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Abstract: A review of the latest theoretical advances in the description of magnetomechanical effects
and phenomena observed in magnetoactive elastomers (MAEs), i.e., polymer networks filled with
magnetic micro- and/or nanoparticles, under the action of external magnetic fields is presented.
Theoretical modeling of magnetomechanical coupling is considered on various spatial scales: from
the behavior of individual magnetic particles constrained in an elastic medium to the mechanical
properties of an MAE sample as a whole. It is demonstrated how theoretical models enable qualitative
and quantitative interpretation of experimental results. The limitations and challenges of current
approaches are discussed and some information about the most promising lines of research in
this area is provided. The review is aimed at specialists involved in the study of not only the
magnetomechanical properties of MAEs, but also a wide range of other physical phenomena occurring
in magnetic polymer composites in external magnetic fields.

Keywords: magnetoactive elastomers; magnetorheological elastomers; theoretical modeling;
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1. Introduction

Magnetoactive elastomers (MAEs) are composite materials consisting of micro- or
nanometer-sized magnetic particles embedded into a complaint elastomeric matrix [1–10].
They belong to the class of smart (or intelligent) materials because their physical proper-
ties or macroscopic response can be significantly changed in a controlled fashion by the
application of moderate (a few hundred mT) magnetic fields [1,8,9]. Specifically, these are
mechanical properties (e.g., the static and dynamic Young’s and shear moduli) and differ-
ent electromagnetic properties (e.g., magnetization reversal curves, magnetic permeability,
electrical conductivity and dielectric permittivity) [8,9]. The most prominent effect is the
magnetorheological (MR) effect, which is a significant change of the shear storage and loss
moduli in external magnetic fields. Due to this, MAEs are also known as magnetorheolog-
ical elastomers [4]. Furthermore, MAE samples show pronounced deformations both in
uniform and non-uniform external magnetic fields. If an MAE sample is placed in a uniform
magnetic field, the corresponding changes in its shape or dimensions are usually referred
to as magnetostriction, although the physical mechanism is different from that of magne-
tostriction in conventional solid magnetic materials [8,9]. In non-uniform magnetic fields,
one speaks about the magnetodeformation of MAE samples, which can reach 200–300% [9].
Application of a uniform magnetic field also causes huge changes in dielectric properties of
MAEs, particularly a relative increase in the effective dielectric permittivity reaches 1000%
in moderate magnetic fields up to 0.6 T [9,11]. A detailed description of the wide range of
magneto-responsive properties of MAEs can be found in recent reviews [8,9].
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The main physical reason for all these effects is believed to be the restructuring of the
ferromagnetic filler particles. This is their mutual re-arrangement in external magnetic
fields (a change in their relative positions or, equivalently, change in the microstructure of a
composite material) [8]. This argument is analogous to the effect observed in MR fluids
where particles rearrange along the magnetic field lines forming elongated aggregates. A
noticeable re-arrangement is only possible if the polymeric matrix is soft with the shear
modulus below 100 kPa [9].

The interest in MAEs is determined by their prospective applications as active vibration
absorbers, vibration isolators for mechanical engineering applications, base isolators for
civil engineering applications, sensors and actuators [2,4,12–16]. Magnetically controlled
dielectric and electric properties of MAEs open an opportunity to use MAEs as sensors
of magnetic fields, as well as to consider them as tunable dielectrics [17,18], which find
numerous applications as tunable filters, phase shifters, passive microwave components,
or in phased array antenna, etc. Hitherto the majority of fundamental and applied research
on MAEs was focused on utilization of bulk properties of these materials. However,
it has been recently understood that MAEs are very promising materials for rapid and
reversible control of various surface properties, in particular wettability [19–22], surface
roughness [20,23], adhesion [24,25], and friction [26]. It opens up new opportunities for
applications of MAE-based smart surfaces in various areas, e.g., droplet-based microfluidics,
liquid transporters/distributors, fog harvesters and soft-robot locomotion.

The field of MAE studies is developing rapidly. According to Google Scholar search
the total amount of papers published in this field since 2010 would exceed 1400 at the end
of 2022 (Figure 1). Several comprehensive reviews are available that focus on fabrication,
characterization and applications of these materials [2,4,5,27,28]. As far as the theoretical
description of the behavior of MAEs in external magnetic field is concerned, the latest
review is about 6 years old [7], although several aspects of theoretical modeling have
been also discussed in recent papers [28,29]. We believe that enough notable works have
been published in the last five years to warrant an up-to-date review of advancements in
theoretical modeling of MAEs. It is worth noting that we do not pretend to compile all
the published theoretical works in the field of MAEs, but rather to overview the actual
development in the field. Existing trends and those lines of research which would benefit
greatly from increased activity in the future are identified. The focus of this review is on
the theoretical description of the relationships between the external magnetic field and the
resulting mechanical properties (elastic moduli, viscoelastic properties) and phenomena
(magnetostriction and magnetodeformation). These effects are referred to as magnetome-
chanical coupling. This is the field where the majority of published theoretical works is
concentrated. Obviously, the reason for that lies in the most promising application area of
MAEs. Additional highly interesting physical effects (magnetic properties, magneto-electric
effect, magnetoconductivity, surface properties, etc.) are mentioned in the framework of
utilized approaches for the description of magneto-mechanical coupling but are not consid-
ered in detail. The theoretical works on non-mechanical and surface properties of MAEs
deserve a separate review paper.

The paper is organized as follows: In Section 2 the underlying mechanisms that cause
magnetomechanical coupling in MAEs are analyzed. In Section 3 the main approaches for
modeling of MAEs are presented. Proposed classification of these approaches is based on
the concept of different spatial scales that are utilized for modeling these composites. The
(combined) multi-scale theoretical approaches are considered in Section 4. Advantages and
disadvantages of the existing theoretical methods are discussed and the most promising lines
of research in each section are identified. The results are summarized in the concluding section.
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Restructuring of the ferromagnetic filler is commonly accepted as the underlying 

physical phenomenon for the majority of the effects discussed in Section 1, however a 
unified theoretical approach suitable for describing and predicting the wide spectrum of 
characteristics and responses of mechanically soft MAEs has not been developed yet. This 
can be attributed to the large variability in the material composition and the necessity to 
take into account nonlinear properties of constitutive materials. For example, the 
ferromagnetic particles can be either soft magnetic (e.g., carbonyl iron) or hard magnetic 
(e.g., NdFeB), and they can have different shapes, e.g., spherical or flake-like. 
Furthermore, the MAE samples can be cross-linked either in the absence of a magnetic 
field, which results in almost isotropic distribution of magnetizable filling particles, or in 
an external DC magnetic field, which creates anisotropic filler particle distribution. The 
magnetization of ferromagnetic particles demonstrates nonlinear dependence on the 
internal magnetic field, and, for hard magnetic particles, the magnetic hysteresis can’t be 
neglected. When ferromagnetic particles are displaced (translated and/or rotated) in an 
applied magnetic field, the surrounding polymeric matrix is deformed. It should be noted 
that the matrix can be chemically attached (grafted) to the particles via the functional 
particle/matrix interface or be physically adsorbed on the particle surface. As a result, 
magnetic interactions (both between individual magnetized particles as well as between 
each particle and the external magnetic field) and elastic forces arising due to matrix 
deformations compete when a magnetic field is applied to an MAE specimen. In general, 
elastomer matrices exhibit nonlinear viscoelastic behavior, which further complicates 
theoretical description. It is obvious that a large variety of synthesis conditions, material 
compositions, specimen shapes and excitation conditions (magnitude, direction and 
temporal behavior of an external magnetic field) leads to the need for a comprehensive 
multi-scale model for MAE materials. 

Figure 2 schematically shows different scales which should be addressed in the 
theoretical description of MAE composites. These scales are defined here as follows: 
microscopic (polymer network, multidomain magnetic structure of µm-sized particles, 
etc.), mesoscopic (granularity and filler particles as separate physical objects) and 
macroscopic (larger than the correlation length, specimen scale). It should be mentioned 
that the mesh size of the polymer network can be comparable to the particle diameter only 
in the case of magnetic nanoparticles. Typically, the particles are larger than the length of 

Figure 1. The number of published documents per year and the total number of documents since
2010 according to Google Scholar. The search is done according to the following terms in the
title: “magnetoactive elastomer” OR “magnetoactive elastomers” OR “magnetoactive polymer” OR
“magnetoactive polymers” OR “magnetorheological elastomer” OR “magnetorheological elastomers”.
The results for the year 2022 are linearly extrapolated from the available data on 15 September 2022.

2. Basic Mechanisms behind Magneto-Mechanical Coupling

Restructuring of the ferromagnetic filler is commonly accepted as the underlying
physical phenomenon for the majority of the effects discussed in Section 1, however a
unified theoretical approach suitable for describing and predicting the wide spectrum of
characteristics and responses of mechanically soft MAEs has not been developed yet. This
can be attributed to the large variability in the material composition and the necessity
to take into account nonlinear properties of constitutive materials. For example, the
ferromagnetic particles can be either soft magnetic (e.g., carbonyl iron) or hard magnetic
(e.g., NdFeB), and they can have different shapes, e.g., spherical or flake-like. Furthermore,
the MAE samples can be cross-linked either in the absence of a magnetic field, which
results in almost isotropic distribution of magnetizable filling particles, or in an external
DC magnetic field, which creates anisotropic filler particle distribution. The magnetization
of ferromagnetic particles demonstrates nonlinear dependence on the internal magnetic
field, and, for hard magnetic particles, the magnetic hysteresis can’t be neglected. When
ferromagnetic particles are displaced (translated and/or rotated) in an applied magnetic
field, the surrounding polymeric matrix is deformed. It should be noted that the matrix can
be chemically attached (grafted) to the particles via the functional particle/matrix interface
or be physically adsorbed on the particle surface. As a result, magnetic interactions (both
between individual magnetized particles as well as between each particle and the external
magnetic field) and elastic forces arising due to matrix deformations compete when a
magnetic field is applied to an MAE specimen. In general, elastomer matrices exhibit
nonlinear viscoelastic behavior, which further complicates theoretical description. It is
obvious that a large variety of synthesis conditions, material compositions, specimen shapes
and excitation conditions (magnitude, direction and temporal behavior of an external
magnetic field) leads to the need for a comprehensive multi-scale model for MAE materials.

Figure 2 schematically shows different scales which should be addressed in the theoret-
ical description of MAE composites. These scales are defined here as follows: microscopic
(polymer network, multidomain magnetic structure of µm-sized particles, etc.), mesoscopic
(granularity and filler particles as separate physical objects) and macroscopic (larger than
the correlation length, specimen scale). It should be mentioned that the mesh size of the
polymer network can be comparable to the particle diameter only in the case of magnetic
nanoparticles. Typically, the particles are larger than the length of network subchains
(Figure 2a). This scale difference can reach several orders of magnitude in the case of
µm-sized particles which are commonly used as MAE filler, so that the approach in which
the polymer matrix is viewed as a continuum medium (Figure 2b, magnifying glass) is
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fully justified. At the macroscopic scale (Figure 2b), the MAE sample can be considered as
a continuum medium with given magnetic and elastic characteristics.
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Figure 2. Schematic representation of MAE’s multiscale structure: (a) a magnetic particle in a
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Inherent complexity and nonlinearity of the fully coupled magnetomechanical problem
call for various approximations, which will be discussed in the following sections. An
obvious simplification is to provide theoretical description for a particular spatial scale.
Therefore, it was decided to classify the theoretical approaches to modeling of MAEs on
the basis of the scale considered in each work.

3. Main MAE Modeling Approaches
3.1. Microscopic and Mesoscopic Modeling

Modeling the microscopic structure of the material and its evolution in the magnetic
field is the most fundamental approach to MAE behavior description. In so-called “bottom-
up” models, local behavior of individual particles (microscopic modelling) is calculated
and then employed to obtain the material response via different homogenization proce-
dures. Ferromagnetic filler particles are usually resolved explicitly or as parts of particle
aggregates. Polymer chains can be resolved explicitly (microscopic modeling) or can be
represented by an effective medium (mesoscopic modeling). Mesoscopic modeling is
employed more frequently as the defining feature of MAE internal structure is the presence
of ferromagnetic filler particles, and filler restructuring is the underlying process for the
changes in macroscopic characteristics of MAEs. The main aspects of the modeling are
the interparticle interactions, equations of motion and collective energy of the system of
filler particles and the surrounding polymer. Magnetic interactions are usually described
within the framework of dipole approximation, but some works aim to take higher orders
of multipole expansion into account. Usually microscopic/mesoscopic models study an
element of the material volume to either understand the processes on the scale of a few
filler particles or obtain a representative volume element.

3.1.1. Molecular Dynamics Simulations

A special place among combined microscopic/mesoscopic description of MAEs is
occupied by molecular dynamics (MD) simulations. This field of study has recently experi-
enced active development.

In spite of obvious simplicity, MD models are able to describe the main features of the
magnetic filler restructuring within the polymer matrix under the influence of the magnetic
field to explain the microscopic origin of the experimentally observed phenomena.

