, K48,
and K63) chains or a linear Ub chain (head-to-tail polymer with the C-terminal Gly connected to the N-terminal
Met). The reaction mixture was analyzed by immunoblotting. The first lane in each pair contains the
linkage-specific substrate alone, while the second has recombinant TgOTUD3A added (see the lower panel for
the immunoblot). Based on the relative levels of (Ub)3, (Ub)2, and Ub, TgOTUD3A exhibits a substrate
preference for K48 relative to K11- and K63-linked poly-Ub. TgOTUD3A exhibits no activity toward end-to-end
linear polyubiquitin chains. Below is a schematic representation of the established structural conformations of
linkage-specific poly-Ub chains defining closed and open organization (37). (B) The specific linkage preference
is confirmed using a kinetic analysis revealing a complete breakdown of K48-linked poly-Ub to monomer by
a 10-min reaction. In the same time period, there were still undigested Ub dimers and Ub trimer present for
the K11-linked and the K63-linked poly-Ub chains, respectively. NT, no treatment. (C) The effect of TgOTUD3A
concentration on the breakdown of linkage-specific Ub trimers confirms the maximal activity against K48-
linked poly-Ub relative to K11-linked substrate. Activity against K63-linked poly-Ub required considerably
higher levels of TgOTUD3A. Together, these analyses confirm a substrate preference for K48- over K11- over
K63-linked poly-Ub chains.
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parasites following syringe passage. The total number of parasites following the
washing was determined, and a volume corresponding to 5 � 106 parasites per lane
was used. We also used 5 � 106 parasite equivalents from our unwashed sample and
the volume equivalent from the uninfected HFF cells. These samples allow us to
roughly distinguish between host- and parasite-derived signals, as the linkage-specific
antibodies do not inform us of the origins of the modified proteins. As was previously
reported for human cells (38, 39), the signal for K48-modified proteins appeared as a
broad high-molecular-weight smear in the HFF-only sample. This general pattern is also
observed in an unwashed infected-cell sample (Fig. 6A). In contrast, for the washed
parasite sample, the K48-linked smear pattern was more concentrated at a higher
molecular weight range (Fig. 6A). In order to confirm that the washing effectively
removed host material, we stained the immunoblot with anti-human actin. The inten-
sities of the actin band and the K48 signal in their respective lanes were measured and
plotted as total signals or as the ratio of K48 to actin within each infected sample
(Fig. 6A). This ratio confirms that most of the K48 signal in the washed sample is of
parasite origin.

The diversity of K63-linked proteins in the parasite extract, which appear as discrete
bands, is considerably lower than that of K48-linked proteins (Fig. 6B). The presence of
distinct bands in the infected samples (washed and unwashed) that are not evident in
the uninfected HFFs points to specific parasite proteins being K63 linked (Fig. 6B). This

FIG 6 Evidence for diverse lysine-linked ubiquitin-modified proteins in T. gondii. Washed and unwashed parasites (5 � 106) and an equivalent volume
of uninfected HFF lysate were subjected to immunoblot analysis using anti-K48 and -K63 linkage-specific antibodies. Following exposure, the blots were
stripped and reprobed with an anti-human actin antibody to assess the level of host contamination in the parasite-containing samples. Immunoreactivity
signals for linkage-specific ubiquitin antibodies (K48 and K63) and anti-human actin antibody were measured by using the ImageJ (NIH) gel lane analysis
tool in arbitrary units (AU) for the first two lanes (washed and unwashed parasites) to provide a semiquantitative measure of relative host contamination
in the parasite-containing samples. (A) K48 blot. Due to the higher diversity of the K48 linkage in both the parasite (T. gondii washed and T. gondii � HFF)
and the host cell (HFF), the pattern appears as a high-molecular-weight smear. The distribution of the smear in the washed parasites, however, is different
relative to the samples containing more host contamination. The level of host contamination is estimated using an anti-actin antibody. In order to
determine the level of host contamination, the total signal per lane and the K48 signal relative to actin were established for the parasite-containing
samples. These data confirm that the bulk of the K48 signal in the washed sample is from K48-modified parasite proteins. (B) K63 blot. The diversity of
K63 linkage-modified parasite proteins is significantly lower than that of K48 (distinct bands indicated by white asterisks in T. gondii washed and T. gondii
� HFF). HFF-derived bands are indicated by yellow asterisks. The level of host contamination and level of parasite-specific signal were determined as
described above. (C) As an antibody specificity control, synthetic ubiquitin trimers of different linkages were resolved by SDS-PAGE and separately probed
with K11, K48, and K63 antiubiquitin linkage-specific antibodies. All three antibodies detected the specific linkages with no cross-reactivity.
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is supported by the quantification of the overall K63 signal and the intensity relative to
host actin (Fig. 6B).

