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Abstract In the present study, a non-pulsatile arterially
perfused hindbrain and upper body rat preparation is
described which is an extension of the brainstem prepara-
tion reported by Potts et al., (Brain Res Bull 53(1):59–67),
1. The modified in situ preparation allows study of cerebellar
function whilst preserving the integrity of many of its
interconnections with the brainstem, upper spinal cord and
the peripheral nervous system of the head and forelimbs.
Evoked mossy fibre, climbing fibre and parallel fibre field
potentials and EMG activity elicited in forelimb biceps
muscle by interpositus stimulation provided evidence that
both cerebellar inputs and outputs remain operational in this
preparation. Similarly, the spontaneous and evoked single
unit activity of Purkinje cells, putative Golgi cells, molecular
interneurones and cerebellar nuclear neurones was similar to
activity patterns reported in vivo. The advantages of the
preparation include the ability to record, without the
complications of anaesthesia, stabile single unit activity for
extended periods (3 h or more), from regions of the rat
cerebellum that are difficult to access in vivo. The
preparation should therefore be a useful adjunct to in vitro
and in vivo studies of neural circuits underlying cerebellar
contributions to movement control and motor learning.
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Introduction

The cerebellum is an ideal brain structure to study neuronal
network mechanisms as its connections are well charac-
terised. It is the largest sensorimotor structure within the
CNS and is intimately involved in the regulation of smooth
and accurate movements. It also contributes to our ability to
improve movements through experience and practice, and
an increasing body of evidence suggests that it may also be
involved in non-motor processes such as sensory, auto-
nomic and cognitive functions (see [2, 3] for details). In
view of the remarkable structural uniformity of its intrinsic
circuitry, it is likely that the cerebellum performs a similar
computation on the information it receives irrespective of
the specific function in question [4]. Diversity of function
between different cerebellar regions is thought to arise
primarily from differences in regional input and output
connectivity (e.g. [5]).

In terms of inputs, many in vivo electrophysiological
studies in anaesthetised, decerebrate and awake animals
have shown that sensory information arising from periph-
eral receptors in muscle, skin and joints can be highly
effective at altering on-going neural activity in the
cerebellum (e.g [6–9]). Related anatomical studies have
also provided important details regarding the ‘wiring’ of
brain circuits linking the cerebellum to other major
structures within the CNS; both in terms of cerebellar
inputs, notably the inferior olive [10] and the pontine
nuclei, [11]; and also in terms of cerebellar outputs e.g. the
red nucleus [12].
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By comparison, the ability to manipulate the ionic
environment and high mechanical stability of in vitro brain
slice preparations and tissue-cultured neurones has provided
important details of the cellular mechanisms and synaptic
events that underlie cerebellar function (e.g. [13–16]).
However, an important limitation of such preparations is
that they usually lack neuronal connections with other parts
of the CNS, and invariably deprive the cerebellum of its
links with the rest of the body. Indeed, normal cerebellar
function is dependent on maintaining its afferent and efferent
connections with other brain structures (especially the
inferior olive, e.g. [17–19]).

We have therefore assessed the utility of a non-pulsatile,
perfused hindbrain and upper body preparation (PHBP) to
study the neuronal mechanisms of the intact cerebellum in
situ. Previously, a similar preparation (but lacking a cerebel-
lum) has been used to examine brainstem mechanisms that

underlie cardio-respiratory control [1, 20]. Other cerebellar
preparations have succeeded in providing good recording
stability whilst maintaining major links between the cerebel-
lum and brainstem [21–27], but the in situ preparation
described here also maintains interconnectivity with the
peripheral nervous system and muscles of the upper body,
thereby allowing a study of cerebellar activity in the context
of intact neural systems.

Methods

Surgical Procedures

Figure 1 shows a schematic diagram of the experimental
setup. All surgical and experimental procedures were ap-
proved and performed in accordancewith local animal welfare
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Fig. 1. Schematic diagram of the perfused hindbrain and upper body
preparation of the rat. The chamber is constructed from Perspex and
held in place on a steel table with magnetic feet. The rat is
decerebrated and perfused with a modified Ringer's solution gassed
with 95% O2/5%CO2 mixture via a double lumen cannula inserted
into the descending aorta. Perfusion pressure (PP) is monitored via the
second lumen of the cannula. The rat is held in place with ear and
nose bars. A peristaltic pump is used to circulate the perfusate. Two
drain holes in the bottom of the chamber return the perfusate efflux to
the perfusate reservoir for reperfusion. Tygon tubing is used to