MD modeling is based on solving the equations of motion of particles that make up
the system under study. General patterns and characteristics of the material are derived
using the laws of particle motion by calculating the integral properties or considering a
representative volume element of the material. To handle the intrinsically multiscale struc-
ture of MAEs, namely, the fact that magnetic nanoparticles and especially microparticles
are one or even two to four orders of magnitude larger than monomer units of polymer
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matrix, different level of coarse graining is usually applied. In the simplest approach, only
magnetic particles are considered and Langevin equations of either only translational or
both translational and rotational motions of the particles are solved:

mi
d
→
v i

dt =
→
F i +

→
F i,R − ξT

→
v i

Ii
d
→
ωi
dt =

→
T i +

→
T i,R − ξR

→
ωi

, (1)

where
→
F i and

→
T i are the total force and torque acting on the particle i due to its interaction

with other particles, external magnetic field and polymer matrix; mi and Ii are the mass of

the particle and its inertia tensor.
→
F i,R and

→
T i,R are a Gaussian random force and torque,

respectively. The last terms account for the translational and rotational friction forces,
which are proportional to the particle linear,

→
v i, and angular,

→
ωi, velocities, with the friction

coefficients ξT and ξR, respectively.
Magnetic particles are usually modeled as beads bearing point magnetic dipoles lo-

cated in their centers and either freely rotating [30] or firmly connected with the particle
body so that the particle rotates as a whole to orient its magnetic moment [31–33]. Addition-
ally, it is assumed that the modulus of the magnetic moment is fixed; this approximation
works well for either magnetically isotropic monodomain nanoparticles or magnetically
hard ones. Due to the presence of a permanent magnetic moment, the particles interact via
dipole–dipole interactions:

Ud

(→
r ij

)
=

→
mi
→
mj

r3
ij
−

3(
→
mi·
→
r ij)

(→
mj·
→
r ij

)
r5

ij
, (2)

where
→
r ij is center-to-center vector between i-th and j-th particles bearing magnetic moments

→
mi and

→
mj (the corresponding force is added to

→
F i). Besides, the dipole–field interaction

UH

(
→
mi,
→
H
)
= −→mi

→
H, (3)

should be taken into account in
→
T i when an external magnetic field

→
H is applied. The later

one forces the hard-magnetic particles to rotate in order to orient their magnetic moments
along the field lines. In the simulation model proposed in [34], a finite magnetic anisotropy
is taken into account via introducing the additional energy of uniaxial magnetic anisotropy
depending on the angle between the magnetic moment and the easy axis of the particle. In
this case, the rotation of the particle magnetic moment under the influence of the applied
magnetic field is affected by both polymer matrix and by internal magnetic anisotropy.

To model a pure repulsion between all beads in the system due to excluded vol-
ume, truncated and shifted Lennard–Jones potential (so-called Weeks–Chandler–Andersen
potential [35]) is commonly used.

In the coarse-grained MD models (Figure 3), polymer matrix is usually represented
by elastic forces acting on magnetic particles, in addition to magnetic forces and excluded
volume interactions. In [36,37], the magnetic particles are connected by elastic springs
only to some anchoring points in space, fixing initial positions of the particles. Within
this approach, either only translations of the particles can be constrained (one-spring
model, Figure 3a) or both translations and rotations of the particles are hindered by the
polymer matrix (two-spring model, Figure 3b). In [23], the mechanical constraints acting on
magnetic particles due to the presence of a polymer matrix are represented by elastic springs
connecting the centers of nearest-neighbor particles. The rigidity of the matrix in these
cases can be controlled by the value of the elastic constant in the harmonic spring potential.
In more detailed approaches, polymer chains are explicitly modeled as beads on springs,
forming either a regular network (Figure 3c) with magnetic particles occupying all [31–33]
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or a certain fraction of crosslinks [34,38], or a non-regular network (Figure 3d) with some
beads acquiring magnetic moments and thus mimicking magnetic particles [39–41]. The
fraction of magnetic beads can be varied but the total amount of particles in this case
increases considerably (due to additional beads representing segments of the chains),
making the simulations much more time consuming, however, in a sense more realistic, in
particular, in the description of magneto-responsive behavior of magnetic gels capable of a
large variation of volume.
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MD Simulations of Magnetic Gels

A lot of efforts have been directed to apply MD simulation technique within the
frameworks of simple approaches described above to the study of the structural and
conformational behavior of the so-called magnetic macro-, micro- or nanogels, i.e., polymer
networks swollen with a solvent and containing some fraction of magnetic nanoparticles.
Magnetic gels, or ferrogels, are very promising for biomedical applications, in particular, as
drug delivery systems [42]. First models of magnetic gels were quite simple. They were
constructed by placing the magnetic nanoparticles on a regular spatial lattice (squire in
2D or simple cubic or diamond cubic in 3D) and connecting them by bead-spring polymer
chains attached to specific spots on the surface of the magnetic particles. Periodic boundary
conditions were used while the box size was settled in the course of the system equilibration.
In this simple approach, in addition to the excluded volume, only dipole–field interactions
were taken into account while dipole–dipole interactions were neglected owing to low
concentrations of the magnetic particles. As a result, the gel deformations in a magnetic
field were explained by a direct coupling of the orientational degree of freedom of the
magnetic moments of the nanoparticles to the polymer chains, whose ends were firmly
connected with particle surface, creating stress in polymer chains due to rotations of the
magnetic particles. It was found that in 2D the particle rotation causes isotropic shrinkage
of the gel [31,32] while in 3D the deformations are anisotropic—a strong shrinkage was
observed in the direction parallel to the field while the shrinkage in the perpendicular
directions was either small or not present at all, depending on the network topology [32,33].

MD simulations of single magnetic nanogels (MNG) with a small fraction of mag-
netically anisotropic nanoparticles occupying some crosslink beads of a regular polymer
structure with equal length of the network subchains were carried out in [34,38,43]. In these
papers, not only dipole–field but also dipole–dipole interactions were calculated explicitly
owing to the finite size of the system. Besides, the magnetic moment was coupled inside
the particle with the easy magnetization axis. The calculated radial distribution functions
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for varying strength of interparticle dipolar interaction, concentration and temperature
clearly indicated the structuring of magnetic particles in the magnetic field. The effect of
the particle magnetic anisotropy on the magnetic structures and volume changes of MNGs
in magnetic fields was elucidated.

In a series of publications [39,40], the model of irregular polymer network with a
fraction of magnetically hard nanoparticles with “frozen-in” permanent magnetic moments
was used to investigate the equilibrium structural properties of not only a single magnetic
nanogel [39], but also MNG suspensions in absence [40] and in the presence [41] of an
applied external field. It was found that inside a single MNG, magnetic nanoparticles form
small clusters whose shape is largely affected by polymer elasticity, in particular, the amount
of crosslinks [39]. In suspension, MNGs can aggregate due to magnetic interactions leading
to formation of magnetic nanoparticle bridges between MNGs [40]. Such self-assembling
behavior is largely enhanced when an external magnetic field is applied. Furthermore, it
was found that suspensions of MNGs have larger susceptibility to magnetic fields than
suspensions of magnetic nanoparticles at the same mean concentration due to a high local
concentration of the latter in regions inside the gels [41]. On the other hand, a gel itself has
a lower susceptibility than the suspension of magnetic particles of the same concentration
due to elastic constraints acting on the particles within the gel. In [44], the behavior of a
MNG in the shear flow is studied with the use of the same model.

Refined MD Models of MAEs

In general, harmonic spring potentials acting on magnetic particles can describe
qualitatively well elastic deformations arising upon particle movements under the action
of the external magnetic field and elucidate the role of magnetomechanical coupling in
the resulting magnetic structures and some features of MAE magnetization. In [36], a
simple model of a magnetoactive elastomer filled with magnetically hard particles was
proposed to study the role of inelastic microstructural matrix deformations induced by
magnetic fields. This work was inspired by experimental observations of a substantial
change in the magnetic response of MAEs containing hard magnetic particles after their
first exposure to external fields—initial magnetization curve of these materials differs
substantially from the subsequent ones in consecutive measurements of conventional
magnetization loops. It was proposed to model irreversible relaxations of elastic constraints
during the first magnetization of the sample simply by shifting the anchoring points of the
elastic springs undergoing large deformations upon particle movements. This shift reduces
the extension of the spring constraining the particle and facilitates its movement during
the second magnetization-demagnetization loop. It was shown that only the model taking
into account both translational and orientation irreversible constraints is able to describe
the experimental observations qualitatively well.

A special approach to studying structural transformations in MAEs filled with non-
spherical flake-like NdFeB particles was proposed in a recent paper [45]. In the developed
MD model, the magnetic particles are represented by 14 spherical beads rigidly connected
to a central bead, thus, forming an anisotropic ellipsoid-like (or flake-like) aggregate. The
central bead acquires a magnetic moment which is directed perpendicularly to the flake
plane. Anisotropy in mechanical response, i.e., in translation and rotation of the anisometric
particles along long and short axes, arises due to different values of the elastic constants
for the harmonic springs connecting four non-magnetic beads (per two beads at long
and short axes) in each flake-like aggregate to some anchoring points located in space.
Furthermore, irreversible deformations under the influence of the magnetic field were
modelled by shifting anchoring points. Computer simulations were performed for a fixed
value of volume fraction (0.08) of magnetic particles corresponding to the experiments
but different values of magnetic moments of particles and rigidity constants of harmonic
springs. In spite of the model simplicity (the particles are regular and monodisperse), the
model is able to capture the main features of MAE response to moderate and strong fields
which are observed experimentally [45]. In particular, it was shown that in a sample pre-
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magnetized in a strong magnetic field for a few minutes, further application of a moderate
magnetic field leads mainly to flake rotations that are fully reversible. In contrast, in initially
non-magnetized sample translations and rotations of the flake-like particles in a moderate
magnetic field cause non-reversible formation of chain-like structures.

In recent papers [30,46], the MD model of a multiferroic material, namely an elas-
tomer matrix filled with both ferromagnetic (FM) and ferroelectric (FE) microparticles was
proposed. In comparison with previous approaches, the polydispersity of FM and FE
particles was taken into account with lognormal distribution of sizes, and the magnetic
and electric moments prescribed to the corresponding particles were scaled according
to their size. Polymer matrix was modeled in the simplest way via introducing elastic
springs connecting each particle with FM or FE particles inside a sphere of a given radius
(Figure 4a). Dipole-dipole interactions were calculated only between particles in the close
vicinity. It was shown that when a magnetic or electric field is applied, the corresponding
FM or FE particles are moved from their initial positions causing mechanical stresses in
polymer matrix to be transferred to the particles of the different type. This kind of particle
coupling through polymer matrix was shown to be the fundamental mechanism of multi-
ferroic behavior of the composite, i.e., a magnetization causes an electric response while an
electric polarization leads to a magnetic response. The simulation results were confirmed
experimentally for a polymer-based dispersion of iron and lead zirconate micrometer-size
particles (Figure 4b).
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Figure 4. (a) Snapshot of the system of ferromagnetic and ferroelectric particles in the simulation box
demonstrating an MD model of a multiferroic material: blue spheres are FM particles, orange ones are
FE particles, white arrows show their magnetic/electric polarizations, green spheres are polymeric
beads, green lines denote elastic links; the snapshot region is 10 × 50 × 50 µm along Ox, Oy, and
Oz axes, respectively. (b) Magnetization increment ∆M(H) = M(H)E −M(H)0, where M(H)0 and
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bias of 5 MV/m; experimental data (black) and simulation data (red) with error bars (grey) [30]. H
denotes the magnetic field strength.

MD approach makes it possible to study not only rearrangement of magnetic particles
in bulk but also on the surface of MAE films. In [23], the coarse-grained MD model was
applied to study the structure of a 3D thin film of magnetoactive elastomer adsorbed on
a solid substrate. Within this model, a MAE film was represented as soft-core spherical
magnetic particles, carrying point dipoles, connected by elastic springs. The concentration
of magnetic particles as well as the rigidity of the polymer matrix (i.e., values of the elastic
constants of the harmonic spring potentials) were varied. The magnetic field was applied
perpendicular to the film surface. The equilibrium structures formed by the magnetic
particles in magnetic fields were a result of the competition between dipole–dipole, elastic
and dipole–field interactions. It was shown that the surface roughness increases strongly
with growing magnetic field due to aligning of magnetic aggregates with the field and
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formation of mountain-like profiles on the film surface. The effects of the concentration of
magnetic particles and rigidity of the polymer matrix were elucidated. The obtained results
provided some guidelines for fabrication of MAE coatings with a tunable surface topology.