We did not detect any K11-specific antibody staining either in the parasite or in the
host cells by immunoblotting, even when 1 � 108 parasite equivalents were probed in
the immunoblot assay (data not shown). This is likely due to the possibility that
K11-specific ubiquitin modification appears in the parasite in a certain narrow window
of the cell cycle, as is the case for human cells, where the K11 linkage is restricted to
mitotic cells (39). The frequency of mitotic cells in contact-inhibited HFFs is typically
under 5% of the population (40). Of note, the anti-K11 antibody specifically reacts with
synthetic K11-linked ubiquitin chains (Fig. 6C). The specificity of the K48- and K63-
specific antibodies was similarly confirmed (Fig. 6C).

To further confirm these immunoblotting results and to localize the linkage-specific
modification in the parasite in vivo, we performed indirect immunofluorescence assays
(IFAs). In these IFAs, we used TgIMC1 as a guide for different stages of endodyogeny.
All three ubiquitin linkage-specific antibodies (K11, K48, and K63) showed a range of
staining intensities and distributions in the parasite at various stages of the cell cycle
(Fig. 7). The K48-specific signal was found in both the cytoplasm and the nucleus. The
intensity of the signal increased as the parasite cell cycle progressed through mitosis
and early cytokinesis (E/I, Fig. 7, left panel). As the daughters matured within the
mother (defined by the size of the daughter scaffolds), K48-linked protein intensity
decreased (L, Fig. 7, left panel) and was accompanied by an accumulation of K48-
associated signal within the residual body when the daughter parasites separated from
the mother (RB, Fig. 7, left panel).

Levels of K63-linked modifications were very low during G1/S and gradually in-
creased as the daughter buds emerged (G1/S/E/I, Fig. 7, right panel). We further
observed a concentration of K63-linked ubiquitin-modified targets in the vicinity of
developing daughter buds (E/I, Fig. 7, right panel). As the daughters progressed
through the maturation process, the K63 polyubiquitin linkage signal became more
diffuse throughout the cytoplasm, finally concentrating in the residual body (RB, Fig. 7,
right panel).

The K11-linked polyubiquitin modification was barely detectable in the parasites at
G1/S or at early stages of cytokinesis (G1/S/E/I, Fig. 7, middle panel), which was
consistent with the absence of any signal shown by immunoblotting (data not shown).
The punctate K11 signal was detected throughout the cytoplasm at later stages of
endodyogeny (L, Fig. 7, middle panel). The concentration of the K11-specific signal in
the residual body further suggests that the residual body is the major “recycling bin” for
the proteins, given its connection to the ERAD pathway (41) (RB, Fig. 7, middle panel).
In some instances, the K11 signal was present in the parasitophorous vacuole (G1/S,
Fig. 7, middle panel). This pattern, which likely represents the debris from broken-down
residual bodies, was not detected with antibodies specific for K48 and K63 linkages
(Fig. 7). Thus, despite the lack of a signal for K11-modified proteins in the immunoblot
analysis, its detection within individual parasites at the later stages of the cell cycle
suggests a highly specific function(s).

We further quantified the fluorescence intensity of the specific ubiquitin linkages to
establish whether cell cycle-associated patterns would emerge by using TgIMC1 as a
marker to determine the approximate stages of the T. gondii cell cycle (Fig. 8A). The
quantification of all three linkage-specific polyubiquitin signals and analyses show that
the levels of K48-, K11-, and K63-linked polyubiquitin modifications vary significantly
across the cell cycle (Fig. 8B to D). Based on the overall dynamics, semiquantitative
measurements of linkage-specific ubiquitin modification, and the antibody sensitivities
(see Materials and Methods), we came to the conclusion that the most abundant
nonlinear ubiquitin modification in the parasite is the K48 linkage, followed by the K63
and K11 linkages, respectively, among the three polyubiquitin linkages that we tested.

