
biosensors

Review

The Role of Electronic Noses in Phenotyping Patients
with Chronic Obstructive Pulmonary Disease

Simone Scarlata 1 , Panaiotis Finamore 2 , Martina Meszaros 3, Silvano Dragonieri 4 and
Andras Bikov 5,6,*

1 Unit of Internal Medicine, Campus Bio Medico University and Teaching Hospital, 00128 Rome, Italy;
s.scarlata@unicampus.it

2 Unit of Geriatrics, Campus Bio Medico University and Teaching Hospital, 00128 Rome, Italy;
p.finamore@unicampus.it

3 Department of Pulmonology and Sleep Disorders Centre, University Hospital Zürich,
8091 Zurich, Switzerland; martina.meszaros1015@gmail.com

4 Respiratory and Sleep Medicine Unit, Policlinico University Hospital, University of Bari Aldo Moro,
70124 Bari, Italy; sdragonieri@gmail.com

5 Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK
6 Division of Infection, Immunity and Respiratory Medicine, University of Manchester,

Manchester M13 9NT, UK
* Correspondence: andras.bikov@gmail.com; Tel.: +44-161-9987070

Received: 13 October 2020; Accepted: 9 November 2020; Published: 11 November 2020
����������
�������

Abstract: Chronic obstructive pulmonary disease (COPD) is a common progressive disorder of the
respiratory system which is currently the third leading cause of death worldwide. Exhaled breath
analysis is a non-invasive method to study lung diseases, and electronic noses have been extensively
used in breath research. Studies with electronic noses have proved that the pattern of exhaled volatile
organic compounds is different in COPD. More recent investigations have reported that electronic
noses could potentially distinguish different endotypes (i.e., neutrophilic vs. eosinophilic) and are
able to detect microorganisms in the airways responsible for exacerbations. This article will review
the published literature on electronic noses and COPD and help in identifying methodological,
physiological, and disease-related factors which could affect the results.

Keywords: COPD; chronic obstructive pulmonary disease; e-nose; electronic nose; VOCs; volatile
organic compounds

1. Chronic Obstructive Pulmonary Disease

Chronic obstructive pulmonary disease (COPD) is a common disorder of the respiratory system
which is characterised by a progressive airflow limitation caused by exposure to noxious particles,
usually tobacco smoke, in susceptible individuals [1]. However, other factors, such as premature
birth, frequent childhood infections, asthma, or passive smoking, could also contribute to COPD [1].
The disease may affect the large airways, respiratory bronchioles, and lung parenchyma, however the
extent of the involvement of different lung regions may vary [2] (Figure 1).
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Figure 1. The pathophysiology of chronic obstructive pulmonary disease. 

Large airway disease is characterised by mucus hypersecretion, ciliary and epithelial 
dysfunction, mucosal and submucosal inflammation, as well as enhanced bronchial blood flow. 
Patients may present with symptoms of chronic productive cough or chronic bronchitis. Most of these 
patients have small airway disease, which is characterised by airway inflammation, peribronchial 
fibrosis, and subsequent small airway narrowing. Parenchymal involvement is termed emphysema, 
and it is characterised by progressive loss of the lung tissue, impaired oxygen intake, and carbon 
dioxide removal. People with small airway disease and emphysema often complain of progressive 
shortness of breath. Although widely recognised as a progressive disease, the activity of disease 
varies largely between patients. Around half of patients have a rapid (≥50 mL/year loss) decline in 
forced expiratory volume in the first second (FEV1), a marker quantifying airway obstruction [3], and 

Figure 1. The pathophysiology of chronic obstructive pulmonary disease.

Large airway disease is characterised by mucus hypersecretion, ciliary and epithelial dysfunction,
mucosal and submucosal inflammation, as well as enhanced bronchial blood flow. Patients may
present with symptoms of chronic productive cough or chronic bronchitis. Most of these patients
have small airway disease, which is characterised by airway inflammation, peribronchial fibrosis,
and subsequent small airway narrowing. Parenchymal involvement is termed emphysema, and it
is characterised by progressive loss of the lung tissue, impaired oxygen intake, and carbon dioxide
removal. People with small airway disease and emphysema often complain of progressive shortness
of breath. Although widely recognised as a progressive disease, the activity of disease varies largely
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between patients. Around half of patients have a rapid (≥50 mL/year loss) decline in forced expiratory
volume in the first second (FEV1), a marker quantifying airway obstruction [3], and around 30% are
prone to acute exacerbations, major events leading to health deterioration and associated with high
healthcare burden and mortality [4].