Stress-Strain Behavior and Elastic Modulus of MAEs via DPD Simulation

MD models of MAEs mentioned above can capture the structural and magnetization
features of magnetoactive polymer materials. In a recent paper [47], the so-called dissipative
particle dynamics (DPD) was first applied to study mechanical properties of MAEs. DPD
is a coarse-grained molecular dynamics simulation method widely used in modeling of
various polymer systems including elastomers [48,49]. This mesoscale method makes it
easy to cover much larger time and length scales in comparison with conventional MD
and to achieve an equilibrium state even for very large systems. In [47], to capture the
size difference between magnetic nanoparticles and monomer units of polymer chains,
the nanoparticles were represented by a set of beads bearing fixed co-oriented magnetic
moments not connected to the polymer matrix. During mechanical deformations, such
particles can transfer the mechanical load only through excluded volume interactions with
the polymer. The polymerization of monomers into a network mimicking epoxy resin was
performed using reactive DPD, in the absence and in the presence of external magnetic
field. The developed approach allowed to estimate densities of the load-bearing chains in
the polymer matrix and to correlate them with the Young’s modulus of the material with
isotropic and chain-like distribution of magnetic particles obtained from stress-strain curves.
The proposed model also allowed us to elucidate the role of the particle/polymer interface
by calculating the elastic modulus tuning the interaction parameters between magnetic
beads and monomer units of the polymer chains. Although the magnetic nature of the
particles came into play only at the stage of preparation of the system with ordered filler,
the developed model lays the foundation for simulations of MAEs mechanical properties
in magnetic fields.

To summarize, MD calculations are a powerful tool for studying changes in the mate-
rial microstructure. They have been particularly successful in investigating structural and
conformational behavior of the magnetic macro-, micro- or nanogels in magnetic fields, for
example for calculating their magnetic properties and volume changes. The merit of very
simple MD models is that they not only allow one to describe the main features of filler re-
structuring and to explain the microscopic origin of the experimentally observed phenomena
but also to establish the foundation for the development of useful approximations.

As far as calculations of MAE properties and behavior are concerned, the theoretical in-
vestigations were rather limited, probably because they require large computational resources.
However, we believe that MD calculations will gain more importance in the future, while the
DPD version seems to be the most promising. In particular, MD models can be generalized
to more complicated cases, for example anisometric and/or soft-magnetic particles.

3.1.2. Mesoscopic Structure Modeling: Analytical and Numerical Approaches

The simplest models work with the approximation of a uniform lattice network of ferro-
magnetic filler particles and with the approximation of magnetic dipole interaction [50–55].
The use of the magnetic dipole approximation in modeling, however, leads to noticeable
errors for the cases of small distances between particles in relation to their size, which cor-
responds to magnetoactive elastomers with a high filler volume concentration (more than
20% by volume), where the average distance between ferromagnetic particles inside the
polymer matrix has the same order of magnitude as the size of the particles themselves. To
describe the pairwise interparticle interaction with higher degree of accuracy, a model with
a more complex interpolation interaction potential obtained in the multipole approximation
was also proposed [56].

In other cases, the polymer network is modeled as a continuous mechanical medium,
the elastic properties of which are described by either linear or nonlinear elasticity theories.
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Calculation of Elastic Moduli

In [50], the dynamic response of a magnetoactive elastomer in the presence of various
magnetic fields is described using a coarse-grained model with a cubic lattice that contains
filler particles (magnetic dipoles) as the nodes. The particles are connected by linear elastic
springs. The approximation of a uniform isotropic distribution of filler particles in the
polymer matrix is used in the model. Additionally, the limiting case of weak magnetic
fields, which do not lead to the rearrangement of the filler into chain structures, is assumed.
The Langevin-type equations of motion of filler particles are linearized with respect to a
small parameter of particle displacements from the equilibrium position. In this paper, the
relaxation spectrum of a cubic lattice is calculated, expressions for the dynamic elasticity
moduli of the material for various mutual orientations of the magnetic field and the
direction of shear deformation are obtained. It is shown that the dependences of the
dynamic moduli on the magnitude of the magnetic field at low fields can be represented by
quadratic functions.

As far back as 1996, the authors of the work [51] laid the theoretical foundation
for studying the chain structures of magnetically active particles and their effects on the
surrounding elastic medium in the presence of a magnetic field. It was suggested that
the shear modulus of the material is a superposition of the modulus in the absence of a
magnetic field and the additional modulus induced by the magnetic field. The pairwise
interaction of spherical magnetoactive filler particles with magnetic dipoles located in their
geometric centers was considered assuming their relative displacement caused by the shear
deformation of the sample. An expression for the magnetically induced part of the shear
modulus ∆G was derived using the limit of small deformations:

∆G ≈ ϕM2

2µ1µ0h3 , (4)

where ϕ is the volume fraction of particles in the composite, M is the particles’ magne-
tization, µ1 is the relative permeability of the medium, µ0 is the magnetic permeability
of vacuum and the parameter h = r0/d is an indication of the gap between particles in a
chain. d denotes the particle diameter and r0 stands for the distance between the centers
of particles in a chain. The maximum possible value of ∆G for a typical MAE, filled with
iron particles, can be estimated by taking ϕ ≈ 0.29, saturation magnetization Ms ≈ 2.1 T,
µ1 = 1, h = 1. This evaluation of (4) gives ∆Gmax ≈ 5× 105 Pa, which is about one order
of magnitude lower than experimentally observable values. The primary origin of this
discrepancy with the experimental values is clear: the solitary chain model ignores possible
magnetic interactions between magnetic particles in different chain-like aggregates and
changes in mutual positions of particles in an external magnetic field.

This paper also considered the problem of spatially inhomogeneous magnetization
of particles: the influence of the field produced by particles on the magnetization of
neighboring particles is characterized by the average magnetization. This took into account
the ratio of the size of the magnetically saturated part of the particle volume to the entire
particle volume which led to a nontrivial dependence of the additional shear modulus on
the magnetic field. A conclusion about the quadratic dependence of the part of the shear
modulus induced by the magnetic field on the average magnetization of filler particles
was made. In [52], a generalization of this model for the case of interacting magnetic filler
chain structures was considered using magnetic dipole approximation. The interaction
energy and the shear modulus induced by the magnetic field were also calculated for the
distributions of filler particles corresponding to the simple cubic and body-centered lattices.
The authors of [57] obtained expressions for the elastic modulus and shear modulus of
a MAE sample with an isotropic cubic lattice of filler particles using the linear elasticity
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model, the magnetic dipole approximation, and the magnetization model described by the
empirical Fröhlich–Kennely model:

µFe(H) =
µini + (µini − 1) H

Ms

1 + (µini − 1) H
Ms

, (5)

where µFe is the relative magnetic permeability of the filler, µini is the initial relative
magnetic permeability and H is the magnetic field strength.

An alternative approach to explaining the significant MR effect in magnetically and
mechanically soft MAEs has been proposed in the works of Kalita et al. [58,59]. Under MR
effect we understand the relative change of the shear storage modulus of an MAE in an
applied magnetic field. The explanation is based on the so-called single-particle mechanism
of magnetostriction, where the total magnetic anisotropy energy of the filling particles in
the matrix is the sum of single particle energy terms [60]. An additional magnetoelastic con-
tribution to the mechanical stress created by the induced magnetic anisotropy counteracts
the shear and increases the effective shear modulus of the magnetoactive elastomer when
the latter is magnetized. Numerical estimates made for the magnitude of magnetorheolog-
ical effect (almost two orders of magnitude) were in good agreement with experimental
data [59].

In a series of works, an attempt was made to describe the MR effect in MAEs [61]
and magnetic ferrogels [62] quantitatively. A concept of primary aggregates of magnetic
particles, first put forward in [63] to explain strong concentration dependence of the shear
modulus of alginate ferrogels, was used to catch high values of experimentally measured
increase in elastic and loss moduli of these materials in magnetic fields, which could not
be described properly considering single magnetic particles dispersed in elastic medium
(on the level of single magnetic particles). Isotropic spherical agglomerates of magnetic
particles introduced in the proposed model (Figure 5a) had stronger magnetic properties
and, in an applied magnetic field, can more easily aggregate into chain-like structures
(Figure 5b,c), overcoming elastic forces of polymer matrix than isolated magnetic particles.
Furthermore, volume fraction of magnetic agglomerates (including trapped rubber) was
claimed to be higher than that of isolated magnetic particles, this fact also favoring magnetic
attraction and chaining of the agglomerates in external magnetic field. To calculate the
equilibrium aggregation number of chains, a lattice representation was used and a special
hierarchical model of aggregation was applied (Figure 6a), taking into account magnetic
interactions of agglomerates only within single lines oriented along the field axis. To
estimate magnetization of aggregates, they were approximated by ellipsoids of revolution
(Figure 6b). In the developed model, it was assumed that primary agglomerates have the
same size, and their chain aggregates are monodispersed. Even this crude approximation
provided a rather good agreement with experimental results, in particular, it allowed to
describe theoretically the high MR response of alginate ferrogels [62] as well as MAEs
based on a permalloy filler [61].

The work [64] provided an overview on how to build a bridge from the mesoscopic
positioning of the particles relative to each other to the overall, possibly macroscopic
behavior of the entire system. To address the MR effect, reduced dipole–spring models
were employed. It was found that whether the mechanical moduli increase or decrease
under the influence of magnetic interactions depends on the particle configuration and on
the orientation of the magnetization direction. Various regular lattices, randomized particle
configurations as well as real particle arrangements extracted from experimental samples
by X-ray tomography were evaluated. Upon strong magnetization, it was found that a
restructuring of the filler takes place. During this process, against the elastic restoring forces
of the springs, particles collapse toward each other into virtual contact and form chain-like
aggregates. This effect is accompanied by a significant increase in the mechanical stiffness,
in qualitative agreement with corresponding experimental observations [65]. The dynamic
moduli, quantifying the storage and loss parts of the dynamic response of the systems,
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were evaluated as a function of the magnetization and for different particle arrangements
as well [66,67].
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Figure 6. (a) Schematic representation of three first stages of the aggregation of agglomerates
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are neglected. (b) Agglomerate chains are approximated by ellipsoids to describe their tilting under
shear deformation [61].

Calculation of Magnetostriction

Theory of magnetostriction of MAE samples has received a lot of attention in the
literature. The reason is that this phenomenon is important for a number of applications
(e.g., actuators for soft robotics), while the comprehensive description of the underlying
physics is challenging from the fundamental point of view, even in the case of a spherical
MAE sample [68]. If MAE is considered to be a continuous isotropic medium (macroscopic
scale), an MAE sphere must stretch along the direction of a uniform magnetic field. On the
other hand, taking into account the internal structure of the composite material (mesoscopic
scale), one would come to the conclusion that an MAE sphere must contract along the
direction of the field, because magnetized particles interact with other particles. As a result,
two composites with the same matrix/filler content may behave very differently depending
on their mesoscale structure [68].

A qualitative description of the behavior of an elementary spherical cell consisting of
a hard magnetic (HM) particle in its center surrounded by an elastic incompressible shell
containing a number of uniformly distributed soft magnetic (SM) particles was presented
and validated by two complementary theoretical approaches in [69]. These approaches
were a continuum analytical description of the magnetoelastic system and coarse-grained
MD simulations within a minimal spring-bead model. The main approximations were
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the linear elastic response and the negligible mutual magnetization between magnetically
soft particles. Both models demonstrated that when an external magnetic field is oriented
antiparallel to the magnetic moment of the HM particle, a nonmonotonic deformational
response of the elementary cell takes place with an increasing field strength. In weak
antiparallel fields, local microscopic particle rearrangements cause the shrinking of the cell
in the field direction while in stronger fields the elongation along the field axis takes place.
MD simulations also provided distributions of SM particles and elastic stresses in the shell
depending on the field orientation and its strength.

A theoretical analysis of the effect of magnetic particle concentration on magnetostric-
tion (elongation vs contraction) of an ellipsoidal ferrogel sample in applied magnetic fields
was performed in [70]. The change of magnetic free energy under small sample deforma-
tions was estimated taking into account both the change of the demagnetizing factor and
the magnetic susceptibility. The magnetic susceptibility was calculated assuming linear
particle magnetization and pair interaction approximation. It was shown that at particle
concentrations below the critical value ϕcrit ∼ 0.162, contraction of the sample in the field
direction can occur. The possibility of this effect has been predicted earlier [71], however,
more accurate account of the pair distribution function performed in [70] has shown that
the range of the sample aspect ratios, R0, where this effect can take place is rather narrow:
the samples should be either strongly prolate or oblate. This makes experimental observa-
tion of this effect rather rare. In a wide range of R0, as well as at particle concentrations
ϕ > ϕcrit, the sample elongation is more favorable in accordance with experimental data.

In the work [64], the deformation of an MAE sphere in a magnetic field was considered.
The particles were assumed to be embedded in a linearly elastic finite-sized sphere. When
the particles are magnetized, they distort the surrounding elastic material through the
resulting pairwise magnetic attraction or repulsion. Superimposing the contributions of
all magnetized inclusions, the overall deformation of the system was calculated [72]. The
underlying mathematical expressions were analytical and therefore contained an infinite
number of degrees of freedom involved in the distortion of the elastic sphere. The appear-
ance of the global deformation was strongly related to the internal particle arrangement.
The shear modulus of the sphere was kept fixed at 1.67 kPa. Therefore, the Young´s
modulus of the sphere varied according to the well-known relations between the elastic
moduli and the Poisson´s ratio. Whether the sphere was elongated or contracted along
the magnetization direction depended significantly on the mutual particle positioning, on
the orientation of the magnetization axis, and on the value of the Poisson ratio quantifying
the compressibility of the elastic material [72]. For randomized particle configurations, a
tendency of sphere´s elongation parallel to the magnetization direction was found, in agree-
ment with corresponding experimental observations [73,74]. More accurate description of
magnetostriction phenomenon was performed using a combined micro/meso/continuum
approach and described in the corresponding section below.