TgOTUD3A is able to digest K48-linked but not K63 ubiquitin-modified
proteins of T. gondii. Using synthetic unanchored ubiquitin tripeptide of different
linkages, we have shown above that TgOTUD3A has a preference for specific K-linked
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ubiquitin modification (Fig. 5), which serves as indirect evidence that the substrate
preference of TgOTUD3A is for K48-linked or K11-linked ubiquitin chains. Our ability to
label K11-, K48-, and K63-linked ubiquitinated T. gondii proteins with the linkage-
specific antibodies led us to examine whether recombinant wild-type TgOTUD3A can
digest T. gondii proteins which are modified by any of these 3 nonlinear polyubiquitin

FIG 7 Levels and localization of specific ubiquitin linkage modifications in T. gondii at different stages of endodyogeny. An indirect
immunofluorescence assay using K48, K11, or K63 linkage-specific antibodies relative to endodyogeny using anti-TgIMC1 was
performed. (Left) Staining with anti-K48 antibody in the G1 parasites is brighter than that of host cells and is uniform over both
cytoplasm and nucleus. The intensity of the K48 signal appears brighter in the parasites in the early stage during cytokinesis (E/I)
but appears to decrease as the daughter scaffolds mature (L and release of daughters) and finally becomes concentrated in the
residual body (yellow asterisk). (Middle) No significant K11 signal (red) within G1 parasites. Patches of K11 labeling are sometimes
found in the vacuolar space outside the parasite (yellow arrowheads). No significant host cell staining was observed. Parasites with
immature daughter buds (E/I) exhibit a signal marginally above that of G1 parasites, which lack daughter buds. K11 signal increased
significantly in the parasite with mature daughter buds (L) where the signal appears to be punctate and with no specific localization.
The K11 signal becomes more diffuse as the daughters are separating from the mother, ending up concentrated in the residual body
(yellow asterisk). (Right) The anti-K63 antibody signal appears to be diffuse and barely detectable above the host cell background
in G1/S parasites. Both the levels and distribution of the anti-K63 signal change with developing daughter buds as it becomes more
concentrated toward the anterior of the parasite where the daughter buds are developing (E/I). The K63-linked modification exhibits
a more distributed and diffuse pattern relative to the late-stage daughter scaffolds (L). The K63 modification becomes less intense
in the recently emerged daughters (release of daughters) with the signal redistributing to the residual body (yellow asterisk). Bars,
10 �m.
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chains. We incubated recombinant wild-type TgOTUD3A or the mutant TgOTUD3A
(C229A) enzyme with a mechanically lysed parasite extract to establish whether it could
deubiquitinate the ubiquitin-modified Toxoplasma proteins in the washed parasite
extract (less host contamination). In a 30-min incubation reaction, wild-type TgOTUD3A

FIG 8 Quantification of linkage-specific (K48, K11, and K63) polyubiquitin signals across the stages of the T. gondii
cell cycle and in the residual body (RB). (A) The cartoon shows how the pattern of TgIMC1 signal was used as a guide
to categorize different stages of the cell cycle in which specific polyubiquitin signal intensity of the whole parasite
was measured. (B) The images of K48 polyubiquitin antibody-stained parasites were captured at random at a fixed
exposure time. The intensity per unit area of the parasite was measured by ImageJ software and plotted to show
the distribution and range of signal intensity at different cell cycle stages. For the residual body category, only the
signal intensity of the residual body was measured. One-way ANOVA shows a significant difference between the cell
cycle groups (F4,136 � 27.47 [P < 0.0001]). (C and D) Similarly, images were captured for K11 (C) and K63 (D)
polyubiquitin signals and measured by ImageJ software. One-way ANOVAs show significant differences of signal
intensity between different cell cycle groups of parasites both for K11-linked (F4,158 � 48.23 [P < 0.0001]) and for
K63-linked (F4,178 � 41.72 [P < 0.0001]) polyubiquitin. The analyses between cell cycle stages were done using
Tukey’s pairwise multiple-comparison test (� � 0.05). The mean fluorescence intensities which differed significantly
are indicated by Y (for yes), and the level of significance is indicated by the number of asterisks. The letter N (for
no) is used to denote that no significant difference existed between groups.
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digested almost all the K48-linked ubiquitin modifications on diverse parasite proteins
(observed as a smear in Fig. 9A) but failed to digest any K63-linked modification
(Fig. 9C). It is important to note here that the washed parasite extract is likely to have
some host K48-linked proteins. Complete digestion of all modified proteins indicates
that the recombinant enzyme removed the K48-linked ubiquitin irrespective of the
target proteins. In addition, the C229A catalytically inactive enzyme failed to deubiq-
uitinate any modified proteins regardless of the linkage specificity. The observed
activity against the synthetic substrate confirmed that the assay condition and the
enzyme activity were optimum (Fig. 9B and D). We could not perform the same assay
for K11-linked parasite proteins because of their low abundance, which makes them
difficult to detect on the immunoblot (data not shown).