connect the circuitry. Arrows indicate the direction of perfusate flow.
The flow rate of the perfusate was altered until phrenic nerve activity
(PNA) monitored via a suction electrode displayed a eupneic (ramp-like)
pattern. PNA was integrated to show more clearly the rhythmic activity
consistent with eupnoea. Extra- and intracellular recordings were made
from individual cerebellar neurones. Electrical stimulation of the
brachial plexus or cerebellar cortex was used to evoke cerebellar field
potentials. Forelimb muscle contraction evoked by microstimulation of
nucleus interpositus was monitored by EMG recordings from the
ipsilateral biceps brachii muscle. See “Methods” for further details
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guidelines and the UK Animal (Scientific Procedures) Act
1986. Ten minutes prior to the commencement of the
experiment, the animal received a 0.1–0.2 ml intraperitoneal
injection of heparin (1,000 mg/ml) to prevent the coagulation
of blood during preparation. According to Paton's [20]
original description in the mouse, 25 Wistar rats of either
sex weighing between 85–120 g (4–6 weeks of age) were
deeply anaesthetised with halothane and bisected below the
diaphragm. The upper half of the body was immediately
transferred to ice-cold modified Ringer's solution bubbled
with carbogen. The rostral brain was exposed and the
preparation was decerebrated rostral to the superior colliculus
by aspiration or with a blunt spatula. With the exception of
the forepaws and face, the preparation was skinned to
prevent fur from blocking the tubing as well as pathogens
contaminating the perfusate and degrading the preparation.
Within the thorax, the descending aorta was dissected free,
the phrenic nerve cut at the level of the diaphragm and the
lungs removed. The preparation was then transferred to a
custom made Perspex recording chamber held in place on a
steel table by magnetic feet (Fig. 1 inset). The descending
aorta was rapidly cannulated with a double lumen cannula
(DLR-4, Braintree Scientific, MA, USA) for retrograde
perfusion of modified Ringer's solution (125 mM NaCl,
24 mM NaHCO3, 10 mM dextrose, 5 mM KCl, 2.5 mM
CaCl2, 1.25 mM MgSO4, 1.25 mM KH2PO4, pH7.4)
containing 1.25% of the oncotic agent Ficoll 70 or 1%
Polyethylene glycol. All chemicals were purchased from
Sigma-Aldrich. The second lumen of the cannula was used
to monitor perfusion pressure via a pressure transducer. The
cannula was held in place by securely tying a length of
suture around the aorta. The perfusate was gassed continu-
ously with 95%O2/5%CO2 gas mixture and pumped from a
reservoir flask at a constant flow rate of 25–44 ml/min using
a peristaltic roller pump (Watson-Marlow, Falmouth, 520 S,
UK). The perfusate passed through a heat exchanger where it
was warmed to 37°C before passing through (1) a bubble-
trap which served to remove gas bubbles and dampen
pulsations from the roller pump; (2) a polypropylene mesh
filter (25 μm, Millipore) to prevent cell debris from entering
the preparation; and (3) a second bubble-trap before passing
into the preparation via the cannula. The perfusate efflux was
recycled back to the perfusate reservoir via two drainage
holes in the bottom of the chamber in order to prevent the
wash-out of nutrients. The total volume of the perfusate
circulating through the system was 200 ml. Tygon tubing
(1/16″ID 3/16/4″OD; Cole Palmer) was used to connect the
circuitry, and care was taken to minimise the dead space.
The set-up was enclosed in a Faraday cage with the
exception of the roller pump which was positioned just
outside the cage.

As soon as the aorta was cannulated, the pump flow rate
(and thereby perfusion pressure) was gradually increased

until respiratory activity resumed, typically when the mean
perfusion pressure reached 40 mmHg. The pump flow rate
was adjusted until phrenic nerve activity displayed a phasic,
‘ramp-like pattern’ indicating eupnoea, which was used to
gauge adequate oxygenation of the brainstem (Fig. 1).
Perfusion pressure was maintained at 70–100 mmHg for the
flow rates used in this study. In all experiments (with the
exception of those involving EMG recordings), the paralys-
ing agent vecuronium bromide (0.04 μg/ml, Norcuron,
Organon Teknica, Cambridge, UK), was added to the
perfusate to block neuromuscular transmission. In two experi-
ments, harmaline was added to the perfusate (5 μg/ml, Sigma-
Aldrich) to assess the effects of a pharmacological challenge
on the olivo-cerebellar system.