COPD is diagnosed based on medical history, symptoms, and lung function showing fixed airflow
obstruction. Although the diagnosis, especially the differential diagnosis from other lung diseases
(i.e., asthma, bronchiectasis), is sometimes difficult, in most cases it can be made based on simple and
cheap pulmonary function tests. It is important to have reliable biomarkers which could differentiate
patients with eosinophilic airway inflammation and reflect on disease activity (i.e., predict lung function
decline and future exacerbations). This is essential clinical information, as inhaled corticosteroids
(ICS) seem to be more effective in patients with raised airway eosinophils [5], as well as patients
with a high exacerbation burden [6]. On the other hand, in some patients recurrent exacerbations are
maintained by colonising bacteria and patients may benefit from prophylactic antibiotic treatment [7].
Hence, biomarkers reflecting on bacterial colonisation and specifying bacteria would have significant
clinical value. Similar to stable disease, acute exacerbations are also heterogeneous and patients may
benefit from tailored treatment depending on the inflammatory profile [8] and infectious cause [9].

Exhaled breath analysis is a widely used technique for investigating airway diseases. It is totally
harmless, and therefore can be performed even in very frail patients and during acute breathlessness,
such as in exacerbation. Therefore, it has a great yet not fully explored clinical potential to distinguish
patients with different inflammatory endotypes and airway microbiology. One of the most important
limiting factors is the lack of standardisation [10] and the effect of various endogenous (airway calibre,
comorbidities, etc.) and exogenous factors (diet, smoking, pollution) which may limit their use.
Traditionally, techniques assessing breath biomarkers are divided into methods investigating volatile
and non-volatile particles [10] and the measurement of breath temperature [11]. In this review, we will
focus on the measurement of volatile organic compounds (VOCs) using electronic noses in COPD.

2. The Role of Electronic Noses in Breath Research

Exhaled breath contains thousands of VOCs usually in pico or nanomolar concentrations.
The origin of these molecules is two-fold. Some of them are inhaled from the environment and exhaled
later. Environmental molecules may also be absorbed in the human body, react with endogenous
VOCs, or induce altered production of endogenous molecules. Another group of VOCs is released by
the human body, including cells of the respiratory tract reflecting on their metabolism. The release of
some of these endogenous volatile molecules is induced by inflammation and oxidative stress [12].

The precise detection and quantification of these molecules involves gas-chromatography
mass-spectrometry (GC-MS). However, GC-MS is expensive, uses bulky equipment, and requires
special expertise. Electronic noses are a relatively cheap and easy-to-use alternative to GC-MS [13].
These devices are composites of a sensor array and an in-built processor, and their function resembles
that of biological olfaction receptors, as they are unspecific to single molecules and, upon activation by
an odour, create a signal pattern. Electronic noses therefore cannot identify individual molecules but
are able to compare and discriminate exhaled samples based on their molecular pattern, which is often
called a “breathprint”.

Because individual VOCs generating a “breathprint” are not characterised during the analysis,
it is essential to exclude environmental factors leading to altered VOC levels. As a first step, subjects are
asked to avoid consuming food and beverages, not to smoke, and to refrain from physical exercise
prior to breath collection. It is good practice if these events are recorded in a clinical research form
together with the last medication taken. This may help in identifying outliers in the final analysis.
Exhaled breath should be collected in a standardised way, either by a single expiratory method or
a multiple breath technique, with custom-made or commercially available sampling devices [10].
The breath sample could be collected directly into disposable collection bags (e.g., polyethylene,
Nalophan, Tedlar, Mylar, etc.) or canisters made of inert material or pre-concentrated into adsorbent



Biosensors 2020, 10, 171 4 of 20

cartridges (e.g., Breath Biopsy Cartridges, Tenax GR®) [14]. The stability of VOCs declines within hours
and strongly depends on the material of the collection bags [15–18], therefore an immediate analysis is
suggested following collection. The advantage of Tenax tubes is that they allow transportation and
delayed measurement. Although storage and transportation in sorbent tubes significantly affected the
“breathprint”, it did not influence the discrimination potential of an electronic nose to differentiate
asthma and health [19]. A novel method has been introduced lately to analyse the “breathprint”
directly during a single expiratory manoeuvre [20].

Breath collection is followed by the electronic nose analysis. Various electronic noses have
been used in the field of breath research, including those based on conducting polymer sensor
arrays (i.e., Cyranose 320) [21], metal oxides (i.e., Aeonose, Spironose) [22], nanomaterials [23],
quartz microbalance (i.e., BIONOTE) [24], as well as colorimetric sensors [25]. All these devices are
made of sensors able to interact with VOCs and generate electrical signals, however the mechanism
underpinning the interaction is specific to the used array (e.g., piezoelectric effect for quartz microbalance
electronic nose or oxidation for metal oxide devices). There is a difference between these sensor systems
in terms of the sensitivity and selectivity to different VOCs, the stability of the sensor signal, and the effect
of environmental factors such as temperature and humidity [14]. These differences need to be taken
into account when comparing data originating from different sensor systems. Finally, sensor signals
are integrated into a “breathprint”, which can be analysed with complex discrimination techniques.
The exhaled breath sampling and analysis is summarised in Figure 2.
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Figure 2. Algorithm for the exhaled breath collection and analysis with electronic nose.