Together, the demonstration of diverse polyubiquitin modification in Toxoplasma
gondii and the selective degradation of polyubiquitin by a deubiquitinase, TgOTUD3A,
can provide a basis for fine-tuned functional regulation during the cell cycle and normal
homeostasis.

DISCUSSION

The replication of T. gondii by endodyogeny is unique and complex in the aspects that
the generation of daughter parasites occurs within the mother while the maternal

FIG 9 TgOTUD3A selectively deubiquitinates K48-linked Toxoplasma proteins. Washed parasites
were mechanically lysed and incubated in the DUB reaction buffer without (control) or with either
recombinant wild-type TgOTUD3A or mutant TgOTUD3A (C229A) enzyme in a 30-min reaction,
resolved using SDS-PAGE, transferred, and probed with linkage-specific antibodies. (A) K48 linkage-
specific antibody shows the removal of K48-linked ubiquitin T. gondii proteins in the presence of the
wild type but not its cysteine (C229A) mutant. Notably, all K48-linked ubiquitin modifications are
removed from protein targets by the wild-type enzyme. (B) The same enzyme mix used in panel A
was tested using the synthetic K48 polyubiquitin chains, confirming activity in the wild-type enzyme
and no activity in the C229A mutant. (C) The same parasite extract and enzyme used in panel A were
resolved and probed with a K63 linkage-specific antibody. Neither wild-type nor mutant enzyme was
able to digest T. gondii K63-linked ubiquitinated proteins, confirming that K63-linked polyubiquitin
is a poor substrate for TgOTUD3A. (D) Enzyme and buffer controls using the synthetic K63-linked
substrate confirm partial activity. Both digestion blots were stripped and reprobed with TgSAG1
antibody for a loading control (A and C).
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components are being turned over (5). This necessitates spatiotemporal regulation by
the selective destruction of maternal structures while protecting the essentially iden-
tical structures in the developing daughters. We hypothesized that the ubiquitin-
mediated selective degradation and its fine-tuned regulation by deubiquitinases play
critical roles in this highly regulated process. The important role of proteasome-
mediated degradation in T. gondii has been demonstrated, as the inhibition of the
proteasome severely disrupts multiple stages of the replication (42). While a few studies
describe apicomplexan ubiquitin ligases (15, 20), only one study to our knowledge has
looked into a deubiquitinase in T. gondii (19). None of these studies investigated the
role of ubiquitin-mediated regulation of apicomplexan replication. A recent release of
the T. gondii ubiquitome (16) reveals that a number of ubiquitinated proteins are also
regulated at the transcriptional level in a cell cycle-dependent manner.

In this study, we have characterized an OTU family deubiquitinase which is tran-
scriptionally regulated during T. gondii cell cycle progression. The role of OTUs in
Drosophila germ cell proliferation (23, 43) and various human cancers (24, 25, 44) hints
at their role in cell cycle regulation. The role of OTU DUBs (OTUs) in apicomplexans has
remained unexplored. The T. gondii genome encodes the largest number of OTU
domain-containing proteins among the sequenced apicomplexans (15). The number of
predicted OTUs encoded in the T. gondii genome is comparable to numbers in the
much larger human and Arabidopsis genomes (26, 45). In contrast, Saccharomyces
cerevisiae possesses only two OTUs (46). Consistent with the human and Arabidopsis
OTUs, Toxoplasma OTUs are distributed in different phylogenetic clusters. The unique
OTU domain structure of some members and the presence of homologous OTU
domain-containing members in different phylogenetic clusters suggest a possible
adaption of diverse function.

TgOTUD3A is distinct from other OTU family members as it exhibits a very dynamic
cell cycle-dependent transcript expression profile and its Plasmodium ortholog is
expressed only at the “schizont stage” in red blood cells (22). Expression of epitope-
tagged protein mirrored the mRNA expression profile (17), indicating that TgOTUD3A
protein expression is controlled primarily at the level of transcription. The selective
concentration of HA-tagged protein on the daughter scaffolds during endodyogeny
suggests a potential protective mechanism to prevent the degradation of the newly
formed daughter scaffolds during a period of high overall turnover of maternal inner
membrane complexes (IMCs) (47). This is quite interesting in the light of recent findings
by Silmon de Monerri et al. (16) that 18% of the T. gondii ubiquitome consists of
proteins associated with the inner membrane complex. As the cytoskeletal proteins are
constitutively remodeled during the progression of the cell cycle, a deubiquitinase such
as TgOTUD3A might be important to regulate spatiotemporal turnover of maternal
IMCs while protecting the daughter IMCs inside the mother.