Once the perfusion pressure was stable, the animal was
secured in place by atraumatic ear bars and a nose clamp
attached to the Perspex bath. By removing the intraparietal
and occipital bone, the entire surface of the cerebellum was
exposed (including regions not normally accessible in vivo,
such as the anterior lobe and the most lateral parts of the
hemispheres). The dura was carefully removed. The
circulating perfusate prevented the surface of the cerebel-
lum from drying out. A 30 gauge T-type thermocouple wire
(W-TW-30, Physitemp Instruments, Clifton, NJ, USA) was
inserted just rostral to the cerebellum to monitor brain
temperature via a microprobe thermometer (BAT-12,
Physitemp Instruments, Clifton, NJ, USA) and maintained
at approximately 32–34°C.

Stimulation Methods

In individual experiments one or more of the following
stimulation procedures was carried out: (1) stimulation of
cerebellar cortical parallel fibres was achieved with a glass-
insulated tungsten microelectrode insulated up to the tip (tip
diameter 15–25 μm) and positioned at or just below the
surface of the cerebellar cortex and in line with the
recording electrode placed at a distance 0.5–1.0 mm away
in the long axis of the folium. Cathodal square pulses of
0.1 ms duration and up to 15 μA in strength were delivered
every 2 s. (2) To evoke climbing fibre responses in the C1
zone of the paramedian lobule [28] bipolar percutaneous
needles were inserted into the ipsilateral brachial plexus.
Square wave constant-voltage electrical stimulation of
0.1 ms duration was delivered every 2 s at intensities
<5 V which was sufficient to generate a small but visible
twitch of the forelimb. (3) Stimulation of mossy fibres was
achieved by dissecting free the facial nerve from the
surrounding connective tissue and the exposed tips of
Telfon-coated silver wires were wrapped around the nerve
for electrical stimulation (0.2 ms constant voltage square
wave pulses, <15 V, or 0.1 ms constant current square wave
pulses, <2 mA delivered once every 2 s). The prepared
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nerve was then embedded in fast-curing dental impression
to prevent it drying out (Xantopren, Heraeus Kulzer, NY).
(4) To stimulate nucleus interpositus, a concentric bipolar
electrode was used. Cathodal constant current pulses
(0.2 ms, 100–200 μA) were delivered once every 2 s. At
some cerebellar nuclear sites, pulse trains (0.1 s, 300 Hz)
were also employed. To verify the location of the
stimulating electrode in nucleus interpositus, the cerebellum
was removed at the end of the experiment (typically 4–5 h
after the initial decerebration) and sunk in a solution of
10% formaldehyde and 20% sucrose. Sagittal sections were
cut on a freezing microtome at a thickness of 100µm.
Sections were mounted serially onto slides, counterstained
with cresyl violet, and dehydrated, cleared and coverslipped
and scrutinised with a light microscope.

Recording Parameters and Data Processing

In every experiment the respiratory motor pattern was
monitored by recording phrenic nerve activity via a glass
suction electrode. Phrenic nerve signals were amplified and
band-pass filtered (0.08–3 kHz). In most experiments,
extracellular recordings from single cerebellar neurones
were made with high impedance glass-insulated tungsten
microelectrodes (3–5 MΩ). For intracellular recording glass
micropipettes containing 3 M KCl or 3 MK-acetate were
used (40–80 MΩ). Signals were differentially amplified and
band-pass filtered (0.1–10 kHz). In additional experiments,
field recordings from the cerebellar surface were made with
low impedance glass-insulated tungsten microelectrodes
(∼50 kΩ). These signals were differentially amplified and
band-pass filtered at 0.3–5 kHz. The ipsilateral forelimb
response to interpositus stimulation was monitored by
EMG recordings with a pair of fine needle electrodes
inserted into the biceps brachii muscle. EMG activity was
amplified and filtered (0.1–5 kHz) through a differential
amplifier. Perfusion pressure and electrophysiological
recordings were digitised at 4 and 20 kHz respectively via
a data acquisition system (Micro1401 or 1401plus, Cam-
bridge Electronic Design, UK) that was interfaced with a
computer running customised Spike2 software (Cambridge
Electronic Design) for off-line analysis. Single-unit spikes
were discriminated using Spike2 template matching.
Interspike interval (ISI) histograms and autocorrelograms
were computed for each cerebellar neurone using a bin
width of 1 ms and 2 ms respectively and a 180 s sampling
interval. The coefficient of variation, (CV=standard devi-
ation ISI/mean ISI) was used to describe the regularity of
the resting discharges [29]. A high CV signifies a spike
train with high ISI variability, whereas a low CV value
indicates a more regular pattern of firing. All mean values
given in “Results” are expressed as mean±standard error
mean (SEM).