3.1.3. Mesoscopic Cell Modeling

Due to the fact that the number of filler particles in a real MAE is very large even
for the case of low concentrations, the possibilities of direct calculation of material be-
havior are limited by the computational power of modern computers. One way to solve
this problem from a modeling point of view is to consider the properties of a material
cell that contains a reasonable number of ferromagnetic inclusions and then calculate or
evaluate material properties based on the behavior of this mesoscopic cell. Such smaller
systems include single particle cells that help to understand how the presence of ferro-
magnetic filler influences MAE properties, two particle cells that additionally take into
account pairwise particle interactions in the simplest form and multi-particle cells that
allow for the introduction of filler distribution-related factors into a model. A notable way
of transitioning from a mesoscopic material cell to a macroscopic sample is constructing
a representative element of the volume or surface of the material, that is, some element
small enough that its behavior can be calculated in a reasonable amount of simulation time,
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but large enough that the properties and behavior of this element could be related to the
properties of the entire macroscopic sample within the specified margin of error. Thus, in
the case of studying the MAEs within the framework of the representative volume element
approach, it is necessary to construct an element of the polymer medium containing a
number of ferromagnetic inclusions corresponding to the filler concentration. At the same
time, such an element can be declared as a certain effective “period” of the general internal
structure of a magnetopolymer composite. A large number of theoretical studies of MAEs
are dedicated to understanding the processes occurring in mesoscopic material cells when
external magnetic field and/or mechanical load are present.

The authors of [56] studied the problem of using the magnetic dipole approximation
to describe the magnetic interaction of filler particles in magnetoactive elastomers. In
order to create a more realistic theoretical model of processes occurring in MAEs, the
interaction of a pair of linearly magnetizable spherical particles was studied. In the work,
the effective interaction potential for small interparticle distances, as well as the resulting
force of magnetic interaction, are obtained. The suggested interaction potential is an
approximation of the multipole expansion for the interaction of particles. The equilibrium
positions of the two-particle system were found by minimizing the energy functional with
the elasticity energy defined by the Mooney–Rivlin model. The hysteresis-type behavior
was demonstrated for the equilibrium interparticle distance with a cyclic change in the
external magnetic field. A similar modeling process was also used in [75], where the
polymer medium was described as a classical medium with properties corresponding to
the Kelvin–Voigt rheological model.

Yu.L. Raikher et al. [76] developed an approach to describing processes on a meso-
scopic scale, which makes it possible to calculate the magnetomechanical behavior of the
volume element of a magnetically active elastomer in the approximation of the linear theory
of elasticity of the polymer medium and the magnetic dipole interaction of filler particles.
In this approach, it is assumed that a magnetic dipole is placed in the geometric centers
of spherical magnetically soft particles, and the field inside the particle is determined
taking into account the demagnetization effect. The magnetic dipole moment of each of the
particles in the model depends on the collective magnetic field created by the remaining
particles in the selected volume element of the material. Using the particle displacement
vectors obtained as a result of solving the finite element problem, the energy of an element
of a MAE was calculated, and the equilibrium state of the system was determined via
energy minimization. It was shown that the simulated system exhibits pseudoplasticity
under the condition of a constant external magnetic field presence and a cyclic mechanical
load. Figure 7 demonstrates the calculated pseudoplasticity effect in the loading cycle
(a)→(b)→(c)→(d). Initial configuration (a) corresponds to the unloaded sample. The as-
sembly of magnetized particles, when forced to rearrange under pressure, finds a more
favorable configuration: under zero mechanical load the total energy of configuration (d)
of Figure 7 is lower than that of configuration (b) [76].

In [77] a boundary value problem (BVP) for the composite with mixed filling was
considered on a mesoscopic scale: a period of hard magnetic particle chain surrounded by
a polymer matrix and soft magnetic particles was modeled using finite element method. In
this case, the Langevin function was used to describe the magnetic properties of magneti-
cally hard particles and the Fröhlich–Kennelly function is used to describe magnetically soft
medium. The relationship between the mesoscopic model and the macroscopic magnetic
characteristics of a MAE with the shape of an ellipsoid was also considered.

The work [78] can serve as an example of the microcontinuum approach with the weak
form of the Maxwell and mechanical equilibrium equations determining the behavior of a
mesoscopic cell. The authors of [78] calculated the size of a mesoscopic cell with isotropic
filler particle distribution that is sufficient for the cell to be a representative volume element.
The problem is solved both analytically and using FEM modeling. A further discussion of
this work is provided in Section 4 in the context of homogenization procedure.
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Considerable effort has been directed towards understanding the physical foundations
of magnetization features of MAEs based on HM particles and a mixture of HM and SM
fillers (so-called hybrid MAEs). HM particles are usually composed of multiple magnetic
domains, and magnetization of mechanically soft MAEs containing HM particles includes
two processes: the intrinsic motion of the atomic magnetic moments of the particles caused
by their interaction with an applied magnetic field and mechanical rotation of the magnetic
moments together with the particle body.

A model that takes into account a complex structure of micrometer-sized HM particles
and couples the processes of particle intrinsic magnetization and rotation within the soft
viscoelastic medium was proposed in [79]. A spherical HM particle was supposed to consist
of a densely packed solid assembly of identical single-domain nanograins with an isotropic
distribution of the nanograin easy axes. Magnetization of nanograins was described using
the Stoner–Wohlfarth model according to which the energy of a single nanograin can be
written in the following way:

Egrain = −mH
(
→
e ·
→
h
)
− KV

(→
e ·→n

)2
+ Emech, (6)

where
→
e ,
→
h and

→
n are unit vectors of the magnetic moment

→
m, magnetic field strength

→
H

and the easy axis of the nanograin magnetization, respectively; K is the energy density
constant for magnetic anisotropy, V is the grain volume and Emech is the mechanical energy
attributed to each grain (which is equal to zero in the discussed model). The total potential
energy of a multigrain particle in an elastic medium included the elastic contribution due to
the particle rotation, which was accounted for within the linear Hookean approximation and
the magnetic contributions, namely the magnetic anisotropy energy, Zeeman interaction
with the magnetic field and pair-wise dipole–dipole interactions between all the nanograins.
It was shown that due to magnetomechanical coupling, the magnetic hysteresis loop of a
particle composed of highly coercive grains progressively shrinks with the increase of the
matrix elastic modulus. The developed model was applied to describe the magnetization
curves of MAEs based on HM NdFeB particles [80]. The results of the theory are consistent
with experimental observations, the proposed theory is able to describe training effect,
negative bias, and reduction of coercivity.

Using the same model for HM multidomain particles, the authors of [81] proposed a
generalized model of hybrid magnetic elastomers filled with a mixture of HM and SM mi-
croparticles. The magnetization of the SM particles was described by the Fröhlich–Kennelly
equation while the interaction between the two types of particles was accounted for within
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the mean-field approach. First-order reversal curve (FORC) diagrams were calculated for
different values of the elastic modulus of the polymer matrix. It was demonstrated that
the FORC diagrams display specific new features due to interactions between HM and SM
phases and matrix elasticity.

To summarize, a significant progress in understanding the underlying physical phe-
nomena in MAEs has been achieved using numerical and analytical approaches to mi-
cro/mesoscopic structure modelling. If the early models accounted only for the magnetiza-
tion process, recent models took additional effects into account, allowing one to explain
significant changes in the elastic moduli of soft MAEs (with soft magnetic, hard magnetic
and mixed filling), which are closer to experimental values. As far as the deformation of
MAE bodies in an external magnetic field is concerned, a general understanding of factors
affecting the deformation of simplest bodies (e.g., ellipsoids of rotation) has been reached.
In general, the approaches discussed in Sections 3.1.1 and 3.1.3 allowed us to establish the
origin of the observed magneto-mechanical phenomena on the level of the restructuring
of particles. From the results obtained by many scientific groups and challenges they
faced, it follows that additional work is required to leave the dipole–dipole approximation
in modeling of magnetic interactions for highly filled MAEs. Complex microstructures
(non-uniform, anisotropic) and filler particle clustering also require more rigorous and
comprehensive research. Although the effect of geometric and magnetic anisotropies of
filler particles on MAE response to external stimuli has received a considerable amount
of attention in recent years, the variety of possible particle shapes and crystal structures
of ferromagnetic particles makes it very difficult to reach reasonably complete scientific
understanding in this area of studies. Thus, it is expected that future research will be
focused on cluster-like filler structures, multidisperse anisotropic fillers and more complex
forms of interparticle interactions (both magnetic-field and matrix-mediated).

3.2. Continuum Modeling

The most mathematically rigorous approach with well-developed fundamentals is the
continuum approach. In the framework of this approach the composite is described as a
whole using field equations. Instead of the internal structure of the material, the emphasis
is put on its macroscopic response and properties. The underlying theoretical foundation
consists of theory of elasticity, physics of magnetic materials and thermodynamics. The
main result obtained through continuum modeling is a relation between macroscopic
stress and strain tensors taking into account material magnetization. Free energy of the
system used to obtain constitutive relations is described as a function of the Cauchy–Green
tensor invariants as well as various convolutions of the Cauchy–Green tensor with the
magnetic field vector. To construct a continuum model of MAEs it is necessary to obtain
the expressions for the magnetic field inside the ferromagnetic phase and the free energy of
the material. Analytical solutions of the corresponding magnetomechanical BVPs usually
cannot be obtained, therefore the finite element method (FEM) is frequently employed
instead. More simple limiting cases are studied rigorously: the cases of small deformations
as well as weak magnetic fields.

There are two main ways of creating a continuum model: direct modeling and
homogenization-based modeling. The first path requires deriving a full system of field
equations that describe mechanical, magnetic and thermodynamic characteristics of the
entire sample based on its material properties and behavior. These are so-called “top-down”
models. The second path involves averaging the local characteristics of the medium and
takes into account the internal structure of the composite. Obtaining explicit analytical
solutions for both approaches is very difficult, especially if the general case of arbitrary de-
formations and magnetic fields is considered. Custom FEM models can provide numerical
solutions of the continuum equations; however, more rigorous and universal theoretical
frameworks require mathematical description of material behavior. The most prominent
approach to material behavior description found in scientific literature involves explicitly
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characterizing the thermodynamic potentials of the MAE sample, specifically Helmholtz
free energy.

3.2.1. Mechanical Engineering Approach

The most natural way of describing the sample’s behavior on a macroscopic scale is
the direct solution of equations that describe the displacement of each point of the sample
under external load and the influence of the magnetic field. The sample can be described
as a solid body (or a system of smaller material volumes) governed by classic mechanics.
Most often a direct approach is based on solving Newtonian equations of motion for linear
theory of elasticity and Maxwell’s equations. Alternatively, the information about the
magnetic part of the problem is contained in the expressions representing forces acting on
each volume element or each point. This approach does not capture the fundamentals of
magnetomechanical coupling or the mechanisms of filler restructuring in MAEs, however
it is useful for practical applications and especially soft robotics, which has seen rapid
development over the course of recent years.

One of the most common tools for analyzing the motion of MAE samples is Newto-
nian mechanics, namely the equations of translational and rotational motion within the
framework of linear elasticity. The displacement of individual small elements of the sample
can be described by taking into account the influence of gravitational forces, viscous or dry
friction forces depending on the surrounding medium, lifting forces in the liquid, magnetic
forces, as well as forces created by the shift of adjacent small elements. Calculation of each
of the listed forces usually requires additional modeling considerations, experimental data,
or numerical analysis.

Another common tool for describing deformation in MAE samples of simple shapes is
the Euler–Bernoulli quasi-static theory of beam bending (or the more general Timoshenko–
Ehrenfest beam theory [82,83]). Within the framework of this theory, an elongated object is
assumed to be one-dimensional, and a fourth-order differential equation that relates the
external load and bending at each point of the object under study is derived:

d2

dx2

(
EJ

d2w
dx2

)
= q(x), (7)

where E is the modulus of elasticity of the sample, J is the moment of inertia, w is the
bend at a given point, q is the external force acting per unit length of the sample. In this
case, this force is of a magnetic nature, so its distribution along the length depends on
the distribution of magnetization in the robot. Depending on the chosen approximations,
the basic equation of the Euler–Bernoulli theory is reduced to a differential equation of
the third or fourth order. The Euler–Bernoulli equation (or the definition of the bending
moment from which it follows) is also used as one of the terms in Newton’s equation of
motion to obtain a more complete picture of the displacements of the robot elements. The
Euler–Bernoulli theory is quite simple and understandable, and therefore is often used
in modeling that does not require a fundamental theoretical study of the processes under
consideration. In [84], the Euler–Bernoulli theory was used to explain the bending of MAE
cantilever beams with hard-magnetic particles, initially magnetized perpendicularly to the
beam’s plane. The magnetic field was applied in the beam’s plane, and it was perpendicular
to the initial direction of particles’ magnetization (before bending). Modeling the effects of
the magnetic field on the cantilever as a generalized distributed moment worked well as a
phenomenological approach [84]. In particular, using an expression for the linear magnetic
energy density [85], an ordinary differential equation for the beam deflection was obtained
in the small deflection angle approximation. This equation could be solved analytically. An
explicit expression for the field-induced beam stiffness showed that it was proportional to
the square of the applied magnetic field strength.