TgOTUD3A is predicted to be a member of the cysteine protease family of DUBs. Our
data have clearly shown that TgOTUD3A is a true cysteine protease and functions as an
exodeubiquitinase which can remove ubiquitin from nonlinear polyubiquitin chains.
The loss of DUB activity due to a point mutation of the conserved catalytic cysteine
(C229A) is consistent with the activities of both human and Arabidopsis OTUs (26, 45),
indicating a high level of evolutionary conservation. The activity preference of
TgOTUD3A toward polyubiquitin linkages (K48 � K11 � K63) can be explained struc-
turally by the “closed” conformation of both K48 and K11 chains (34, 36, 37, 48, 49) as
opposed to the “open” conformation of K63-linked and linear chains (36, 50). The
conformation of these different nonlinear polyubiquitin chains is dependent on which
of the 7 encoded lysine residues participates in the formation of the “isopeptide bond”
between two linked ubiquitin molecules (34, 36). Polyubiquitin chains in solution
exhibit structural flexibility (36), permitting a DUB to cleave a nonspecific linkage at a
higher concentration (26). This explains the secondary specific activities of the OTUs
(26, 45), as is the case for the lower activity of TgOTUD3A against the K63-linked chains.
The ability of the recombinant TgOTUD3A to remove ubiquitin from K48-linked but not
K63-linked ubiquitin-modified T. gondii proteins provides a direct confirmation that this
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deubiquitinase is very specific to digestion of K48-linked ubiquitin modification in the
context of ubiquitinated targets in T. gondii. However, the complete digestion of K48
linkages from T. gondii proteins suggests that TgOTUD3A recognizes primarily the
K48-linked ubiquitin chain as opposed to the ubiquitinated protein targets, as is the
case for some of the highly selective DUBs (51).

The connections between the linkage specificity and functional activity of OTUs do
not always appear to be conserved. For example, TgOTUD3A is structurally the closest
ortholog of human OTUD3, which has preferential activity for K6- and K11-linked
polyubiquitin chains (26). However, based on our biochemical characterization,
TgOTUD3A is functionally closest to the human OTU protein VCPIP, which has speci-
ficity for K11- and K48-linked chains (26). Interestingly, our bioinformatic analysis did
not identify any VCPIP-like OTU domain-containing OTU in T. gondii.

In mammalian cells, out of seven possible ubiquitin chain linkages, 3 chains (K48,
K63, and K11) are the most prevalent (38). The polyubiquitin linkages on proteins serve
as a code to determine the fate of protein substrates, affecting their turnover, local-
ization, and functions (34). Among the 3 nonlinear chains, two polyubiquitin chains
(K48 and K63) (49, 50) are found to be involved with 2 distinct functions: the K48-linked
polyubiquitin chains are the canonical signature of proteasome-mediated degradation
(52) while substrates conjugated with the K63-linked polyubiquitin chain are normally
associated with nondegradative pathways such as vesicular trafficking, endocytosis,
and cell signaling (52) and are also shown to be involved in autophagy (53), a
lysosome-mediated bulk degradation and recycling process (9). In recent years, the
K11-linked chains have emerged as important regulators of cell division in addition to
other functions such as ERAD (endoplasmic reticulum-associated protein degradation)
and signaling pathways (38, 41, 54). In contrast to mammalian species, K48-linked
chains are involved in cell cycle regulation in yeast (55). This switch from K11 to K48
linkages for cell cycle regulation has been attributed to “closed” mitosis (nuclear
envelope does not dissolve during mitosis) of yeast as opposed to the “open” mitosis
(nuclear envelope disintegrates before chromosomal segregation) (41). Toxoplasma and
other apicomplexans undergo “closed” mitosis (5), suggesting a potential functional
similarity to yeast. Therefore, the cell cycle-associated expression and the K48- and
K11-specific deubiquitinase activity of TgOTUD3A suggest its potential involvement in
cell cycle regulation.