Results

Evoked Field Potential Responses

The threshold for evoking cortical responses by parallel
fibre stimulation is well known to be highly sensitive to the
viability of the cerebellum [25, 30]. We therefore used local
cortical electrical stimulation to evoke parallel fibre volleys
in five preparations (see “Methods” for further details). As
shown in Fig. 2a, electrical stimuli applied to the surface of
the cerebellar cortex elicited a brief triphasic positive-
negative-positive response, characteristic of compound
action potentials propagating in a bundle of parallel fibres
recorded in the molecular layer [30]. Threshold currents
ranged between 3–5µA. When the recording electrode was
moved 300 μm off line from the stimulating electrode, the
triphasic response was no longer evident, consistent with
earlier reports that the volley is restricted to a narrow
‘beam’ of parallel fibres [31, 32]. Conduction velocities
were determined from the peak of the initial positive wave.
In the example illustrated in Fig. 2a, the conduction
velocity was 0.36 ms-1. For all five experiments conduction
velocities were on average 0.32 ± 0.04 ms−1. These values
are in good agreement with those reported previously for in
vivo preparations for e.g. 0.33–0.5 ms−1 [30, 33] but are
faster than those reported in vitro for e.g. 0.2–0.3 ms−1 [34].

In three preparations, the response of individual Purkinje
cells to parallel fibre stimuli was also observed and
consisted of a single action potential (a simple spike) with
an onset latency of 2.2 ± 0.26 ms (n=3) (Fig. 2b). Such
responses could be evoked with threshold currents below
5 μA, suggesting that parallel fibre excitatory synaptic
input to Purkinje cells was operating normally in the PHBP
[cf. 35].

To assess the integrity of mossy fibre inputs, in three
experiments we recorded responses evoked by facial nerve
stimulation in the molecular and granular layers of lobule
IXa [cf. 36–38]. In the granular layer, stimulation of the
ipsilateral facial nerve evoked an initial diphasic positive–
negative wave (P1-N1, Fig. 2c, lower panel) which relates
to the arrival of the mossy fibre volley [38]. A later
negative wave (N2, Fig. 2c) has been ascribed to the
synaptic activation of granule cells and Golgi cells [38]
while the consequent activation of the parallel fibres by the
granule cells results in a P2 wave with an average latency
of 4.6 ms±0.54 (n=3). As in previous studies, an additional
early positive response attributed to the brainstem was
evident before the P1 wave, and did not reverse polarity
between the molecular and granular layers [36, 37]. By
contrast, and consistent with previous studies, the P2 wave
was found to reverse polarity in the molecular layer to
produce a negative-going deflection (N3, Fig. 2c, upper
panel).

Cerebellum (2010) 9:218–231 221



To assess the integrity of climbing fibre inputs to the
cerebellum we electrically stimulated the ipsilateral
brachial plexus, and recorded evoked field potentials
(Fig. 2d) in the forelimb receiving area of the cerebellar
cortex, located in the C1 zone of the paramedian lobule
[28]. These responses were located in the medial part of
the paramedian lobule and had an onset latency of 9.4±
0.6 ms (n=3). The waveform, cortical location and onset
latency of these field potentials were characteristic of
climbing fibre responses evoked in the cerebellar cortical
C1 zone as described previously in vivo in a number of
species [e.g. cat, 39, rat, 28, 40, ferret, 41]. Moreover,
when pairs of responses were evoked with supramaximal
stimuli delivered at intervals between 20–150 ms (the