A common technical challenge which may affect the electronic nose measurements is the temporal
drift of the sensors, which means that the steady state of the sensor responses changes over the time
of usage. This drift can be divided into short- and long-term components. For conducting polymer
sensors, the failure of the detachment of VOCs from the sensors or inability to regain the baseline
conformation may contribute to short-term drift, which means that electronic nose measurements may
influence the subsequent ones [26]. The oxidation of the polymers contributes to the long-term drift [27].
Exposing Cyranose 320, a commercially available electronic nose based on a conducting polymer sensor
array, to methanethiol for 8 days resulted in a considerable sensor drift [28]. It was shown that even for
VOCs with a low concentration, the calibration of the entire array response could be re-established
robustly with the use of carefully chosen calibrants [21,29,30]. Another analytical method to normalise
drift in complex sensor arrays could be orthogonal partial least squares normalisation [31]. A study by
Bos et al. reported a significant sensor drift over 1 year, and the authors suggested transformation
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into standardised residuals by linear regression to normalise this [32]. The reproducibility of quartz
microbalance sensors has been investigated in healthy subjects and COPD patients simultaneously by
Incalzi et al. [33]. The authors found that the reproducibility was better in healthy subjects than in
COPD, concluding that the variability of the disease, rather than sensor drift, is responsible for the
variation in data [33]. Sensor drift has been noticed for metal oxide sensors as well [34]. Jaeschke et al.
explored various statistical methods, including linear discriminant analysis (LDA), partial least squares
discriminant analysis (PLS-DA), and direct orthogonalisation, and found that PLS-DA was particularly
useful for correction [34]. The humidity of exhaled breath samples may contribute to sensor drift for
gold nanoparticle-based sensor systems [34]. A compensation method based on relative humidity
sensors has been proposed to address this issue [34]. Instrumental drift has been reported even for
GC-MS [35]. Rodriguez-Perez et al. applied filtering and additive, multiplicative, and multivariate
drift corrections and was able to improve the classification of COPD subjects based on exhaled breath
analysis [35]. For a detailed description of the electronic nose technology in breath research, we refer
to previously published review articles [13,14,21,23,27,36–41].

Another important aspect is the data analysis, as it involves complex pattern recognition and
comparative statistical methods [42]. Not surprisingly, the results may be very different based
on which method is used [43]. There is no single, recommended statistical method to be used in
breath analyses [10], however the European Respiratory Society’s statement recommended careful
pre-processing, normalisation, and environmental correction as part of the analysis as well as the
validation of the results by an independent cohort [10]. Smolinska et al. summarised the normalisation
and pre-processing techniques for exhaled breath analysis [44] with a detailed description of their
advantages and drawbacks. Environmental contamination removal can be achieved with an analysis
of the alveolar gradient by sampling the environment together with the actual breath sample [20].

3. Altered Production and Kinetics of Exhaled VOCs in COPD

Patients with COPD are usually middle-aged and elderly, and they tend to lose skeletal muscle
with the progression of their disease. Therefore, the exhaled levels of those volatile organic compounds
which are affected by age and metabolism, such as isoprene, acetone, and alkanes [45,46] may be
compromised not by the disease but by senescence. Isoprene and acetone are found in relatively high
concentrations in exhaled breath compared to other VOCs, and therefore these can contribute to the
unspecific E-nose pattern significantly. Having said this, the E-nose pattern was found to be related to
age in previous studies [47,48]. However, other reports found no influence of age on electronic noses to
discriminate people with obstructive airway disease from healthy controls [49,50]. Patients with COPD
may have an altered lifestyle, including regular exercise and diet [51]. Indeed, a study by Gaida et al.
reported that the differences in VOC profiles between two groups of COPD patients sampled in different
German cities could be due to lifestyle-related factors [52], however environmental factors, such as air
pollution, could also contribute [53]. A number of studies have reported altered exhaled VOC profile
associated with the consumption of certain foods and beverages [54–56]. In addition, exercise could
alter “breathprint”, likely due to increased metabolism and oxidative stress in the airways as well
as increased cardiac output [57–59]. However, in patients with COPD, the liberation of VOCs may
be compromised due to dynamic hyperinflation during exercise. A relationship between exercise
tolerance and the profile of exhaled VOCs has been previously reported [60]. The effect of gender on the
composition of the exhaled VOC profile is less evident [55,61,62]. As alterations in exhaled “breathprint”
may be related to hormonal changes rather than biological gender [63,64], this has to be investigated in
women with COPD separately, as in most cases the disease is diagnosed post-menopause.