Our immunofluorescence analyses clearly indicate that T. gondii proteins are mod-
ified by different lysine-linked ubiquitin modifications. The levels and spatiotemporal
accumulation of these different ubiquitin modifications are very dynamic during dif-
ferent stages of endodyogeny, suggesting their important role in parasite biology and
replication. The high diversity and ubiquitous distribution of K48 ubiquitin modification
in both the nucleus and the cytoplasm as opposed to the concentrated nuclear signal
of total ubiquitin found by Silmon de Monerri and colleagues (16) suggest that this
linkage may serve as a general degradation signal. In addition, as noted above, the
nuclear localization of the K48 ubiquitin modification might suggest potential cell
cycle-regulating activities as observed for yeast (55). The accumulation of K63 linkage
in the vicinity of newly emerging daughter buds is suggestive of a potential role of
K63-mediated vesicular transport (52) of the component proteins’ organellar biogenesis
which needs to be further investigated. The detection of punctate K11 signal at later
stages of endodyogeny suggests a possibility that K11 modifications may not be
specific for mitotic activity in T. gondii but rather could be involved in other processes
such as ERAD pathways as found in yeast (41). The absence of nucleus-specific K11
signal may argue against any specific role in mitosis. Interestingly, maternal remnants
in the residual body label strongly with all three ubiquitin linkage-specific antibodies
(K11, K48, and K63), suggesting a potential function associated with the turnover of
excess maternal components. Moreover, the differential distribution and the dynamics
of linkage-specific ubiquitination correlate with the profile of a linkage-specific deu-
biquitinase, TgOTUD3A, across the cell cycle. This is very intriguing in terms of tight
spatiotemporal regulation and needs to be further investigated.
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The work presented here strongly suggests that TgOTUD3A expression and local-
ization and activity profile are associated with the cell cycle-related functions. Interest-
ingly, the TgOTUD3A knockout (TgOTUD3A-KO) is viable, suggesting compensatory
changes (data not shown). Though viable, TgOTUD3A-KO parasites do exhibit a com-
plex phenotype associated with the fidelity of parasite replication which we are
currently in the process of elucidating (data not shown). This suggests that the
ubiquitination may play an important role in the fine control of endodyogeny in
addition to the effects associated with bulk protein turnover.

Extensive research on ubiquitin-mediated pathways over the past 2 decades has
expanded our knowledge about the role of ubiquitin-mediated posttranslational mod-
ifications not only in protein degradation but also in other diverse cellular processes
(56). Our understanding of the “ubiquitin code” in Apicomplexa is still in its infancy. This
study opens a new dimension to our understanding by demonstrating not only the
presence of diverse linkages necessitating a large number of Ub-ligases and DUBs in
T. gondii but also tying their dynamics to the progression of the cell cycle. Finally, with
our characterization of TgOTUD3A we establish an experimental template for the
functional biochemical characterization of T. gondii DUBs as a prelude to studies on
how they impact both generalized and highly specialized parasitic processes.

MATERIALS AND METHODS
Parasite culture and maintenance. Type I RH �HXGPRT�ku80 and �HXGPRT�ku80 wild-type
TgOTUD3A-HA Toxoplasma gondii lines were cultured in primary human foreskin fibroblasts (HFFs; ATCC)
as described elsewhere (9). HA-tagged parasites were selected in medium supplemented with 1 �M
pyrimethamine (Sigma).

Bioinformatic analysis of TgOTUs. Putative TgOTUs were identified using text and OTU domain
motif (Pfam accession number PF02338) searches (27) in the Toxoplasma genome database (http://
www.toxodb.org). The putative hits were further verified for OTU domain and other structural features
by BLAST searches in the EMBL Pfam database (http://pfam.xfam.org/), SMART (http://smart.embl-
heidelberg.de/), and PROSITE (http://prosite.expasy.org/) analysis program. Conservation of active site
residues was demonstrated by MUSCLE alignment, and the phylogenetic tree was drawn with the
UPGMA (unweighted pair group method using average linkages) tree building method using Geneious
version 6.1.8 (57). Predicted structures of wild-type and catalytically inactive TgOTUD3A (C229A) were
determined using the primary amino acid sequences on a template-based protein structure modeling
program, RaptorX (http://raptorx.uchicago.edu/StructurePrediction) (58). The structure alignment anal-
ysis and labeling of active site residues were done by using PyMOL1.7.4.4 Edu (Schrodinger, LLC).

