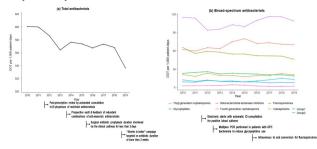
31. Stepwise Expansion of Antimicrobial Stewardship Program and Its Impact on Antibiotic Use and Resistance Rates in a Tertiary Care Hospital in Korea

Dong Hoon Shin, MD¹; Hyung-sook kim, Pharm D²; Eunjeong Heo, Pharm D²; Myoung Jin Shin³; Nak-Hyun Kim, M.D²; Hyunju Lee, MD, PhD⁴; Jeong Su Park, MD, PhD⁵; Kyoung Un Park, n/a²; longtak Jung, n/a²; Kyoung-Ho Song, MD, Ph D²; Minsun Kang, n/a⁵; Jaehun Jung, n/a⁶; Eu Suk Kim, M.D., PhD¹; Hong Bin Kim, M.D., PhD¹; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea, Seoul, Seoul-t'ukpyolsi, Republic of Korea ²Seoul National University Bundang Hospital, Seoungnam-si, Kyonggi-do, Republic of Korea ³Seoul National University Bundang Hospital¹, Sungnam, Kyonggi-do, Republic of Korea ⁴Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Korea, Seongnam, Kyonggi-do, Republic of Korea ⁵Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Korea, Kyonggi-do, Kyonggi-do, Republic of Korea ⁶Gil Medical Center, Kyonggi-do, Kyonggi-do, Republic of Korea ⁶Gil Medical Center, Kyonggi-do, Kyonggi-do, Republic of Korea

Session: P-04. Antimicrobial Stewardship: Outcomes Assessment (clinical and economic)

Background. The U.S. Centers for Disease Control and Prevention released the core elements of antimicrobial stewardship program (ASP). In some countries, however, they may be difficult to apply in countries with limited resources. In this study, we evaluated the impact of successful ASP implementation on antibiotic use and resistance rates in an institution with limited infrastructural support.


Methods. A series of ASP activities were reviewed according to the core elements of ASP. The retrospective data of all hospitalized patients at a tertiary care teaching hospital was collected from January 2010 to December 2019, including antibiotic prescription data and culture results of all clinical specimens. The trends of the antibiotic-resistant rates were compared with nationwide data in Korea. The trend analyses were performed with 2-sided correlated seasonal Mann-Kendall nonparametric tests.

Results. The ASP activities over the past decade were summarized in Table. After activities such as preauthorization were achieved, other ASP activities were added one by one. Also, the infectious disease pharmacists, as ASP co-leaders, mainly carried out the following activities: reducing redundant anti-anaerobic antimicrobials and intravenous fluoroquinolones, and advised the physicians to discontinue the antibiotic prescription in cases when the intervention was plausible. After the ASP implementation, total antibacterial use significantly decreased (P < 0.01; Figure). The use of glycopeptides (P < 0.01) and fluoroquinolones (P < 0.01) gradually decreased, while the use of third-generation cephalosporines did not significantly change (P = 0.48). There was no significant change in total carbapenems use, but ertapenem use increased (P = 0.02). Compared with the nationwide data, methicillin-resistant Staphylococcus aureus was on a decreasing trend consistently. Although third-generation cephalosporin-resistant Escherichia coli increased, third-generation cephalosporin resistant Escherichia coli increased the Escherichia coli increased the Escherichia coli increased the Escherichia coli increase the Escherichia coli increase the Escherichia coli increase the Escherichia coli increase t

Table. Antimicrobial stewardship activities for hospitalized patients over the past decade in Seoul National University Bundang Hospital. ASP: antimicrobial stewardship; ID: infectious disease; CDSS: Clinical decision support system

ASP core elements	Examples	Starting point
Hospital leadership	Staffing, partly involved in ASP activities	
1100pmi kuutisiip	• 4 ID (3 adult and 1 pediatric) physicians at a hospital expanded	March 2011
	to over 1,300 beds	
	Pharmacy & therapeutics committee	
	Promoted to ASP committee	November 2018
	· Established a new subcommittee for therapeutic drug	September 2019
	monitoring of antibiotics	
Accountability	An ASP team consisting of ID specialists, pharmacists, and	November 2018
	microbiology laboratory staffs	1101011001 2010
Pharmacy expertise	ID training for the pharmacists	March 2013
	1 full-time ID pharmacist designated for ASP	May 2019
	-	May 2019
Action	Preauthorization	
	 Post-prescription review and feedback of restricted 	August 2011
	antimicrobial by automated consultation to ID physicians	
	Prospective audit & feedback	
	Electronic alerts with automatic ID consultation for positive	August 2011
	blood cultures	
	 Redundant combinations of metronidazole or clindamycin 	July 2013
	with other anti-anaerobic antimicrobials	
	· Intravenous to oral conversion for fluoroquinolone and	August 2015
	metronidazole	
	· "Shorter is better" campaign targeted on antibiotic duration of	August 2018
	more than 2 weeks	
	Facility-specific treatment guidelines	
	For surgical antibiotic prophylaxis, the duration shortened via	
	the clinical pathway	
	- less than 2 days	April 2015
	- less than 24 hours	April 2020
	Pharmacologic intervention	
	Vancomycin loading by the computerized CDSS	July 2016
	Daily alerts using ASP review sheet specialized for the	November 2016
	pharmacists on electronic medical record	November 2010
	- intravenous to oral conversion	
	- inappropriate dosing according to indications and renal	
	function	
	- drug interactions and adverse events	
	Rapid diagnostics	
	Multiplex polymerase chain reaction performed in patients	February 2012
	with gram-positive cocci in clusters bacteremia	
Tracking	Antibiotic use measures	
	Monitoring antibiotic administration data from clinical data	July 2014
	warehouse (defined daily dose, day of therapy, and length of	
	therapy per 1,000 patient-days)	
	Outcome measures	
	Weekly meeting with the microbiology laboratory as well as	March 2017
	the infection control office	
	Daily morning conference with the pharmacists	March 2013
Reporting	Regular report on the proportion of clinical consultations on	December 2019
	therapeutic drug monitoring services of antibiotics	
	administered for over 7 days	
Education	Education programs for not only physician but also	March 2016
vii	pharmacists	
	Educational material development by elective course internal	March 2016
	medicine residents, and then shared with other physicians	March 2010
	medicine residents, and then shared with other physicians	l .