The release of blood-borne volatile compounds into exhaled breath depends on the alveolo-capillary
barrier, which may be destroyed in patients with emphysema. This factor may need to be taken into
account when interpreting VOC results. Emphysema could also lead to significant ventilation-perfusion
heterogeneity and the collapse potential of the small airways. Therefore, even during normal exhalation,
VOCs originating from peripheral airways may entrap, which could contribute to their ultimate
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concentration in exhaled breath. In line with this, certain VOCs have been associated with the extent
of emphysema and low diffusion capacity, as well as airflow limitation in patients with COPD [65].
A relationship between airway calibre and “breathprint” obtained with an electronic nose has been
shown by some [47], but not all [66] studies. Focusing on COPD, a significant correlation was
reported between the lung function and electronic nose results obtained by the quartz microbalance
sensor array [33].

COPD is characterised by airflow limitation, which could influence the levels of exhaled VOCs,
especially if they are collected with an uncontrolled single expiratory manoeuvre. In addition,
some VOCs such as ethanol may be released from the bronchial circulation, and their diffusion to
the airway lumen is hampered in bronchial thickening [67]. This is further complicated during acute
exacerbations, which are characterised by mucus hypersecretion (leading to a longer diffusion time
from the bronchial circulation) and an increase in bronchial circulation (causing an increased release of
VOCs) [2]. Theoretically, the exhalation flow rate may influence the concentrations of those exhaled
VOCs which are produced in the airways [47]. In line with this, the levels of exhaled VOCs such as
acetone [68], ethanol [54], isoprene [69,70], and pentane [69], as well as the whole “breathprint” [20],
were influenced by exhalation flow, and different exhalation flow rates affected the utility of the
electronic nose to diagnose lung cancer [47]. However, it is unclear how this affects the electronic
nose results in COPD. As ventilation heterogeneity—more particularly, the opening and closing of the
peripheral airways—may show inter-breath variability, and because of the expiratory flow dependency
of exhaled VOC levels, the volume-targeted multiple breath collection method may be preferable to
the single-exhalation technique in COPD (Figure 3).
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Figure 3. The mechanisms of altered production of exhaled volatile organic compounds (VOCs)
in COPD.

The liberation of VOCs into exhaled breath and their entrapment into the airway lining fluid (ALF)
is strongly affected by the temperature and acidity of the ALF. For instance, a significant relationship
was reported between the “breathprint” obtained by the electronic nose and the pH of the exhaled
breath condensate [59]. As the bronchial temperature [11] and acidity [71] may be different in COPD,
this effect needs to be considered when interpreting the VOC results.
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Finally, the exhaled compounds may originate from within the gastrointestinal tract. In line
with this, a previous study found that gastro-oesophageal reflux disease can affect the “breathprint”
in COPD [72].

4. Exhaled VOCs in Relation to Inflammation and Microbiome in COPD

It is well known that the inflammatory response in COPD is largely neutrophilic, but can also
involve eosinophils to a lesser extent [71,73]. The presence and activity of inflammatory cells differ
among patients subgroups and may be related to diverse pathophysiological pathways within the
disease [74,75]. Biomarkers which reflect the inflammatory endotype of patients with COPD can help
in a more effective tailored therapy, since a better response to corticosteroids in COPD with a higher
presence of eosinophils has been clearly shown [76–78].

Several studies have demonstrated that there is an association between exhaled VOCs and the
presence of inflammatory cells in subjects affected by COPD [65,79–81]. Fens et al. showed that exhaled
VOCs are associated with differential sputum cell counts and soluble sputum markers of activated
neutrophils and eosinophils in mild and moderate COPD, suggesting the potential of “breathprint”
as a non-invasive biomarker in relatively early stages of COPD [79]. Furthermore, studies with
GC-MS reported numerous VOCs linked with sputum inflammatory cells [65,80]. In particular,
Schleich et al. identified VOCs discriminating between eosinophil and neutrophil cell cultures,
regardless of their activation status [80]. Interestingly, Basanta et al. detected other types of VOCs
which were able to distinguish between patients with COPD and healthy controls as well as to
discriminate among subgroups of clinical interest, such as smokers with COPD versus asymptomatic
smokers, and COPD subjects with higher sputum eosinophils or those with frequent exacerbations [65].
Moreover, de Vries et al. analysed exhaled VOCs with an electronic nose, showing an adequate
prediction of blood eosinophils and neutrophils count in a pooled cohort of patients with asthma and
COPD, irrespective of their underlying disease [81]. These results are very similar to those in asthma,
where the electronic nose response not only correlated with bronchoalveolar lavage eosinophils [82],
but was able to discriminate the eosinophilic, neutrophilic, and paucigranulocytic sputum profile [83].
However, despite promising studies indicating a significant correlation between exhaled VOCs and
the presence of inflammatory cells in blood or sputum, the validation of results is yet to be achieved.