A more precise, general and more complex theoretical tool is the Cosserat rod the-
ory [86]. This theory makes it possible to take into account tension, shear, torsion and
bending of an oblong body. Cosserat’s theory combines the evolution of the rod geometry
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(nonlinear process) and the evolution of the mechanical characteristics of the rod (linear
process). In the Cosserat model, the rod is a quasi-one-dimensional system described by
the curve

→
r (s, t) passing through the centers of the longitudinal sections, parametrized in

space using the parameter of the geodesic of the rod s, and evolving in time. The section
of the rod at each point is described by an orientation quaternion consisting of local axes
of the Lagrangian coordinate system, indicating the direction of the axis of rotation of the
section, and the angle of rotation around this axis. The position of the center of the section
→
r (s, t) evolves under the influence of the forces arising in the rod, and the orientation of
the section evolves under the influence of the torques arising in the rod. Obviously, the
orientational quaternion of the cross section is also related to the rotation of the magnetic
moments of the filler particles in the rod. To calculate the necessary forces and torques, the
momentum balance equations are used at each point of the rod with the magnetic field
serving as an external stimulus. It should be noted that the elastic properties of the rod
in the Cosserat theory are described by the linear theory of elasticity. Thus, when using
the Cosserat theory, it is necessary to solve a closed system of 13 equations that determine
the behavior of small elements of the rod. The analytical solution of such a system is often
difficult or even impossible due to the nonlinearity of the geometric relationship between
the local Lagrangian and Euler coordinates, so numerical methods are used to obtain results
within the framework of the Cosserat theory.

Kalita et al. [87] used the expression for the elastic energy of the deformed thin elastic
beam to explain the so-called critical bending of a soft-magnetic MAE induced by magnetic
field. This phenomenon is characterized by a critical exponent for the bending magnitude,
and the derivative of the function characterizing the bending has a singularity in the
critical region.

An important basic functional element of many actuating devices is an active soft
membrane. Such membranes are used as pumps, filters and as elements of devices that
allow for remote-controlled handling of liquids. Membranes are a specific case of thin
systems, and, as such, it is possible to develop theoretical descriptions of membrane-based
devices that include analytical solutions of the boundary value problems of MAE behavior
in external magnetic fields. The work [88] made use of both coarse-grained MD simulations
as well as continuum modeling to study the influence of precessing magnetic field on the
magnetodeformation of a membrane consisting of a single layer of superparamagnetic
colloid particles for varying precession angle of the magnetic field. It was shown that
the ratio of the magnetic constant to the elastic constant defines the deformation mode in
the system under study. The work [89] developed the membrane theory for MAE-based
devices. The asymptotic expansion of variational equations of 3D continuum theory was
used to obtain an effectively two-dimensional theory of membrane deformation. Both
stress and deformation profiles of circular and annular membranes were obtained for
different magnetoelastic loading conditions. The model was also validated using existing
data from literature.

Finally, another generally accepted approach to describing MAE behavior is finite
element modeling using linear continuum field equations of mechanics and magnetostat-
ics [14,90–95]. This is the most direct macroscopic approach to the description of physical
processes. The stresses arising in the robot are divided into mechanical (of an exclusively
mechanical nature) and magnetomechanical (induced by a magnetic field). The latter are
calculated by solving Maxwell’s equations. Then the balance equation of the total stress
is solved while taking into account the influence of external forces. Since finite element
calculations for complex systems in three-dimensional space require significant time and
computational resources, they are usually limited to the study of two-dimensional models
that qualitatively describe the real movement of the sample. The use of linear theory is
also caused by the duration of calculations for non-linear models. The advantage of this
approach is the clarity and the ability to set an arbitrary configuration of the magnetic
field, as well as the geometric characteristics of the sample and determine which system
has the properties necessary for the expected practical applications. Another advantage of
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finite element modeling is the existence of ready-made software packages that implement
the computational foundations of the method. It is then possible to build and optimize a
specific model without the need to create new software from scratch.

Thin MAE rods can be said to be a type of system suitable for direct modeling as
well as various simplified models. Dimensional reduction procedure can be carried out
for such systems. This reduces the complexity of the problem by modeling the MAE as a
one-dimensional system. The main modeling assumption in this case is that any material
vector that was normal to the rod centerline in the undeformed configuration remains
normal to it and does not experience stretching after deformation occurs. This naturally
limits the model to describing simple bending but allows for much easier analytical study
of MAEs. The works [96,97] studied MAE rods with saturated magnetically hard filler in
the presence of both uniform and gradient magnetic fields. The virtual work principle and
Kirchhoff-like equations of motion for rods were used and modified to include magnetic
torques and forces. Long-range magnetic interactions were neglected and the absolute
value of magnetization of different parts of the rod did not change. MAE deformation and
displacement was modeled. In [96] results obtained for simple beams were extensively
compared with both experimental data and full-field 3D FEM modeling. In [97] regular
rods and helical MAEs were considered analytically, numerically and experimentally. The
deformational behavior of the material in magnetic fields obtained theoretically was shown
to be in good agreement with experimental data. Models obtained through dimensional
reduction were shown to describe simpler MAE systems adequately and can thus be used
to study prolate MAE samples with high degree of symmetry more efficiently.

In [98] field-induced vibrations of a rod-shaped MAE sample fixed at one end were
studied. A numerical solution of vibration equations was obtained using commercial FEM
software ANSYS® Workbench 16.2, analysis system “Modal”.

In [90], thin elastomer samples containing magnetically hard particles were studied.
Different areas of the samples had different preferred directions of magnetization. Finite
element modeling was performed in the ANSYS® software package with MATLAB® scripts
by dividing the sample into sections, each of which is considered to be a magnetic dipole
with the deformation of each section described using the beam theory of Euler–Bernoulli.
In [91], worm-like MAE samples were considered by dividing them into segments, each
of which has its own direction of magnetization. Here samples with both hard magnetic
and soft magnetic filling were studied. The proposed theoretical model resembles a simple
polymer chain model in which the elastic and magnetic moments at the ends of the segments
are balanced using an iterative process. The obtained material behavior largely coincides
with their experimental behavior, although the system was not described in detail.

In [99], a cuboid sample of the MAE was studied. Silicone elastomer was used as a
polymer matrix, and NdFeB particles were used as filler. The MAE under study had an
inhomogeneous magnetization profile: the distribution of the magnetic moment direction
along the length of the sample was described by a harmonic function. The authors of this
paper proposed to use oscillating magnetic field with spatially homogeneous components
Bx, By, Bz to rotate the sample and change its shape. This was used to create movement of
the MAE sample in a surrounding liquid medium or allow it to bypass various obstacles,
thus effectively creating a remotely controlled soft robot. Gradient magnetic fields were
also considered. The bending of the MAE is described by solving the equations of the
Euler–Bernoulli theory for a rod with free ends, where the distributed magnetic moment
acted as the stimulus that induces bending of each section of the rod. Using the energy
conservation, the kinematic parameters of the sample’s movement caused by successive
controlled changes in its shape were calculated: the maximum height of the “jump” from
a flat surface, the speed of rolling along the surface, the speed of horizontal movement
(“walking”), the magnetic field required for climbing onto the water meniscus, swimming
speed in liquid medium. When studying the floating of a sample in a liquid, the analysis of
the mechanical natural frequencies of the sample was carried out by solving the equations
of Newtonian mechanics for the rod element using separation of variables. As a result,
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within the framework of classical mechanics, as well as the quasi-static theory of Euler–
Bernoulli beam bending, equations describing the motion of a simple MAE-based soft robot
in a liquid medium and in the air were obtained and solved (analytically for linear and
numerically for nonlinear cases). Dependences of the kinematic parameters of various
types of motion on the dimensions of the sample, as well as on the amplitude and frequency
of the external magnetic field were provided. Experimental video measurements of the
characteristics of the shape and movement of the robot for various geometric parameters
of the sample were carried out. Comparison of simulation results with experimental data
showed the adequacy of the proposed models for all types of motion except for swimming.

In [92], FEM was used for active origami-inspired designs, which incorporated active
materials such as electroactive polymers and MAEs into self-folding structures. Constitutive
relations were developed for both electrostrictive and MAE materials to model the coupled
behaviors explicitly. Shell elements were adopted for their capacity of modeling thin films,
relatively low computational cost, and ability to model the intrinsic coupled behaviors in the
active materials under consideration. The electrostrictive coefficients were measured and
then used as input in the constitutive modeling of the coupled behavior. The magnetization
of the MAE was measured and then used to calculate the magnetic torque as a function of
the special orientation, which led to spatial deformation of the MAEs. Through quantitative
comparisons, simulation results showed good agreement with experimental data.

The authors of [93] studied the behavior of a jellyfish-like device consisting of a
magnetoactive polymer core and “tentacles”, the ends of which are non-magnetic. The
device was placed in a liquid medium in the presence of an oscillating magnetic field. Based
on the analysis of the video of the movement of the device, the kinematic characteristics
of the jellyfish were calculated, and a simple dynamic simulation of the movement of the
tentacles as a rotation of a sequence of small elliptical cylinders around the attachment point
of the tentacle was also carried out, the speed of the device is calculated by integrating the
Newtonian equation of motion. The results of the calculation of the average velocity were
consistent with the experiment for brief time periods of motion. The work also evaluated
the influence of the geometric dimensions of the device’s components on its behavior using
the Euler–Bernoulli theory and two-dimensional finite element modeling via the COMSOL
Multiphysics® 5.3a software package.

In [94,95], systems of cilia-like samples were studied: soft cylinders made of a mag-
netically active material, fixed at one end on a specific surface. The collective motion of
an array of cilia in a liquid medium and in the presence of a magnetic field was studied,
taking into account their hydrodynamic interaction. In [94], magnetite was used as a
magnetoactive filler, and cilia had sizes of the order of tens of micrometers; in [95], NdFeB
particles acted as filler, and cilia had sizes of the order of millimeters. Such systems are
capable of generating flow and waves in a fluid both for the purpose of moving external
objects and for the purpose of moving the device to which they are attached. In [94], the
behavior of the system was described by calculating the configuration of the magnetic field
and fluid flow via the finite element method and using the obtained data to calculate the
deformation of cilia according to the Euler–Bernoulli theory. In [95], the finite difference
method and the Cosserat rod theory were used instead.

To summarize, the approach based on the technical mechanics is pragmatic and
application-oriented: it is not focused on revealing the underlying physical phenomena
within the composite material but addresses the actuation of MAE-based functional el-
ements. The properties of constitutive materials have to be known. We believe that the
combination of microscopic and mesoscopic modeling, as described in preceding sections,
with the methods of technical mechanics will lead to rapid development of a fit-for-purpose
MAE material design.

3.2.2. Invariant Theory

The fundamentals of the continuum approach to the theoretical description of mag-
netoactive elastomers were comprehensively described in [100–103]. All basic equations
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were provided in their general form, additional conditions and material relations were
also given. These papers described the mathematical structure of the desired functions
corresponding to the energy, mechanical, and magnetic characteristics of the material in
terms of Lagrangian and Euler coordinates, magnetic field, and Cauchy stress tensor invari-
ants (Figure 8). The results were obtained both directly from the balance equations for the
mass, momentum and energy in the Euler configuration, and from the minimization of the
energy functional in the Lagrangian configuration. The invariant theory for tensor fields in
continuum mechanics was described in great detail in the book [104].

F = ∂
→
x

∂
→
X

J = detF C = FTF, (8)
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description [105]. 
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Figure 8. Visualization of different descriptive approaches for the movement and deformation of
a continuum body in space by two selected configurations in time (t = 0 is the reference configu-
ration, t > 0 is the current configuration). Describing a movement or deformation relative to the
coordinates of a reference configuration (undeformed) is called the Lagrangian description, while
describing it relative to the coordinates of a current configuration (deformed) is called the Eulerian
description [105].

Here F is the deformation gradient tensor,
→
x are the coordinates in current (Euler)

configuration,
→
X are the coordinates in reference (Lagrangian) configuration, C is the right

Cauchy–Green stress tensor.
Maxwell equations for a stationary case with no free currents (classic magnetostatics):

div
→
B = 0 curl

→
H = 0, (9)

Here
→
B is the magnetic flux density (or B-field) and

→
H is the magnetic field strength

(or H-field).
The magnetomechanical balance equation reads:

divP +
→
f = 0, (10)

where P is the reference total stress (both mechanical and magnetic), represented by the

first Piola–Kirchhoff stress tensor, and
→
f is the total force acting on the material volume.