paired pulse test), the second response displayed a
reduction in amplitude (Fig. 2f). This is an additional
feature of climbing fibre evoked field potentials [42, 43].
Consistent with climbing fibre responses, a rebound
facilitation was also present at longer interstimulus
intervals (Fig. 2f). Note also that the gradable nature of
the evoked responses indicates that they were not unitary
but represented the summed activity of a population of
cerebellar neurones (Purkinje cells). As with previous
studies in vivo [36], when shorter latency (∼3–5 ms)
responses attributable to activation of mossy fibres were
evoked by the peripheral stimulation, these were much less
reduced in amplitude by the paired pulse test and were
even increased in some instances (Fig. 2e).
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To assess the integrity of cerebellar output in the PHBP
in two preparations we used microstimulation in nucleus
interpositus and recorded evoked EMG activity in the
ipsilateral forelimb. Electrical stimulation of nucleus inter-
positus either with single pulses or with trains of stimuli
could readily evoke EMG activity in the ipsilateral forelimb
muscle biceps brachii (latency 10–20 ms, Fig. 3a). As the
stimulating electrode was advanced into the cerebellum
the stimulus intensity required to evoke a detectable EMG
response progressively decreased until a site was found
that elicited EMG activity with a minimum threshold
(200–300µA). Systematic study of threshold levels as a
function of stimulus frequency was not carried out,
nevertheless, it was noted that an increase in the
frequency of the pulse train resulted in a decrease in the
stimulus threshold as reported previously in vivo [44, 45].
Application of a neuromuscular blocker to the perfusate
abolished the EMG responses, indicating that they were
generated by neuromuscular synaptic transmission. Histo-
logical reconstruction of the stimulation site indicated that

in both experiments the electrode tip where minimum
stimulation currents were used was located in nucleus
interpositus anterior (Fig. 3b).

The latency, localization of optimal stimulation site,
histological verification and the abolition of the response by
a neuromuscular blocker provide strong evidence that the
EMG activity was due to stimulation of cerebellar nucleo-
fugal pathways, involving brainstem descending motor
pathways [44, 46].

In summary, the responses evoked by mossy fibre,
parallel fibre and climbing fibre activation were remarkably
similar to those described previously in vivo [e.g. 30, 42,
47], suggesting that excitatory synaptic inputs to Purkinje
cells are preserved in the PHBP. Similarly, the EMG
responses evoked by cerebellar nuclear microstimulation
suggest that at least part of the cerebellar output to the
forelimbs is also preserved in this preparation.

Activity Patterns of Individual Cerebellar Neurones

To further assess cerebellar function in the PHBP we
obtained extracellular recordings from single cerebellar
neurones in 15 preparations. Electrode penetrations were
made orthogonal to the cerebellar cortical surface and
spontaneous spike trains were obtained from a total of 50
single units. These were obtained from a wide range of
different lobules (including anterior parts of the cerebel-
lum not directly accessible in vivo), and also from a
range of medial-lateral positions. No systematic differ-
ences in response properties were observed in relation to
anatomical location. The stability of the preparation
meant that single units could be readily recorded for
extended periods of time (when tested, for as long as
3.5 h). All units were spontaneously active. Of the 50
units studied in detail, 25 were identified as Purkinje
cells based on the presence of complex spikes in their
spike trains (Fig. 4a). Three of the 25 Purkinje cells
displayed only complex spikes. Complex spikes had low
firing rates, occurring at mean frequencies that ranged in
individual Purkinje cells between 0.10–5.15 Hz (Fig. 4 bi,
Table 1, overall mean of 0.77±0.20 Hz, n=25 cells).
Complex spike firing patterns were highly irregular; as
shown by their coefficient of variation (Table 1), and by
their range of interspike intervals (Fig. 4 bii; the shortest
interval was 7.84 s and the longest was 10.44 s, Table 1).
Complex spike autocorrelograms (Fig. 4 biii) revealed no
obvious regularity or rhythmicity.

Simple spikes were usually biphasic positive–negative
actions potentials with a duration of >0.4 ms (Fig 4a). Simple
spike firing patterns were also irregular as shown by interspike
interval histograms which were positively skewed (Fig. 4 cii),
and also by the coefficient of variation of their interspike
intervals (range, 0.26–3.19 ms; mean=0.96 ms±0.14, n=22,
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Table 1). Purkinje cells displayed a wide range of individual
firing rates (11–76 Hz, Fig. 4 ci), with an overall mean rate of
42.6±4.2 Hz. The irregularity of simple spike firing was also
demonstrated by autocorrelograms (Fig. 4 ciii). Importantly,
none of the 22 Purkinje cells studied in detail displayed the
rhythmic pacemaker-like pattern of simple spike firing that
occurs in the absence of normal background excitatory
synaptic input [14, 17]. Although not studied systematically,
we were also able to make intracellular recordings from
Purkinje cells. For example, Fig. 4d, demonstrates a recording
characteristic of Purkinje cell proximal dendritic recordings
[15, 48].