Numerous studies have compared the exhaled VOCs of COPD patients during exacerbations
and stable disease [84–87]. Using GC-MS, Pizzini et al. discriminated patients with acute COPD
exacerbation from individuals with stable COPD as well as healthy controls. Following the exclusion
of VOCs associated with smoking and those with high environmental concentration, they built a model
based on a limited number of VOCs. The performance of this VOC pattern was superior to the C-reactive
protein levels in discriminating stable and exacerbated patients [84]. Similarly, Gaugg et al. [85] showed
that a profile of certain VOCs identified by GC-MS was different between frequent and non-frequent
exacerbators at clinical stability, suggesting the potential of using breathomics for subphenotyping
patients with COPD. Van Velzen et al. recruited patients with COPD at their stable state and followed
them up at exacerbation and recovery. Breath samples were analysed with GC-MS and a platform of
four electronic noses. The electronic nose platform was able to discriminate exacerbations from stable
state as well as recovery with a cross-validated accuracy of 0.75, a sensitivity of 0.79, and a specificity of
0.71, without finding significant differences between baseline and recovery [86]. These results highlight
the merit of VOC analysis in the follow-up of patients with COPD, as mild to moderate exacerbations
are often difficult to diagnose due to the natural variability of the disease [1].

Due to compromised immune system as well as frequent steroid use, the airways of patients with
COPD are often colonised by bacteria and fungi. These are associated with unique VOC patterns [88].
Using Cyranose 320 and LDA, Shafiek et al. demonstrated that the e-nose discriminates COPD
exacerbation triggered by infections from non-infective exacerbations with an accuracy of 0.75 [87] and
exacerbations from pneumonia with an accuracy 0.86–0.88, a sensitivity of 0.85–0.91, and a specificity
of 0.86–0.75, depending on the presence of potentially pathogen microorganisms [87], allowing a timely
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and tailored antibiotic treatment. This accuracy is in line with another study where an electronic
nose could discriminate viral and bacterial infection-induced exacerbation with an area under the
receiver operating characteristic (ROC) curve (AUROC) of 0.74 [89]. Analysing the breath samples of
37 patients with COPD with the Cyranose 320 device, Sibila et al. concluded that patients with bacterial
colonisation have a different “breathprint” [90]. More particularly, principal component analysis
followed by ROC analysis showed an excellent classification (AUROC of 0.94). This study highlights
the possibility of using electronic noses to identify patients who may benefit from a preventive
antibiotic treatment.

5. The Effect of Smoking on Exhaled VOCs in COPD

Cigarette smoke is a mixture of more than 5000 chemical compounds, among which hundreds
have toxic and/or carcinogenic effects [91]. A number of studies have shown that VOCs profiles
are significantly influenced by smoking behaviour [49,52,53,92,93]. It must be recognised that the
exhaled VOCs of current smokers can be influenced in two ways. First, VOCs may directly derive
from the cigarette. In line with this, different exhaled compounds were identified and directly
correlated with smoking status, smoking intensity, years of smoking, and depth of inhalation [94].
Moreover, strong differences were observed in the VOC composition of tobacco cigarette smokers and
exhaled breath in the comparison with that of electronic cigarette smokers [95]. Such a direct influence
on the exhaled VOC composition may be mitigated by asking patients to abstain from smoking for a
certain period before sampling exhaled breath. It seems that a two-hour period may suffice to reduce
the influence of smoking [38]. It is well known that cigarette smoke promotes oxidative stress in the
human body by augmenting the number of free radicals [96,97]. This may result in a production of
oxidative stress-related compounds which promote airway inflammation by activating neutrophils
and eosinophils [98].

Very interestingly, electronic nose studies on patients with COPD showed no difference in
VOCs profiles between current and ex-smokers [38,79,99], whereas in healthy controls, there were
significant differences between current and non-smokers [38,93]. Similarly, a recent study by
Rodriguez-Aguilar et al. showed no difference in the composition of exhaled breath obtained from
patients with COPD who were divided into smoking-induced and household air pollution-induced
groups [100]. Taken together, the aforementioned studies suggest that exhaled VOC-profile can
be helpful in detecting COPD, irrespective from their smoking status. However, the difference
between COPD and health has disappeared when COPD patients were compared to healthy,
non-smoker volunteers [49]. It seems that smoking did not affect the discrimination potential
of gold nanoparticles, carbon nanotube or colorimetric sensors [101–103].

Due to these discrepancies we suggest that smoking history should be taken into account when
designing case-control studies.

6. The Effect of Medications on Exhaled VOCs in COPD

Pharmaceutical agents in COPD include bronchodilators, inhaled and systemic corticosteroids,
roflumilast, antibiotics, mucolytics and theophylline [1]. Surprisingly, the number of studies
investigating the effect of medications on exhaled VOC pattern is low.