Magnetoelastic free energy is considered as a function of the magnetoelastic invariants:
there are six invariants in the case of an isotropic internal structure of the composite and
there are ten invariants (I1, I2, . . . , I10) when structural anisotropy (transverse isotropy) is
taken into account [102].
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Additionally, the free energy function is composed of several terms: corresponding to
isotropic and anisotropic material mechanical contributions, purely magnetic contributions
and coupled magnetomechanical contributions:

Ψ = Ψ(I1, . . . , I10) = Ψiso(I1, I2, I3) + Ψaniso(I7, I8) + Ψmag(I4)+
Ψcouple(I5, I6, I9, I10),

(11)

Coupling terms depend on the coupled invariants and are the most sophisticated
aspect of this approach. Another way of constructing the free energy expression is dividing
it into the polymer matrix energy, the filler particles energy and the energy corresponding
to the interaction between them. The simplest case of small deformations and weak
magnetic fields would lead to a free energy function with a quadratic dependence on the
magnetic field and quadratic dependence on Cauchy strain. In general, the correspondence
principle should be satisfied for the free energy expression as it should correspond to
classic elasticity and magnetostatics in the limits of infinitesimal strains and weak magnetic
fields, respectively, as those limits imply that the coupling effects practically vanish. The
purely mechanical part of the energy stored in the medium most often takes either linear
elastic form or hyperelastic form (neo-Hookean, Mooney–Rivlin, Gent, etc.), while the
magnetization energy function is usually based on linear, Langevin, hyperbolic tangent
or Fröhlich–Kennelly models. The arguments of these model functions are themselves
functions of magnetomechanical invariants. The limiting cases of small deformations as
well as weak magnetic fields and saturation-level magnetic fields provide the asymptotically
correct forms of energy expressions, and the derivatives of mechanical and magnetic parts of
the energy correspond to the linear elastic modulus and magnetic permeability, respectively.

Mathematical expressions for the invariants using one of the notations are as follows:

I1 = trC I2 = 1
2

(
(trC)2 − trC2

)
I3 = detC

I4 =
→
B ·
→
B I5 =

→
B ·C·

→
B I6 =

→
B ·C2·

→
B

I7 =
→
N·C·

→
N I8 =

→
N·C2·

→
N

I9 =

(→
B ·
→
N
)2

I10 =

(→
B ·
→
N
)(→

B ·C·
→
B
)

, (12)

where ere
→
N is the unit vector describing a specific preferred direction that exists in the

material due to its internal structure. This set of invariants describes a transversely isotropic
material. If there exists another preferred direction with its own unit vector, then additional
similar invariants are introduced.

The constitutive equations for the material (as described by the Coleman–Noll proce-
dure [106]) are as follows:

P = ∂Ψ
∂F

→
H = ∂Ψ

∂
→
B

, (13)

Finally, one needs to add the material equation for magnetic materials:

→
B = µ0

(→
H +

→
M
)

, (14)

where ere µ0 is the magnetic permeability of vacuum and
→
M is the magnetization vector.

Boundary conditions are required to complete the problem formulation.
It should be noted that all Maxwell and balance equations must hold for both refer-

ence and current configurations. There are several different formulations of the problem

that rely on different basic variables:
→
H and

→
B can be interchanged via partial Legendre
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transformation; right and left Cauchy–Green tensors are used for reference and current
configurations, respectively. Magnetization can also be used as a magnetic variable.

A simple continuum model based on invariant theory was presented in [107]. It
utilized finite deformation theory and free energy of a neo-Hookean solid with saturated
magnetically hard filler and was tested in ABAQUS 2016 via uniaxial prism deforma-
tion and beam bending. The remanent B-field used in the free energy was measured
experimentally for all the samples. The results for small bending were obtained both
analytically and numerically, and the agreement presented in this work was shown to be
good. Finite-element modeling for more complex 2D and 3D structures was compared with
experimental results, and it can be said that the general material behavior was captured by
the model correctly. The main advantages of this model are its relative simplicity and the
ability to predict bending-type behavior of hard magnetic MAE-based regular structures to
a reasonable extent.

In [102], an analytical form of the stress-strain relation was derived under the condition
of a linear dependence of the MAE free energy on the stress tensor invariants. In [100,103],
the case of a polynomial dependence of the free energy on the invariants of the Cauchy tensor
was considered. In [108], a polymer matrix containing cylindrical ferromagnetic inclusions
was studied, and the strain energy density function was described by the Gent hyperelastic
model. Additionally, various specific forms of the free energy expression were proposed
and obtained within the phenomenological framework [102,109,110]. In [105], a much more
complex form of free energy was used in combination with finite element modeling.

MAE magnetostriction was modeled in [111], where governing equations of the
stationary magnetic and the coupled mechanical BVPs were provided. The stationary
magnetic BVP was given by Maxwell´s macroscopic equations. Coupled mechanical BVP
contained an additional body force density in the coupled magnetomechanical case; this
approach comes from the book of de Groot and Suttorp [112] and results from a distinction
between long- and short-range contributions of atomic interactions, which is not free from
arbitrariness. Constitutive model was based on the works of Dorfmann and Ogden [103],
Eringen and Maugin [113], Spieler et al. [114] and Vogel et al. [115]. Since small strains and
nonlinear magnetizations were considered, restrictive conditions were introduced on the
magnetization and the total stress tensor. The mechanical part of the specific free energy
was characterized by an isotropic Hookean materials law. Magnetization was described
phenomenologically by the hyperbolic tangent model. Computational homogenization
used macro-homogeneity condition. Idealized lattices as well as compact and wavy chains
were considered. Random microstructures, comprising both unstructured (random hetero-
geneous) and structures (chain-like) arrangements, were considered. Qualitative agreement
between theory and experiments was demonstrated.

In the work [116], the resulting shape of an initially spherical MAE sample was studied.
The sample was considered to be linearly magnetizable, isotropic and hyperelastic. Magne-
tostriction under the influence of external uniform magnetic field was simulated using FEM.
The results were compared with the sample elongation predicted by perturbation theory. It
was noted that the leading factor that affects the sample behavior is the sample shape and
that it was possible to predict complex shape changes without considering the microstruc-
ture of the sample. The results obtained through modeling indicated that a spherical sample
changes into an ellipsoid and then into a spindle-like object as the external field strength
increases (Figure 9). An interesting result presented in this paper is that even simple, initially
spherical MAE samples obtain a complex shape due to magneto-deformation in uniform
fields, which is an important factor to consider for further research.

The works [117,118] studied the material response to external magnetic field and defor-
mation within the framework of invariant theory in addition to dipolar mean-field theory
that combines microstructural and macrocontinuum models and is discussed in Section 4.3
in more detail. The microscopic effects were not discussed in [117,118], and instead authors
focused on the role of the initial (undeformed) shape of the sample in the material behavior.
MAEs with random isotropic filler particle distribution were considered, and one of the
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main assumptions of the proposed model was that, under the influence of applied magnetic
field, the initially isotropic MAE becomes transversely isotropic through the formation of
anisotropic filler particle structures. Thus, the free energy of the sample was divided into
isotropic term, anisotropic term and magnetic term with the magnetic part of the energy
depending on the sample shape. Uniaxial deformations were studied in [117] while ref. [118]
focused on shear deformations. The strong effect of the MAE shape on the sample behavior
was demonstrated even within the modeling limitations of an ellipsoidal sample.
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The works [119,120] tackled the problem of analytical description of MAEs with two
types of magnetic filler: rigid iron particles and soft ferrofluid particles. Explicit free energy
function for isotropic MAEs with such fillers was constructed for the two-dimensional and
three-dimensional cases in [119] and then used in [120]. The polymer matrix was considered
to be incompressible and non-Gaussian. The filler particles were described using classic
non-linear magnetization functions (Langevin model and Brillouin model). The variational
problem for the free energy was considered using analogies with results obtained before for
electroelastic systems by the same authors in [121,122]. Approximate solution of the problem
was obtained, and it was demonstrated that it is asymptotically exact for the case of small
deformation and weak to moderate magnetic fields. Macroscopic magnetoelastic response
(namely, deformation gradient tensor) of suspensions of circular (2D) and spherical (3D)
particles was obtained in [119] and compared with full-field FEM simulations. Spherical and
cylindrical MAE samples were studied. It was noted that MAEs with ferrofluid filler exhibit
stronger magnetostriction effect than their iron-filled counterparts. Discrepancies between
theoretical results and experimental data were noted for the case of cylindrical elastomer
samples. In [120] the authors proposed an approximate solution that is asymptotically exact
for both weak and strong magnetic fields and compared the obtained results with FEM
simulations for spherical MAEs with iron and ferrofluid particles. The comparison proved
the adequacy of the suggested model based on invariant theory.

Authors of [123] suggested modifying the isotropic part of the mechanical energy and
provided a constitutive model with exponential-logarithmic dependence of the energy on
the first invariant I1. Both isotropic and transversely isotropic materials were modeled, and
for the sake of simplicity the dependence of the energy on the purely magnetic response of
the material was modeled as additional shear modulus that is exponentially dependent
on the applied magnetic field. This is an approach that is somewhat similar to rheological
modeling, and it simplifies the calculations. Stress-strain curves and magnetorheological
response of MAE samples were obtained, and while the results agree with experimental
data for filler concentration around 10 vol% and weak to moderate magnetic fields, a
noticeable discrepancy between modeling predictions and experimental data is observed
for a filler concentration of ~20 vol% and a magnetic field of about 1 T.

The work [124] presented an alternative continuum modeling framework that was
based on the usage of spectral invariants of the magnetomechanical medium instead of
classic invariants. These spectral invariants consist of the eigenvalues of the Cauchy–Green
tensor (which can be interpreted as principal stretches of the system) and traces of different
tensors obtained as the products of vectors that define the preferred directions of the
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material: external magnetic field direction, initial filler structure anisotropy and Cauchy–
Green tensor eigenvectors. There are ten independent spectral invariants for a transversely
isotropic material, and they can be expressed in terms of classic invariants. The main
advantage of this framework is the ability to vary each spectral invariant independently in
a triaxial stretch test and obtain the dependence of the free energy of the system on each
invariant directly. This approach presented promising and logical direction for further
theoretical studies of MAEs and other magnetosensitive solid materials.

To summarize, the theoretical approach using invariant theory has been intensively
developed in recent years. It still has some challenges as far as coupled invariants are
concerned, but the corresponding works are on the way. We believe that this approach will
become more important in the next years because it has a clear physical basis that can be
conveniently transferred into computational code.

3.2.3. Effective Medium Theory

Since MAEs can be considered as composite materials, it is natural to employ effective
medium theory (EMT) or effective medium approximations to calculate their macroscopic
properties from the known physical properties of the constitutive materials. This approach
has been developed in the works of Snarskii et al. [125–128]. The initial MAE microstructure
was assumed to be random heterogeneous, in particular, randomly located spherical inclu-
sions of the first phase (carbonyl iron) dispersed in a continuous polymer matrix (second
phase). Contrary to the conventional EMT, the microstructure (i.e., mutual arrangement of
filler particles) of composite material changes under the influence of an external field in the
situation when dimensions and the shape of the sample remain constant. The following
physical model was proposed: When the particle concentration ϕ is less than the critical
threshold value ϕc, there is an assortment of finite clusters in the composite material (called
a pre-cluster), which, with an increase in the concentration of inclusions ϕ→ϕc, will connect
parts of the pre-cluster and form an infinite cluster. When a magnetic field is applied to an
MAE specimen and the elastic matrix is compliant, the particles with the attached matrix
can move within the specimen (until the elastic force from the matrix stops them) and
thereby increase the relative number of particles (i.e., their concentration) in the pre-cluster.
The main idea of the proposed theoretical description of effective properties in the case of
the field-induced rearrangement of inclusions was that the increase in their concentration
in the pre-cluster can be interpreted as a decrease in the percolation threshold ϕc. This
means that the reduction of the difference (ϕc − ϕ) is not attributed to a (local) increase
in ϕ, but to a decrease in ϕc. With such a description, the percolation threshold ϕc is no
longer a constant, but is a function of the magnetic field that decreases with increasing 〈H〉:
ϕc = ϕc(〈H〉), where 〈. . .〉 = 1/V

∫
. . . dV, V is the averaging volume, wherein the char-

acteristic dimensions of the averaging region should be much larger than the correlation
length ξ. The following dependence of the percolation threshold on the external magnetic
field, as introduced by Mitsumata et al. [129], was used:

ϕc(|〈H〉|) = ϕc0exp(−|〈H〉|/Hc), (15)

where Hc ischaracteristic magnetic field strength and ϕc0 is percolation threshold in the
absence of a magnetic field. Comparisons with experiments showed that the Hc has the
order of magnitude 105–106 kA/m. To describe the magnetodielectric effect in MAEs, the
authors of [125] used the modified Bruggeman–Landauer (BL) [130,131] approximation:

εe−ε1
ε1+2εe[

1 + c(ϕ, ϕc)
εe−ε1

ε1+2εe

] ϕ +

εe−ε2
ε2+2εe[

1 + c(ϕ, ϕc)
εe−ε2

ε2+2εe

] (1− ϕ) = 0, (16)

where εe is the effective relative permittivity and ε1, ε2 are the relative permittivities of the
consituitive materials. The addends in the denominators (emphasized by square brackets)
proportional to c(ϕ, ϕc) represent the generalization of the BL approximation by Sarychev
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and Vinogradov (SV) [132]. According to [132], this renormalization is related to the
additional contribution to the local field by the inclusions. Specifically, the SV term is:

c(ϕ, ϕc) = (1− 3ϕc)

(
ϕ

ϕc

)ϕc( 1− ϕ

1− ϕc

)1−ϕc

, (17)

In a later paper [126], this method has been generalized to describe the anisotropy of
the magnetically induced changes of the effective permittivity. A reasonable agreement
between theory and experiment was observed.