A total of 19 units were categorised as cerebellar
interneurones, based on their depth in the cerebellar cortex,
spike waveform, absence of complex spikes and firing
patterns as determined previously in vivo [49, 50]. Putative
molecular layer interneurones (n=13) were located in the
superficial part of the cerebellar cortex at depths 100–
300 μm below the surface including just above the Purkinje
cell layer. Typically, they had biphasic positive-negative
action potentials >0.8 ms (Table 1; Fig. 5 ai). They fired
more slowly and regularly than Purkinje cells, at rates of
1.5–27.5 Hz (Fig. 5 aii; mean firing rate of 12.7±2.3 Hz).
Their more regular rate of discharge was evident in their
interspike interval histograms which tended to be more
symmetrical than those of Purkinje cells (Fig. 5 aiii) and
their tendency to fire rhythmically was evident by the
presence of multiple peaks at regular intervals in their
autocorrelograms (Fig. 5 aiv).

Putative Golgi cells (n=6) were located in the granular
layer of the cerebellar cortex, below the Purkinje cell layer
and had long duration (>1.1 ms) biphasic action potentials
(Fig. 5 bi), and a long tuning distance (>100µm electrode
movement). In comparison to Purkinje cells, putative Golgi
cells exhibited a slower although irregular firing rate (range,
3.7–26.4 Hz; Fig. 5 bii; mean firing rate 12.0±3.3 Hz;
Table 1). The more irregular firing rate of putative Golgi
cells was evident in their interspike interval histograms
(Fig. 5 biii) which had broader peaks, longer intervals
between spikes (Table 1) and a lack of multiple peaks in
their autocorrelograms (Fig. 5 biv).

To assess whether stable recordings from cerebellar
cortical neurones could be maintained in the PHBP over
extended periods without any deterioration in their firing
properties, four of the cerebellar neurones (three Purkinje
cells and one interneurone) were recorded for a duration of
1.5–3.5 h. No significant difference was found (paired
t test, P>0.05) in the mean firing rate and coefficient of
variation when the spike trains in the first half of the
recording period were compared to those obtained in the
final half.

Extracellular recordings were also made of the sponta-
neous activity of six units in nucleus interpositus. In eachT
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case, the spikes were mainly biphasic positive–negative
action potentials with a duration >0.8 ms (Fig. 6a) with
mean firing rates between 13.1–49 Hz (Fig. 6b; Table 1). In
general, interpositus neurones displayed a highly irregular
discharge pattern (coefficient of variation ranged from
0.41–1.94; mean, 1.07±0.25); interspike interval histo-
grams were positively skewed (Fig. 6c; Table 1) and no

prominent peaks or troughs were evident in their autocor-
relograms (Fig. 6d).

Purkinje cells and interpositus neurones were also found
to be responsive to tactile stimulation and electrical
stimulation of the periphery. In the example shown in
Fig. 7a, light pressure of the periorbital region with a probe
resulted in an increase in firing frequency above resting
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discharge rates in an interpositus neurone while Fig. 7b
shows that electrical stimulation of the facial nerve caused a
phasic increase and subsequent phasic decrease in Purkinje
cell simple spike activity. Thus, mechanical and electrical
peripheral stimuli can be effective at modifying the firing
patterns of cerebellar neurones in the PHBP.

Finally, in two experiments we tested the effects of
adding harmaline to the perfusate. Harmaline has long been
known as a tremogenic agent that acts on the inferior olive
[e.g. 51, 52]. Consistent with previous studies in the intact
animal, harmaline caused an increase in the frequency of
complex spikes (from ∼0.2 Hz to 2.0 Hz), accompanied by
the development of a rhythmic pattern of firing, while
simple spike activity was abolished (not shown).

Discussion

The present study investigates the use of a novel decere-
brate perfused hindbrain and upper body in situ preparation
that maintains the cerebellum in relation to its extrinsic
connections. Although the cerebro-cerebellar pathway is
absent, nevertheless some cerebellar circuits can still be
maintained in the absence of this input. Field potential
analysis and EMG recordings provided evidence that at
least some of the major cerebellar input and output
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pathways remain operational in this preparation, and single
cell recordings indicated that cerebellar neuronal activity
was in most cases very similar to results obtained in vivo.