Salbutamol is a short acting β2-receptor agonist. Gaugg and colleagues demonstrated that
the levels of VOCs change after salbutamol inhalation in patients with chronic airway diseases
(n = 13 asthma, 37 COPD), but not after inhaling placebo [104]. Similarly, Scarlata et al. reported a
quantitative reduction in exhaled VOCs following inhaled bronchodilator treatment [105]. In line with
this, the levels of exhaled VOCs were related to urinary salbutamol levels in patients with asthma [106].
Lazar et al. demonstrated a change in exhaled “breathprint” following salbutamol inhalation and the
change was not due to alterations in the airway calibre, but the nebulised aerosols [66].

Corticosteroids are immunosuppressive drugs and are used in both stable (inhaled) and
exacerbated (systemic) disease. Comparing ICS user and non-user patients with COPD, Fens et al. did
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not find a significant difference in the “breathprint” [49]. In line with this, analysing the effect of ICS on
the potential of electronic noses to discriminate COPD from health, van Berkel did not find a significant
influence [107]. Contrarily, Scarlata et al. reported a qualitative modification of exhaled VOC pattern
in patients on ICS [105]. When investigating patients with severe asthma, a significant relationship
between the exhaled “breathprint” and urine corticosteroid levels was found [106]. Analysing the same
cohort of subjects, the stability of the electronic nose “breathprint” was determined by the systemic
corticosteroid use [108].

It is likely that theophylline, antibiotics, roflumilast, and mucolytics may all effect exhaled VOCs,
however these have not been investigated before.

7. The Effect of Respiratory and Non-Respiratory Comorbidities

Due to age, common aetiologies (i.e., smoking), and the direct effect of hypoxaemia and
inflammation, COPD is often accompanied with comorbidities. These may individually affect
the electronic nose results [14], but may also compromise electronic nose discrimination potential
to detect COPD. For instance, obstructive sleep apnoea (OSA), which itself alters the levels of
exhaled VOCs [109], also affects how precisely COPD can be detected with two different electronic
noses [110,111]. Investigating 13 patients with OSA, 15 patients with COPD, and 13 patients with
both diseases (overlap syndrome) with Cyranose 320 and LDA, Dragonieri et al. concluded that OSA
was different from COPD patients and overlap syndrome, while there was no difference between
the COPD and overlap groups [111]. In contrast, including patients with OSA in the control group,
25% of patients with COPD were inaccurately classified to the OSA group and 25% of the patients
with OSA were incorrectly classified into the COPD group in the study by Scarlata et al., who used a
quartz microbalance array and PLS-DA [110]. These two studies highlight that some components of
the “breathprint” may not be disease-specific but may represent a common underlying mechanism
(i.e., hypoxaemia). Likewise, the exhaled VOC levels may be different in cardiovascular diseases,
such as heart failure and coronary artery disease [112], which frequently accompany COPD [113]. It is
also true that COPD may compromise the diagnostic ability to detect other diseases, such as shown for
lung cancer [114].

8. Electronic Nose Studies in COPD

As described above, the composition of exhaled VOCs in could be altered due to several
endogenous and exogenous factors. This chapter summarises the published evidence for case-control
studies (Table 1). First of all, it has to be emphasised that the electronic nose signal in COPD seems to
be stable, with a within-day reproducibility of 0.80 and an overall mean between-day reproducibility
around 0.70 [33,49,115].
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Table 1. Clinical studies conducted on electronic noses in patients with COPD.

Comparator
Group Device Number of Subjects Classification

Technique
Sensitivity

(%)
Specificity

(%)
Cross-Validation

Value (%) Remarks Reference

Healthy Cyranose 320 N = 37 COPD
N = 13 H LDA 83 76 79 COPD vs. H [90]

Infection

Cyranose 320

N = 74 ECOPD
N = 19 ECOPD + P

N = 50 COPD
N = 30 H

LDA

72 67

ND

ECOPD vs. COPD

[87]88 75 ECOPD + P vs. COPD

91 75 ECOPD + P vs. ECOPD

Aeonose

N= 22 COPD + BI
N = 21 COPD without BI

N = 18 COPD + VI
N = 25 COPD without VI

ANN
73 76

ND

COPD + VI vs. COPD
without VI

[89]

83 72 COPD + BI vs. COPD
without BI

Lung cancer

Cyranose 320

N = 10 LC
N = 10 COPD

N = 10 H
LDA ND ND

85 LC vs. COPD
[116]

80 LC vs. H

N = 20 LC
N = 31 COPD

ROC analysis
based on
principal

components

80 48 ND
Diagnostic accuracy increased
when combined with sputum

hypermethylation
[117]

Custom made
colorimetric

sensor

N = 18 COPD
N = 49 LC
N = 21 H

N = 15 IPF
N = 20 SR

N = 20 PAH

Random forest
method 73 72 ND LC [103]