Epitope tagging of TgOTUD3A. Genomic DNA 2.5 kb upstream of the second-to-last codon of the
TgOTUD3A gene (TGGT1_258780) was amplified using forward and reverse primers anchored with
ligation-independent cloning (LIC) adapter sequences (forward, 5=-TACTTCCAATCCAATTTAGCGCCTCGT
CTTCCTTCG-3=; reverse, 5=-TCCTCCACTTCCAATTTTAGCCCCTCGTTGTGCGCCCGT-3=) and cloned into LIC
cloning sites of the pHA3xLIC tagging plasmid (a kind gift from Peter Bradley, UCLA). Approximately
20 �g of NsiI-digested linearized plasmid was transfected in the RHΔku80 strain and selected with 1 �M
pyrimethamine 24 h posttransfection. Parasites were maintained in medium containing 1 �M pyrimeth-
amine. Drug-resistant parasites were screened for HA expression in IFAs and Western blot analyses, and
HA-tagged parasites were clonally selected in a 96-well plate by limiting dilution.

Immunofluorescence assay. An HFF monolayer was grown in a confluent monolayer on coverslips
in a 24-well plate and infected (1 � 104 per well) with either RHΔku80 or TgOTUD3A-HA parasites. At 16
to 24 h postinfection, the infected cell monolayer was fixed in methanol as previously described (9). The
following primary antibodies were used at the indicated dilutions: rabbit anti-HA (1:100; Cell Signaling;
catalog no. 3724), mouse monoclonal antibody (MAb) 45:36 anti-TgIMC1 antibody (1:1,000) (30, 59),
rabbit antiubiquitin (1:2,000; Millipore), rabbit antiubiquitin K11 linkage (1:100; 2A3/2E6; Millipore;
catalog no. MABS107-I), rabbit antiubiquitin K48 linkage (1:100; Apu2; Millipore; catalog no. 05-1307),
rabbit antiubiquitin K63 linkage (1:100; Abcam; catalog no. ab179434). IFA slides were visualized using
a Zeiss AxioVision microscope with a 100� 1.4-numerical-aperture (NA) oil immersion objective and
acquired using a high-resolution grayscale Zeiss AxioCam MRM digital camera. Images for anti-HA or
anti-linkage-specific ubiquitin antibody signals were recorded at a fixed exposure time (for each
antibody) to permit comparison of intensity levels at various stages of the parasite cell cycle guided by
the anti-TgIMC1 staining profile. To generate representative images for each cell cycle stage, grayscale
images were pseudocolored to reflect the emission of the specific fluorophore, Brightness and contrast
were adjusted, and the merged images were generated using Adobe Photoshop CS6. All manipulations
to acquired images (brightness/contrast) were applied uniformly to the presented images.

Quantification of IFA signal intensity and statistical analysis. For quantification of TgOTUD3A-HA
signal or linkage-specific polyubiquitin signals, images were acquired at random and at a specific
exposure time for each antibody using a Zeiss AxioVision microscope with a 100� 1.4-NA oil immersion
objective and acquired using a high-resolution grayscale Zeiss AxioCam MRM digital camera. The
intensity of the signal from the raw unmodified images was measured per unit area of the parasite or
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residual body by NIH ImageJ software. All the graphs for signal intensity quantification data and one-way
analyses of variance (ANOVAs) were done using GraphPad Prism version 6.0 (La Jolla, CA). The P values
were calculated, and the difference between any two group means was analyzed as described previously
(28).

Immunoblotting for detection of linkage-specific ubiquitin modifications. Equivalent amounts of
parasites (2 � 107) either washed (minimum host contamination) or mixed with the host cells or the
same amount of uninfected host cells was lysed with a French press. A one-fourth amount was loaded
per lane (5 � 106) and immunoblotted with a 1:100 dilution of each linkage-specific antibody. The
sensitivity and the specificity of the antibodies were determined by loading the same amounts of
synthetic peptides of different linkages and treating parasites with an individual linkage-specific antibody
of the same dilution. The linkage-specific antibodies were very specific and showed no cross-reactivity
for other linkages. Their sensitivities appear to be similar based on the comparative analysis of Ponceau
staining and the immunoreactivity pattern.