Comparison with Physiological Studies In vivo and In vitro

Extracellular recordings of Purkinje cell simple spike
activity, putative Golgi cells and molecular layer interneur-
ones indicated that such cells were tonically active in the
PHBP. Average firing rates, spike widths, interspike
intervals and coefficients of variation were all within the
ranges reported by others in anaesthetised rats [53–56], as
well as awake rats [57, 58] and cats [59, 60]. For example,
simple spike activity of Purkinje cells in anaesthetised and
awake animals at rest exhibit mean firing rates of 40–50 Hz
while the mean firing rate found in the PHBP was ∼45 Hz.
Likewise, molecular layer interneurones and Golgi cells
exhibit mean firing rates of 10-30 Hz [56, 61] and 2–25 Hz,
respectively [49, 50, 56, 60] which compares favourably to
the mean rates found in the PHBP (∼13 Hz for molecular
layer interneurones and ∼11 Hz for putative Golgi cells).

Similarly, spontaneous firing rates of cerebellar nuclear
neurones have been reported to be 34 Hz in the awake cat
[59], while in the PHBP the corresponding value is 32 Hz.
However, this value is lower than the rate of 55 Hz reported
in P50–100 day anaesthetised rats [54] and the rate of
43 Hz reported in P20–26 day awake rats [62]. The lower
mean firing rate in the PHBP may be due to the lack of

excitatory drive from nuclear collateral inputs arising from
cerebro-ponto-cerebellar projections [e.g 63] and/or the
lower temperature (32–34°C) used to maintain the PHBP,
as dissociated cerebellar nuclear cells maintained at 31°C
discharge at approximately 20 Hz [64].

The majority (∼85%) of Purkinje cells recorded in the
PHBP discharged complex spikes at <1.0 Hz. This is
consistent with studies in ketamine/xylazine anaesthetised
rats [53], and awake mice [65], but is somewhat lower than
reported in other in vivo preparations (e.g 1.5 Hz, [61],
1.52 Hz, [66], 1.34 Hz, [56]). An important consideration is
decerebration which may have affected complex spike firing
rates. In decerebrate animals complex spikes were found to
be detectable in only one third of Purkinje cells [32, 36], and
lower mean complex spike firing rates have been reported in
the decerebrate ferret (0.48 Hz, [67]) and cat (0.67 Hz, [68]).
Nevertheless, it appears that when the climbing fibre system
is being driven in the PHBP, as was the case in the climbing
field potential mapping and in the harmaline experiments,
the latency and patterns of responses closely matched those
reported in intact preparations (e.g. [28, 69, 70]). The mossy
fibre-parallel fibre system also appears to be normal; mossy
fibre related potentials in the cerebellar cortex displayed all
the features characterised in vivo [36–38] and the conduction
velocities of parallel fibres were in close agreement with
those obtained in vivo in the cat [30, 33]. In contrast, parallel
fibre conduction velocities obtained in adult and juvenile rat
cerebellar slices are slower [34], suggesting that a more

Table 2 Advantages and disadvantages of the PHBP preparation

ADVANTAGES

Allows access to parts of rodent cerebellum not accessible in vivo (in both decerebrate and anaesthetised preparations), notably the anterior lobe.

Unlike in vitro preparations, the PHBP retains functional connectivity between the cerebellum, brainstem and the upper body and head (and can
be modified to include the whole body if required)

The high mechanical stability combined with increased accessibility allows for long term recording/stimulation of multiple hindbrain sites

Avoids the complications of anaesthesia

Allows greater control over pharmacological manipulations as drugs can be rapidly introduced and washed out, and neurotoxins can be used that
would be lethal in vivo

In contrast to in vitro preparations the PHBP allows the study of a range of different sensory modalities, including: cutaneous and proprioceptive
pathways, and whisker sensory inputs to hindbrain circuits

The PHBP is quicker and easier to set up than in vitro preparations

DISADVANTAGES

The main limitation is that the PHBP is decerebrate. This will deprive the cerebellum of a major source of input. If required, anaesthesia can be
used as an alternative to decerebration

Young age of rats (P45). However it should be noted that the animals are older than those frequently used in in vitro studies

Cerebellar anatomical landmarks are less clear as major blood vessels such as the paravermal vein are transparent. However, dye can be
introduced into the perfusate to temporarily mark blood vessels

Viability is limited to about 5 h

Peripheral electrical stimulation and recording (e.g. of nerves) is more complicated than in vivo because of the perfusate; electrical contacts need
to be made water tight

The thorax and upper forelimbs are usually skinned to prevent clogging of tubing/filters with hair and debris. This will alter sensory inputs but
regions of skin of interest can be left intact e.g. the face (including whiskers) and distal forelimbs
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intact preparation may be beneficial when studying the
parallel fibre system.