Smoking Cyranose 320
N = 88 COPD + S

N = 28 COPD + HAP
N = 178 H

LDA + SVM

100 97.8 100 COPD vs. H

[100]
ND 98.1 100 COPD + S vs. H

ND 97.5 100 COPD + HAP vs. H

ND 2.5 75.7 COPD + S vs. COPD + HAP

Asthma and
lung cancer

SpiroNose

N = 31 COPD
N = 37 A

N = 31 LC
N = 45 H

LDA

ND ND 78 COPD vs. H

[20]

ND ND 81 COPD vs. A

ND ND 80 COPD vs. LC

ND ND 87 A vs. H

ND ND 68 A vs. LC

ND ND 88 LC vs. H
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Table 1. Cont.

Comparator
Group Device Number of Subjects Classification

Technique
Sensitivity

(%)
Specificity

(%)
Cross-Validation

Value (%) Remarks Reference

Asthma and
Smoking

Cyranose 320

N = 20 A
N = 30 COPD
N = 20 non-S

N = 20 S

LDA

ND ND 96 A vs. COPD

[49]

ND ND 95 A vs. non-S

ND ND 93 A vs. S

ND ND 66 COPD vs. S

ND ND NS COPD vs. non-S

Asthma

Cyranose 320 N = 40 COPD
N = 60 A

LDA
85 90 88 COPD vs. fixed A (N = 21)

[99]
91 90 83 COPD vs. reversible A (N = 39)

SpiroNose N = 115 COPD
N = 206 A Not performed ND ND NS Five significant combined

asthma and COPD clusters [81]

OSA

Cyranose 320
N = 15 COPD
N = 13 OSA
N = 13 OVS.

LDA

ND ND 96.2 OSA vs. OVS

[111]ND ND 82.1 OSA vs. COPD

ND ND 67.9 COPD vs. OVS

Custom made
QMB

N = 20 COPD
N = OSA + NH
N = 20 OSA + H

N = 20 O
N = 56 H

PLS-DA 44 93 ND [110]

Alpha
1-antitripsin

deficiency
Cyranose 320

N = 10 COPD with AAT
N = 23 COPD without

AAT
N = 10 H

LDA

ND ND 58 AAT vs. non-AAT

[118]ND ND 68 non-AAT vs. H

ND ND 62 AAT vs. H

Congestive
heart failure

BIONOTE
N = 103 COPD

N = 89 CHF
N = 117 H

PLS-DA
80 82 ND CHF vs. H

[119]
63 74 ND CHF vs. COPD

A = asthma; AAT = alpha 1-antitripsin deficiency; ANN = artificial neural network; CHF = congestive heart failure; COPD = chronic obstructive pulmonary disease; COPD + BI = COPD
with bacterial infection; COPD + HAP = COPD with household air pollution; COPD + S = COPD with smoking; COPD + VI = COPD with viral infection; ECOPD = exacerbation of COPD;
ECOPD + P = exacerbation of COPD with pneumonia; H = healthy controls; IPF = idiopathic pulmonary fibrosis; LC = lung cancer; LDA = linear discriminant analysis; O = obese controls;
OSA = obstructive sleep apnoea; OSA + H = hypoxic OSA; OSA + NH = non-hypoxic OSA; OVS = overlap syndrome; PAH = pulmonary arterial hypertension; PLS-DA = partial least
square discriminant analysis; QMB = quartz microbalance; ROC = receiver operating characteristic; S = smoker; SR = sarcoidosis; SVM = support vector machines.
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Most studies have reported a good (AUROC or cross-validation value ≥0.70) to an excellent
discrimination performance (≥0.90) of electronic noses in COPD regardless of comparator.
However, it seems that this performance strongly depends on the number of control groups tested [110].
Notably, most of the studies conducted on multiple groups are generally underpowered with small
sample size. For these reasons, targeting the optimal population represents a major issue deserving
further investigation. An external validation set is highly recommended to strengthen the reliability of
the results [10].