Figure. DOT per 1,000 patient-days in Seoul National University Bundang Hospital and implemented actions of antimicrobial stewardship program. DOT: days of therapy; ID: infectious disease; PCR: polymerase chain reaction; GPC: gram positive cocci; Group 1 carbapenem: ertapenem

Conclusion. A stepwise implementation of the core ASP elements was effective in improving the appropriate use of antibiotics and reducing the antibiotic resistant organisms, even with limited human resources.

Disclosures. All Authors: No reported disclosures

32. Impact of a Four-Year Antimicrobial Stewardship Program on Antimicrobial Resistance

Konstantina Chrysou, Clinical Assistant¹; Olympia Zarkotou, Consultant²; Vasiliki Mamali, Consultant³; Nektaria Rekleiti, Internist²; Katina Themeli-Digalaki, Consultant²; Georgios Chrysos, Medical Director²; Athanasios Tsakris, Pofessor⁴; Spyridon Pournaras, MD/PhD³; ¹Department of Microbiology, National and Kapodistrian University of Athens, Attens, Attiki, Greece; ²Tzaneio General Hospital of Piraeus, Athens, Attiki, Greece; ³Tzaneio General Hospital og Piraeus, Athens, Attiki, Greece; ⁴National and Kapodistrian University of Athens, Athens, Attiki, Greece; ⁵Taneio General

Session: P-04. Antimicrobial Stewardship: Outcomes Assessment (clinical and economic)

Background. Antimicrobial resistance (AMR) is an increasing threat to public health and antimicrobial consumption is a primary driver of resistance. Many studies have shown that the implementation of an antibiotic stewardship program (ASP) improves prescribing of antibiotics and can reduce AMR. Purpose of the study was to assess the impact of a successful ASP, implemented for four years, on AMR in our 427-bed tertiary general hospital.

Methods. We monitored pharmacy data for the years 2015 (pre-intervention) and 2016-2019 (post-intervention) for antibiotic consumption (DDD/100 bed-days) and resistance rates. AMR data were obtained from the clinical microbiology laboratory's electronic database. To achieve the goals of ASP we used a range of interventions as pre-authorization strategy for the protected antibiotics (tigecycline, carbapenems, quinolones, glycopeptides, daptomycin, colistin, linezolid), prospective audit and feedback with direct intervention, de-escalation or switch from iv to oral administration and appropriate selection and duration of chemoprophylaxis in surgery.

Results. Significant reductions were observed for: total antibiotics, colistin, carbapenems, quinolones and tigecycline consumption during study period. Significantly lower resistance rates were documented in 2019 compared to 2015 for Pseudomonas aeruginosa and for Klebsiella pneumoniae. As for Acinetobacter baumannii isolates, which in our hospital are highly-resistant exhibiting >90% resistance to carbapenems, no significant changes were noted during the study period. Infections caused by Gram-positive pathogens are less prevalent in our hospital. Lower rates of vancomycin-resistant enterococci were noted after the implementation of our ASP (30.4% in 2019 vs. 50.0% in 2015 for E. faecium and 0.6% vs. 6% for E. faecalis, respectively), whereas methicillin-resistant S. aureus isolates increased (40% in 2019 vs. 31.1% in 2015), possibly because most of these infections were not hospital-acquired. Resistance rates of Pseudomonas and Klebsiella

Resistance rates (%) for *P. aeruginosa* 2015 2016 2017 2018 2019 P

	ке	sistance	e rates	(20) tot 1	r. aerug	jinosa
	2015	2016	2017	2018	2019	Р
AMIKACIN	46	51	34.4	33.2	15.6	< 0.0001
CIPROFLOXACIN	53	59	41.3	51	24.9	0.0003
CEFTAZIDIME	55	61	23.4	28.9	13.2	<0.0001
CEFEPIME	49	54	30.7	28.8	13.4	< 0.0001
PIP/TAZO	52	49	23.3	20.3	9.8	<0.0001
MEROPENEM	57	63	37.2	42.7	22.6	< 0.0001
IMIPENEM	61	71	38.8	47.2	25.2	< 0.0001
COLISTIN	7	7	0.0	0.3	0.3	0.0001
	Res	istance	rates (%) for #	C. pneui	noniae
	2015	2016	2017	2018	2019	Р
AMIKACIN	55.4	31.5	31.3	44.9	27.2	< 0.0001
CIPROFLOXACIN	81.1	82.3	73.8	68.1	70.1	0.518
CEFOTAXIME	81.8	84.0	71.6	67.9	67.7	0.0665
CEFEPIME	83.5	75.5	68.0	64.0	62.7	0.0061
PIP/TAZO	81.8	86.2	69.3	62.1	65.8	0.0061
MEROPENEM	81.2	85.6	66.3	59.7	61.8	0.0087
IMIPENEM	76.5	81.8	65.1	59.6	62.2	0.0519
	26.4	16.2	3.9	8.3	19.2	0.1855
TIGECYCLINE	26.4	10.2	3.3	0.5	13.2	0.1000