Advantages and Disadvantages of the PHBP

Table 2 summarises the advantages and disadvantages of
the PHBP. By comparison to studies in anaesthetised
animals the PHBP has a number of advantages: (1)
Cerebellar circuitry can be studied without the complication
of anaesthetics, which are known to have a profound effect
on transmission of sensory-evoked responses [37, 71]. (2)
the PHBP, like previous ‘block’ preparations [21, 22, 24–
27], allows direct access to areas of the cerebellum (and
brainstem) that are difficult to reach in vivo, such as rostral
parts of the cerebellar anterior lobe, paraflocculus and
flocculus. (3) Also by contrast to in vivo preparations,
respiratory and heart movements can be eliminated if
necessary, so stable recordings are possible which can be
maintained for extended periods of time (in the case of
extracellular recordings for several hours if necessary) with
no detectable change in firing properties.

By comparison to in vitro brain slice preparations, an
additional important feature of the PHBP is that it also
preserves hindbrain connections with the head and forelimbs.
The latter is particularly useful when examining cerebellar
pathways involved in the control of forelimb movements, as
nucleus interpositus projections to the cervical spinal cord and
forelimb muscles appear to function as normal in this
preparation. Also in contrast to slice preparations, the PHBP
is relatively quick to set up; approximately 30 min, whereas
slice preparations can take up to 2 h. However, the length of
the recording period in the PHBP is highly dependent on the
adequacy of perfusion and how rapidly perfusion is initiated.
For this purpose, monitoring of phrenic nerve activity is
essential as the neurogram is a reliable indicator of the general
viability of the preparation. On occasions when phrenic
activity was abnormal (tonic or apneic), little or no neuronal
activity could be obtained from the cerebellum. In preparations
with adequate perfusion, recordings are possible for up to 5 h.
After this time, recording quality rapidly declines in parallel
with general deterioration of the preparation as determined by
a change in phrenic nerve activity from regular ramp-like
bursts to irregular activity.

In terms of limitations, the young age of rats (P45) used
for the preparation is a potential concern. Morphological
and functional maturation of rat mossy fibre-granule cell
synapses occurs later (P60) [72, 73]. However, a viable
preparation is critically dependent on adequate perfusion
pressure. This precludes the use of adult animals due to the
substantial increase in perfusion flow rate required in order
to achieve sufficient perfusion of the vascular tree as well
as the increased risk of hypoxic insult during preparation.
Attempts to increase flow rates in larger animals by

increasing the pump flow rates were unsuccessful, because
phrenic nerve activity becomes abnormal (exhibits tonic
activity) and the preparation rapidly becomes oedematous.
Therefore for a viable preparation, younger animals need to
be used in comparison to those normally used for in vivo
studies. Nevertheless, the upper age limit of the animals
(P35–45) is older than those used for some in vitro
investigations (P11–25, e.g. [74–76]).

Other limitations of the PHBP include difficulty in
identifying different cerebellar regions due to the lack of
visible surface blood vessels as anatomical landmarks, and
the lack of skin inputs. However, regions of skin can be left
intact and the preparation can include the whole body if
required. A further and arguably the most important
limitation is the lack of cerebro-cerebellar projections.
Although Purkinje cell simple spikes could be activated
by peripheral stimulation, we were not able to record longer
latency field potential responses attributed to cerebral
cortical inputs, most likely due to the decerebration [77–
79]. Note however that decerebrate preparations can be
used to study some aspects of cerebellar contributions to a
range of behavioural responses such as eye blink condi-
tioning (for e.g. [45, 80, 81]); but see [82] and motor
control (for e.g. [83–85]). Also, if descending pathways are
to be studied, then the preparation can be anaesthetised
through the addition of anaesthetics to the perfusate whilst
leaving the cerebral cortex intact [86].

In conclusion, the present study provides evidence that
the cerebellum and some of its major interconnections with
the rest of the nervous system remain operational in the
PHBP. The PHBP should therefore be a useful complement
to in vivo and in vitro models for studies requiring stable
recordings of single neurones over several hours (including
simultaneous recordings), whilst retaining interconnections
with other neuronal networks, such as those involved in the
control of forelimb movements.
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