In most one-to-one comparison analyses, electronic noses have shown a good diagnostic ability,
being able to discriminate COPD from healthy controls [49,87,90,100] and other chronic conditions
carrying respiratory symptoms usually requiring differential diagnosis with COPD (i.e., asthma,
obstructive sleep apnoea, lung cancer, chronic heart failure, etc.). Using Cyranose 320 and LDA,
Fens et al. were able to discriminate patients with COPD from non-COPD smokers with a
cross-validation value of 0.66. Interestingly, patients with COPD were not different from non-smoker
controls [49]. In contrast, using Cyranose 320 and LDA as well, Sibila et al. could distinguish patients
with COPD from non-COPD control subjects (77% ever-smoker) with a much higher cross-validation
value (0.83-0.88) [90]. Using the same device and classification method, the study by Shafiek et al.
reported an accuracy of 72% in classifying patients with stable COPD and healthy controls [87]. In a very
recent study using the same device, adding support vector machines models to canonical discriminant
analysis, a cross-validation value of 1.00 was achieved for the comparison between patients with COPD
and healthy subjects [100]. COPD can be discriminated from chronic heart failure with an externally
validated accuracy of 0.69, a sensitivity of 0.63, and a specificity of 0.74 [119], independently from age,
smoking habit, and comorbidities, which have an impact on the VOC pattern [120]. Likewise, Fens and
colleagues obtained an externally validated accuracy of 0.95, a sensitivity of 0.91, and a specificity of
0.94 in discriminating COPD smokers and former smokers from asthmatic patients with LDA [99].
Interestingly, the difference in VOC pattern between COPD and asthma cannot be attributed to
the type (i.e., reversible or not) or degree of airways obstruction, because the externally validated
discriminative accuracy remained almost the same [99]; these results suggest that COPD has a specific
VOC pattern production, independent from the degree of airway obstruction. Regardless of smoking,
COPD can be discriminated from OSA with an accuracy of 0.75-0.80 [110,111] and a sensitivity and
specificity of 0.75, while the presence of both diseases in the same patient (i.e., overlap syndrome)
cannot be clearly distinguished by COPD [111]. Likewise, COPD can be discriminated from lung
cancer [20,116,121]. In all these studies, the participants performed exhaled breath analysis apart from
spirometry and observed some restrictions in eating, smoking, and taking medication before the test,
limiting its applicability in clinical practice. A combination of a metal-oxide semiconductor e-nose
with a spirometer (i.e., “SpiroNose”, AMC, Amsterdam; Comon-Invent BV, Delft, The Netherlands)
has represented a paramount step in the applicability of e-nose in clinical practice, allowing real-time
analysis and eliminating the VOC collection and storage step. The study of De Vries and colleagues
has demonstrated that SpiroNose is able to discriminate COPD Global Initiative for Obstructive Lung
Disease (GOLD) stages II-IV from healthy controls, asthma, and lung cancer with a AUROC of 0.80,
0.81, and 0.88 [20], respectively, without the need for restrictions before the test.

Alpha-1 antitrypsin (AAT) deficiency is a relatively rare genetic cause for COPD. In a pilot study,
an electronic nose was applied in the discrimination of 10 patients with AAT deficiency, 23 patients with
COPD without AAT deficiency, and 10 healthy subjects. The authors concluded a good discriminative
cross-validated accuracy based on LDA [118]. They also supplemented 11 AAT-deficient patients with
human purified AAT and found a significant change in “breathprint”. This change could be either due
to the direct effect of AAT on the exhaled VOC pattern or may represent immunological alterations
due to the augmentation therapy [118].

The “breathprint” was associated with the exercise capacity of COPD patients, expressed by
the six minute walking distance and the disease-specific prognostic index BODE (Body mass index,
Obstruction, Dyspnea, and Exercise), and was be able to predict those patients with a steeper decline
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more accurately than GOLD classification with PLS-DA [60], helping clinicians tailor their interventions
and follow up and also helping diagnose frail patients who could benefit from palliative care.

Although the technique is promising and is cheaper and easier to use than GC-MS, electronic noses
are still more expensive than the current diagnostic spirometry and they warrant some expertise.
In addition, due to the unspecific nature of the signals, they cannot easily be interpreted in clinical
practice. Therefore, their role alone would be limited in diagnostic and differential diagnostic settings.
However, their combination with traditional spirometry has merit in identifying endotypes and
differentiating COPD from asthma with fixed airway obstruction [20,49,81]. Airway sampling using
invasive techniques, such as bronchoscopy is not always feasible in COPD, and even sputum induction
hold risks for patients with very severe COPD [122]. Although endotyping and monitoring airway
inflammation hold essential clinical value [5], the currently used surrogates, such as blood eosinophils,
only weakly correlate with their percentages in sputum [123]. In addition, it has recently been suggested
that temporal variation, rather than the baseline values of blood eosinophilia, better predicted treatment
response to inhaled corticosteroids in COPD [124]. The monitoring of airway inflammation via electronic
nose holds clinical potential, and future studies should focus on this.

9. Summary

The composition of volatile organic compounds in exhaled breath may be different due to
various endogenous (airway inflammation, altered kinetics) and environmental (smoking, medications)
factors. This is reflected in the results of case-control studies comparing COPD to various control
conditions. This review highlights the need for normalisation in technical (i.e., sensor drift,
statistical methods), sampling-related (i.e., expiratory flow rate), and patient-related (i.e., diet, smoking,
medication abstinence prior to sampling) factors to make the results more comparable. Although the
technique is currently limited, we believe that, through the international standardisation of the method,
this would be a valuable in the clinical assessment of the airway inflammation of patients with COPD.
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