To describe the magnetorheological effect, the modified system of the classical self-
consistent EMT for elasticity problem [133,134] was proposed:{ Ω1

1+s(ϕ,ϕc)Ω1
ϕ + Ω2

1+s(ϕ,ϕc)Ω2
(1− ϕ) = 0

Θ1
1+s(ϕ,ϕc)Θ1

ϕ + Θ2
1+s(ϕ,ϕc)Θ2

(1− ϕ) = 0
, (18)

Here the following notations were used:

Ωi =

Gi
Ge
· 1+νi

1+νe
· 1−2νe

1−2νi
− 1

1 + αe

(
Gi
Ge
· 1+νi

1+νe
· 1−2νe

1−2νi
− 1
) , Θi =

Gi
Ge
− 1

1 + βe

(
Gi
Ge
− 1
) , αe =

1
3
·1 + νe

1− νe
, βe =

2
15
·4− 5νe

1− νe
,

and Ge, νe denote the effective shear modulus and the Poisson’s ratio, respectively, while
G1, G2, ν1, ν2 are the values of these moduli in the first and second phases.

The new term s(ϕ, ϕc) is defined in the following way:

s(ϕ, ϕc) = (1− 2ϕc)

(
ϕ

ϕc

)ϕc( 1− ϕ

1− ϕc

)1−ϕc

, (19)

where ϕc is the function of the external magnetic field (15) [127].
The concept of the field-dependent percolation threshold allowed one to describe in a

unified manner the magnetodielectric effect, the non-monotonous field dependence of the
magnetic permeability in MAEs [125] and to explain the order of magnitude for the giant
or colossal MR effect. Therefore, the restructuring of the filler has to be taken into account
when considering the MR effect in MAEs. Recently, Chougale et al. [135] pointed out that
the hydrodynamic reinforcement factor k plays a key role in the drastic increase in the MR
effect due to restructuring of the filler and argued that the divergence of k is equivalent to
the definition of percolation threshold by Snarskii et al.

Interestingly, the model of movable percolation threshold predicts a significant change
in a Poisson’s ratio of compliant MAEs in external magnetic fields. It was proposed to
use the measurement of a Poisson’s ratio as a verification test for this theoretical model.
The model does not exclude alternative mechanisms, which may be present simultane-
ously and should also contribute to the field-stiffening or magnetorheological effects (by
further enhancement).

If a percolating structure comes into play in a composite material, its existence must be
observed in several physical properties (cross-property relations) [128]. An important next
step should be theoretical explanation of the empirical relationship (15) proposed in [129].
In particular, the relation of the critical magnetic field Hc to the physical properties of a
composite material and its constitutive components has to be established [128].

To summarize, the EMT is capable of offering a unified theoretical approach for
description and explanation of different physical phenomena in MAEs, caused by the
restructuring of particles. Describing the field-induced anisotropy of mechanical properties
of MAEs is currently a challenge because a suitable formulation of self-consistent EMT for
elasticity problem is not available.

The overall challenges that lie before the field of MAE continuum modeling stem from
the very foundations of this approach. The equations describing the material behavior are
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much more complex than classic equations of particle motion; those equations are frequently
nonlinear and include coupled magnetomechanical material relations. Various aspects
of such models require further refining: taking into account the viscoelastic properties
of the polymer matrices, rigorously incorporating nonlinear magnetization models and
magnetic anisotropy into constitutive equations, analyzing the coupling terms of the
material energy function in more detail to better capture the behavior of soft MAEs in the
presence of strong magnetic fields. As discussed in Section 3.2, several attempts to tackle
these problems have been made recently, however a more complete continuous model
of MAE behavior that combines all of the mentioned factors has not been developed yet.
On the other hand, it should be mentioned that considerable progress has been made in
regard to formalization of fundamentals of MAE physics. Several works that provide a
deep analysis of thermodynamics of magneto-dielectric-mechanical systems as well as the
general properties of the corresponding energy functions have emerged. One can expect
that more rigorous and general solutions of the magnetomechanical continuum problems
that do not rely on the small deformations and weak magnetic field approximations will
appear in scientific literature in the coming years.

3.3. Rheological Modeling

Rheological modeling is the simplest approach when it comes to description of MAE
behavior and it is intrinsically tied to experimental studies. The dynamic material behavior is
described phenomenologically on a macroscopic scale using a system of mechanical elements
connected in series or in parallel. This approach is similar to describing the behavior of
an electronic circuit with a circuit diagram. Each mechanical element in the equivalent
circuit has its own stress-strain relation that can depend on the external magnetic field, and
the resulting stress-strain relation of the equivalent circuit corresponds to material behavior.
Model parameters are calculated via error functional minimization by comparing the modeling
output with the data of dynamic mechanical loading experiments for MAEs in the presence of
external magnetic field. Typical elements include linear elastic springs, Newtonian dashpots,
plastic elements, friction elements, nonlinear springs and fractional viscoelastic elements. If
trends of the model parameters’ dependences on the material composition and magnetic field
are established and approximated, the model can have predictive value.

Dynamic mechanical analysis is a phenomenological approach, so any rheological
model is adjusted to describe specific objects and experiments and load cases. The param-
eters of the model elements in this approach are obtained via fitting the dependences of
characteristics of a typical sample on the external stimuli obtained as a result of experimental
measurements. Multicomponent composition, the presence of particle–matrix interfaces,
magnetic and elastic memory effects as well as magnetomechanical coupling lead to a very
complex transient rheological response of MAEs. It was shown that in temporally stepwise
changing magnetic fields and oscillation amplitudes, at least three exponential functions are
required to reasonably describe the time behavior of the storage shear modulus of MAEs
on long time scales exceeding tenths of minutes [136]. The corresponding time constants
of three identified structuring processes differ by one order of magnitude [136]. The pres-
ence of different relaxation mechanisms at different time and length scales requires the
construction of rheological schemes with several relaxation and retardation times. Attempts
to use classical rheological schemes to describe the viscoelastic behavior of magnetoactive
elastomers lead to significant complication of the model [137], which is especially noticeable
when it is required to describe the behavior of the material for a wide range of magnetic
field strength values. The viscoelastic behavior of magnetoactive elastomers can change
significantly with a change in the magnetic field, therefore a sufficiently flexible rheological
model is required. The discussed approach was also implemented for MAEs using non-
classical rheological elements [137–141], however, the dependence of the model parameters
on the external field makes constructing rheological models without a priori knowledge
of the magnetic properties of the material rather challenging. The information about MAE
magnetization curves must then be obtained using some other experimental or theoretical
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research methods. In particular, in [142] the magnetization model of MAEs was combined
with magnetic dipole theory and quantitative description of frequency-dependent shear
modulus in various magnetic fields, as a result, the authors proposed a generalized Maxwell
model connected in parallel with a magneto-induced modulus model which was able to de-
scribe frequency and magnetic field dependencies of the dynamic shear modulus of isotropic
MAEs based on silicone rubber filled with carbonyl iron microparticles. The parameters of
the magnetization model were obtained from fitting experimental magnetization curves.

There exists a different class of rheological elements intrinsically suitable for viscoelasticity
modeling by virtue of the mathematical definition of their stress-strain relation and possessing
sufficient flexibility to describe a wide variety of processes without complicating the rheological
model. This class of elements is called fractional rheological elements and, as the name suggests,
the stress-strain relation for such elements is represented with a fractional order differential
equation. Fractional elements exhibit memory effects and not only generalize rheological
models, but also fundamentally enrich them. There exist several forms of fractional differential
operators, one of them, the left-handed Riemann–Liouville fractional derivative of order
α (0 < α < 1) which was used, for instance, in [143,144], can be expressed as follows:

RL
0 Dα

x f (x) =
1

Γ(1− α)

d
dx

∫ x

0

f (ξ)dξ

(x− ξ)α , (20)

Here Γ(x) is Euler’s gamma function. The stress-strain relation for this fractional
element has the following form: σ = c · RL

0 Dα
t ε = c · ε(α). Thus, it is characterized by two

parameters-the fractional order α and the viscoelasticity coefficient c, which makes it more
flexible than the classical ones. For the limiting cases α → 0 and α → 1, one has the
following relations connecting fractional viscoelasticity with classical viscoelasticity:

lim
α→0

(
RL
a Dα

x f (x)
)
= f (x), lim

α→1

(
RL
a Dα

x f (x)
)
=

d
dx

f (x), (21)

It means that the fractional element becomes a Hookean spring in the limit of α = 0,
and it turns into a Newtonian dashpot in the opposite limit α = 1.

In recent years, works describing the MAE behavior using fractional rheological mod-
els have emerged. It has been shown that even the simplest classical models, namely, the
Maxwell and the Kelvin–Voigt models of a viscoelastic medium in principle can describe
the viscoelastic behavior of a MAE sample if the classical dashpot is replaced by the frac-
tional element (Figure 10a,b). It has been shown that these simplest one-fractional-element
rheological schemes can adequately describe the viscoelasticity of MAEs with various
concentrations of magnetic filler in small magnetic fields where the major contribution
to the dynamic response comes from a polymer network [143]. They can also be used in
saturating magnetic fields where the dynamic response is dominated by the response of
a strong magnetic network formed by the filler particles [143]. In intermediate magnetic
fields, when the magnetomechanical coupling plays an important role and restructuring of
magnetic particles takes place one needs to use more sophisticated fractional schemes. The
works [144–147] used the Zener model that corresponds to the standard linear solid model
(Figure 10c). In [147], the four-parameter Zener model with a fractional element instead of
a classical dashpot was used to describe the stress relaxation behavior of anisotropic MAEs.
The model was in good agreement with experimental data obtained in both single- and
multi-step relaxation tests. In [146], the Zener model was modified not only by replacing
the dashpot with the fractional element but also using springs with field-dependent spring
stiffness. It can describe well the dynamic mechanical behavior of isotropic MAEs in various
magnetic fields both in time and frequency domains. In [143], a more accurate model was
proposed; it corresponds to the generalized Maxwell model with two branches (Figure 10d).
Fitting the experimental data with the results from the generalized Maxwell model has
demonstrated that the evolution of the fractional order parameters for this model follows
the three scenarios of the MAE viscoelastic properties changes observed in small, interme-
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diate and strong magnetic fields and it was interpreted in terms of MAE microstructure
evolution. The authors of Ref. [148] compared the performance of two branches: classical
Maxwell model with six fitting parameters and a fractional Maxwell model with five fitting
parameters and concluded that the latter is better in terms of accuracy, simplicity and
flexibility. The works [149,150] proposed combined phenomenological models consisting
of a fractional rheological circuit that describes viscoelasticity, as well as elements corre-
sponding to other aspects of material behavior. In [149], elements describing the friction
and dipole–dipole interaction of filler particles were considered. In [150], elements that
reproduce the nonlinear magnetization of the material, nonlinear elasticity, and elastoplas-
ticity were used. In [151], the fractional Maxwell model was coupled with a stochastic
linearized Bouc–Wen component. This eight-parameter model described viscoelastic as
well as the magnetic field and strain dependent behavior of MAEs with a high accuracy
exceeding 91%. In [152], the elastic–plastic model with linear hardening was adopted.
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To summarize, rheological modeling is actively developing nowadays. The main trend
is to combine rheological schemes with models of field-dependent and MAE-composition-
dependent dynamic shear modulus and to enhance the predictive capacity of the rheological
models in a wide range of loads and magnetic field strengths. In spite of a lack of physical
meaning in this type of approach, the rheological models can be very effective in modeling
dynamic response of MAE elements used in various practical applications, in particular,
for vibration control and isolation. The prospect of combining rheological modeling with
continuum and/or microscopic models seems very promising. It could allow one to create
models that are reasonably easy to use and have clearly defined physical meaning inherent
to the two other approaches mentioned in this article. Rheological modeling is also being
used in MAE hysteresis models, which is another promising field of MAE research that
would be better discussed in a separate review. Rheological models found currently in the
literature do not describe anisotropic response of MAEs and utilize simple approximations
for the dependences of the rheological elements’ properties on the applied magnetic field.
Thus, it follows that such flaws should be addressed in order to create rheological models
with higher degrees of generality.

4. Multi-Scale Modeling Approaches

The most widely spread and the most physically consistent combined modeling
framework found in literature is the combination of microscopic (or mesoscopic) and
macroscopic scales. Both the microstructure and the sample shape effects are taken into
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account in combined modeling, leading to a more holistic material behavior description.
Local characteristics are used to define macroscopic characteristics in these approaches.
Naturally, solving multiscale problems is a complex task that requires a lot of theoretical
considerations and computational resources. Direct characterization of the material as
a composite medium is difficult, and an alternative to such an approach is the homoge-
nization of the micro-scale medium, which creates combined micro-macroscopic models.
Micro-scale models can be based on solving equations of motion for filler particles or
treating them as a microcontinuum. The scale of the problem under study is of utmost
importance for theoretical description of MAEs as not only are the mechanical and magnetic
phenomena connected in such materials, but the processes occurring on the scales of filler
particles and the entire sample are closely connected as well. Combined microstructural
and macrostructural models (Figure 11) bridge the gap between the different scales using
various homogenization procedures through constructing representative volume elements
(RVEs) and averaging with volume integration. RVE characteristics are used to obtain
macroscopic parameters that are then used in a sample-scale model. An important as-
sumption employed in most multi-scale models is the length scales separation hypothesis
according to which the different spatial scales in the material are geometrically decoupled,
so any microscopic or mesoscopic structural element is seen as a material point on a macro-
scopic scale. The processes occurring on different scales influence each other by iteratively
transferring field variable data between scales (for example, average magnetization of
a microscopic element is assigned to a single point in a macroscopic model). There are
several approaches to microscopic element modeling, microscale homogenization, sample
modeling and description of the surrounding volume.
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(b) Formal discretization of sample volume Vs into mesoscopic portions Vα, α ∈ [1, N]. On such scales
any particle microstructure appears a homogeneous continuous distribution [153].