Cloning, site-directed mutagenesis, expression, and purification of TgOTUD3A. Full-length
coding sequence (single exon, open reading frame [ORF] of 1,092 bp) of TgOTUD3A (TGGT1_258780) was
amplified by PCR from RH strain cDNA using forward and reverse primers (forward, 5=-CACCATGCCGC
TCTGTCGGAACTC-3=; reverse, 5=-TCACCCTCGTTGTGCGCC-3=) and cloned into Champion pET100 vector
(Life Technologies). The codon for the catalytic cysteine residue was mapped and mutagenized to alanine
(C229A) by inverse PCR using a primer pair (forward, 5=-GGGCGACGGGAACGCCCAGTTCCGGTCC-3=;
reverse, 5=-GGACCGGAACTGGGCGTTCCCGTCGCCC-3=) and the QuikChange II site-directed mutagenesis
kit (Agilent Technologies). Both wild-type TgOTUD3A and mutant TgOTUD3A (C229A) protein expression
plasmids were transformed into BL-21 Star (DE3) E. coli. For protein expression, transformed bacteria
were grown to an optical density at 600 nm (OD600) of 0.8 at 37°C and induced with 500 �M IPTG
(isopropyl-�-D-thiogalactopyranoside) for 16 to 20 h at 20°C in LB-ampicillin medium. Bacteria expressing
wild-type and mutant 6�His-TgOTUD3A protein were lysed using a French press (10,000 lb/in2) and
incubated with 250 U of Benzonase at room temperature (RT) for 15 min. Following sonication and
centrifugation (13,000 rpm for 5 min), the supernatant was incubated with MagZ beads (Promega MagZ
protein purification system) and eluted with 1 M imidazole. The purified protein was stored at �20°C in
30% glycerol.

Generation of anti-TgOTD3A mouse polyclonal antiserum. Four BALB/c mice were immunized
with purified recombinant TgOTUD3A protein (first dose, 45 �g/mouse) with Freund’s complete adjuvant
(Sigma; catalog no. F-5881), followed by 3 boosts (dose, 25 �g/mouse) in incomplete Freund’s adjuvant
(Sigma; catalog no. F5506) at days 14, 21, and 49. On day 56, mice were sacrificed by CO2 asphyxiation
followed by cervical dislocation in accordance with the protocol approved by the University of Kentucky
IACUC. The raw serum was collected and tested by Western blotting and IFAs. The resultant polyclonal
antiserum worked only in immunoblotting and not in IFA applications.

Deubiquitination assays. (i) Fluorometric deubiquitination assay. The fluorometric deubiquiti-
nation assay was performed using ubiquitin-AMC (7-amino-4-methylcoumarin) fluorophore (SensoLyte
520 deubiquitination assay kit; AnaSpec). Ubiquitin-AMC substrate was incubated with or without
recombinant wild-type and mutant TgOTUD3A (C229A) enzymes. DUB activity of the recombinant
proteins was measured according to the kit protocol.

(ii) Linkage-specific deubiquitination assay. The linkage-specific deubiquitination assay was per-
formed as follows. Recombinant wild-type and TgOTUD3A (C229A) enzymes were activated and incu-
bated with parasite extract or synthetic polyubiquitin substrate mix containing 1 �g of polyubiquitin
chain (trimer or 3- to 7-polymer or trimer of specific linkages from Boston Biochem) diluted in 2� DUB
buffer (100 mM NaCl, 100 mM Tris, pH 7.4, and 10 mM dithiothreitol [DTT]) and incubated at 37°C for
indicated time points as described by Mevissen and colleagues (26). The reactions were stopped by
addition of 2� Laemmli SDS-PAGE sample buffer, and reaction mixtures were run on a 4 to 20%
Tris-glycine gradient gel (Bio-Rad). The proteins were transferred to a nitrocellulose membrane immu-
noblotted with anti-rabbit monoclonal ubiquitin primary antibody (dilution, 1:2,000; EMD Millipore;
catalog no. 04-454) and goat anti-rabbit horseradish peroxidase (HRP) secondary antibody (dilution,
1:2,000; Thermo Scientific; catalog no. 31460) and developed on X-ray film (Kodak) with Super Signal
West Pico chemiluminescence substrate (Thermo Scientific).

Suicide substrate assay. The suicide substrate assay was done as described earlier (26, 33) with
some modification. In brief, Ub-propargylamine (Ub-PA) (Boston Biochem) was dissolved to 2 �g/�l in
dimethyl sulfoxide (DMSO) and finally diluted in 1� probe buffer (100 mM NaCl, 25 mM Tris [pH 7.5]).
Three molar equivalents (relative to recombinant TgOTUD3A proteins) of Ub-PA was incubated with wild
type and TgOTUD3A (C229A) in a 20-�l reaction mixture for 30 min at 37°C. The reactions were stopped
by addition of 2� Laemmli SDS-PAGE sample buffer, and the reaction mixtures were incubated for
another 15 min at 37°C before being run on a 4 to 20% Tris-glycine gradient gel. The gel was stained with
Coomassie blue to visualize binding of Ub-PA to the recombinant TgOTUD3A proteins. Duplicate reaction
mixtures were run on SDS-PAGE gels and immunoblotted with mouse polyclonal TgOTUD3A antibody.
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