4.1. Representative Element Homogenization Approaches

Multi-scale modeling is usually based on the internal microstructure of the material.
Thus, the homogenization procedures are based on calculations of macroscopic sample
behavior using averages of microscopic quantities in representative elements. The represen-
tative elements can be obtained using periodic boundary conditions, ordered filler structure
models or statistical procedures that calculate the element size based on the deviation of
the resulting element characteristics from the macroscopic average.
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A framework for analytical magnetoelastic homogenization in MAEs was given and
discussed in [154] for a static two-dimensional case. The approach was based on micro-
scopic volume averaging and partial decoupling of the variational magnetomechanical
problem. Uniaxial loading in the presence of external magnetic field for a sample containing
elliptic particles of various sizes was studied in [155] in a quasi-static regime using analyti-
cal considerations in tandem with FEM modeling. This variational approach was further
developed by Danas in [156], where it was described as periodic homogenization. The
local homogenization problem was substituted with a simpler periodic filler structure that
consisted of single particle cells, and the variational problem was changed correspondingly
to account for perturbations arising due to the employed periodic approximation. The
influence of filler volume concentration, distribution, particle shape and orientation on the
magnetization and magnetostriction of two-dimensional MAEs was studied. Recently, nu-
merical homogenization was carried out in [157] for the case of isotropic three-dimensional
MAEs with magnetically hard filler. The periodic homogenization procedure was improved
to include RVEs with several particles of varying sizes and evolution in time (incremental
periodic homogenization). The proposed model also included magnetic dissipation po-
tential. An explicit analytical model based on invariant theory was also developed and
compared with homogenization results. The analytical model was verified by solving the
MAE cantilever beam deflection problem. It was found that for moderately stiff and stiff
polymer matrices (with shear modulus higher than 150 kPa) the model’s predictions were
in line with the homogenization results as well as experimental data found in literature.

In [78], a procedure for constructing a representative volume element of a MAE for the
case of spherical filler particles was presented. The authors compared two approaches to
averaging and homogenization of the properties of a medium. The first approach involved
deriving the weak form of the continuum equations of the medium using the variational
representation and a numerical solution of the resulting equations. The second approach was
based on generating random distributions of filler particles as a part of an iterative process
with each iteration checking if the current element is fit to be a representative volume element
using a statistical procedure. The calculation of the parameters of a real representative
element was then performed on the basis of the convergence of the physical characteristics
of the system (elasticity modulus and effective magnetic permeability) with an increase in
the number of statistical realizations. The calculation of these characteristics was carried out
using the finite element method. The authors calculated the dimensions of a representative
volume element for the case of a two-dimensional system, a polymer matrix with strain
energy density in the neo-Hookean form, as well as a fixed filler concentration, and specific
mechanical and magnetic properties of system objects. It was shown that the results obtained
using both of the considered approaches to the RVE modeling largely coincided.

A microstructure-based constitutive model for hard-magnetic MAEs was considered
in [158]. Under free-stress conditions of the post-cured MAEs, the composite was assumed
to reach an equilibrium state where the polymeric network balances the dipole–dipole in-
teractions of magnetic particles. Within a single framework, the model described the overall
magneto-mechanical response of the MAEs with magnetically hard filler considering the specific
contributions of its phases. The numerical results revealed that a pre-deformation of the poly-
meric network is required to reach consistent mechanical balance in the presence of magnetized
particles. The change in the distances between particles during the MAE deformation led to
changes in the dipole–dipole interactions affecting the overall response of the composite. This
effect was noted to be particularly important in the absence of an external magnetic field.

In [159], the hard-magnetic, compliant MAE was modeled as a three-dimensional
micropolar continuum body, which was subjected to external magnetic stimuli. From the
angular momentum balance law, it was deduced that the Cauchy stress tensor in these
materials cannot be symmetric. Therefore, the micropolar continuum theory [160], with
inherently asymmetric stress tensor, was chosen as a rational candidate for modeling the
deformation of these materials. In micropolar continuum theory each material particle
is associated with a microstructure that can undergo only rigid rotations independently
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from the surrounding medium. Therefore, each particle contains six degrees of freedom:
three translational which are assigned to the macro-element, and three rotational ones
which are related to the micro-structure. From the kinetic point of view, the interaction
between two adjacent surface elements was considered via a couple vector in addition to
the traditional traction vector, which led to the definition of couple stress tensor. It was
shown that the presented formulation can successfully predict the deformation of hard
magnetic soft materials under various loading and boundary conditions.

4.2. FE2-Approach

FE2 method is a robust multi-scale FEM modeling approach that assumes the existence
of two classic continuum scales: microscopic and macroscopic. Each macroscopic node of
the FE mesh corresponds to a microscopic element of the material. In the case of so-called
weakly coupled scales, this microscopic element is a representative volume element (RVE)
of the sample. For the sake of simplicity, weakly coupled scales models are more widely
used than their strongly coupled counterparts that do not assume any kind of statistical
representation of the material microstructure. Another important assumption of the FE2
method is the separation of scales: the scale of an RVE is much smaller than the basic scale
of the macroscopic continuum.

In order to describe the material behavior, BVPs on both scales must be solved. This
is an iterative process with each iteration consisting of several steps. First, the values of
macroscopic variables (such as stress, strain and magnetic field) are assigned to each node
starting from the initial material state. These values are then used as boundary conditions
for the microscopic BVP for an RVE solved using the weak formulation. The obtained
results are then averaged via a homogenization procedure and the averaged values are
assigned to the nodes of the macroscopic mesh. Finally, the macroscopic BVP is solved,
and the next iteration is prepared. This process is carried out until the changes between
iterations become negligible. MAE is a nonlinear material and because of that obtaining a
solution is a demanding process in terms of the computational resources it requires. Various
linearization methods can be employed to decrease the resource requirements.

The work [161] presented a framework for solving magnetomechanical BVPs using
FEM on microscopic and macroscopic scales for large strains. Homogenization theory was
applied to the BVP on microscale to create a self-consistent model where macroscopic quan-
tities (deformation gradient and H-field) were used to obtain the average stress and B-field
in microscopic elements by employing the generalized Hill–Mandel condition [162,163] in
a microscopic BVP:

P : δF−
→
B ·δ
→
H = 〈P : δF〉V − 〈

→
B ·δ
→
H〉V , (22)

where the line above a symbol is used to denote a macroscopic physical quantity, δ is the
variation or increment of a physical quantity and 〈∗〉V denotes the volume average of
∗. This condition provides connection between macroscopic quantities and microscopic
averages. These averages were then used in a linearized macroscopic BVP to calculate
new deformation gradient and H-field. Microscopic elements containing a single filler
particle were considered with varying microstructure orientation that translates into vary-
ing rotation angles for the microscopic cells. Material stiffening in uniform magnetic field
under shear load was studied, and the obtained results were noted to be in accordance
with experimentally observed phenomena. Magneto-electric-mechanical coupling was
considered in [164]. The effects of the sample shape were additionally studied in [165]:
two-dimensional rectangular and elliptic samples were considered in order to compare
the results with analytical predictions. Continuum theory based around the influence of
Maxwell stress on the sample boundary shape was used to obtain analytical estimations.
The effects of the magnetic properties and the shape of the sample on Maxwell tractions on
its boundary were discussed. It was shown that information about internal stress state of
the sample can be obtained using the tractions measured on its boundary.
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Fourier transform method can be used in order to reduce the computational complexity
of the microscopic problem. In [166] a comprehensive step-by-step algorithm of Fast
Fourier Transform method for nonlinear magnetoelasticity was provided along with its
mathematical justifications. It was used to simulate the material response to external
load and magnetic field in 2D and 3D for neo-Hookean polymer medium and hyperbolic
magnetization model. This work provided a rigorous framework that allows one to
incorporate Fourier space-based homogenization into multiscale MAE modeling.

4.3. Mean Field Approach

Another way of taking into account both microscopic and macroscopic effects was
proposed by Ivaneyko et al. [167], which they refer to as the mean field theory. It is obvious
that even when using the dipole approximation for magnetic interactions, calculating the
contributions to the magnetic field and energy from every single filler particle in an MAE
sample is an incredibly demanding task. In the dipole theory, the magnetic field inside the
sample can be expressed as a superposition of dipolar contributions from every particle at
a given point in space. A dimensionless shape factor f can then be introduced:

f = 1
4πϕ ∑i 6=j

3(rij)
2
m−r2

ij

r5
ij

(
rij
)

m = rij

(→
r ij,
→
e m

)→
e r, (23)

where ϕ is the volume concentration of the ferromagnetic filler,
→
r ij = rij

→
e r is the vector

connecting the centers of particles with numbers i and j,
→
e m is the vector denoting the

direction of the magnetic moment of particle j. The shape factor represents the distribution
of filler particles in the sample.

Another important aspect of the modeling approach in question is the decomposition
of the problem into two parts: a mesoscopic sphere surrounding the chosen point in
the material and the rest of the sample. Due to the distance dependence of the dipolar
magnetic field, the particles located far enough from a given particle can be considered to
be independent from it. The mesoscopic part of the magnetic field heavily depends on the
microstructure while the sample (or macroscopic) part of the magnetic field depends on
the sample shape and average magnetization:

f = fmicro + fmacro, (24)

where fmicro is the sum over particles inside the mesoscopic sphere and fmacro is the sum
over particles outside of it. The macroscopic sum can be replaced by an integral due to the
fact that differences between contributions from different particles become negligible far
away from the center of the mesoscopic sphere. The macro part of the function f can be
calculated more easily due to further homogenization of the field and density variables,
and it is related to the demagnetization factor of the sample. The micro part’s complexity
depends on the local distribution of filler particles. This approximation was dubbed
by the authors the dipolar mean field theory. Bulk magnetization can then be obtained
using a chosen magnetization model for the filler particles and will depend on f . In this
work equilibrium deformation and magnetization for simple cubic, body centered cubic,
hexagonal close-packed and tetragonal lattices representing filler particle distributions are
calculated using the simplest form of elastic and magnetic energy of the sample. The results
of the direct summation in f are compared to the results obtained within the approximation
framework, and the agreement was found to be good.

This theoretical approach to describing the properties of magnetoactive elastomers was
further developed in [168–170]. The magnetic field inside the material can be represented as
a combination of a local field, which is determined by the mutual arrangement of particles in
the region near the selected particle, and a macroscopic field, which is determined by the
average characteristics of the sample and its form factor. The filler particles were described
as linearly magnetizable magnetic dipoles, and the total magnetization was calculated for
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an ellipsoid-shaped MAE sample with a magnetic filler concentration not exceeding 20% by
volume. Using the linear theory of elasticity, the total energy of an ellipsoidal sample of a
magnetically active elastomer was also calculated. The result of both of these assumptions
was an integral equation for the magnetization, which was solved iteratively. The short-range
effects were ignored. Sample magnetization and deformation were obtained for random filler
particle distributions and cylindrical structures. In [168] the dipolar mean field approach
was compared with full field FEM simulations, and it was concluded that for systems with
sufficiently low filler concentrations both approaches provide qualitatively and quantitatively
the same results. In [169,170] using the basic principle that dictates that filler particles tend to
form elongated structures inside the polymer matrix in the presence of a magnetic field, and
within the framework of this approach an assumption was made that the filler structures
could be modeled as magnetized continuous medium areas within the sample volume.
With that assumption in effect, magnetic field inside the material can be calculated as an
integral of the dipolar contributions from each particle using a density function instead
of a direct sum of those contributions. This can be equated to ensemble averaging over
all possible configurations of the microstructure. Additionally, the contribution from the
particle located at a given point must be excluded, so the integration area is truncated. This
assumption allows the model to take into account the microstructural effects arising from
dipole–dipole interparticle interactions while at the same time building a continuous model
that is more appropriate for analytical studies and easier to solve numerically. In [169], within
the framework of this approach, the influence of the initial distribution of filler particles on
the energy of a magnetoactive elastomer was taken into account under the assumption of
physically small local deformations of the material and weak magnetic fields. It was shown
that the initial distribution of particles affects the mechanical behavior of the composite, in
particular, the type of material magnetostriction: compression or stretching. A modification
of such a model using the mean field theory was proposed in [170].

In [171], another interpretation of the mean field approach was offered: magnetization
was considered to be a superposition of the average filler magnetization and a local pertur-
bation. The theoretical framework was generalized by introducing operator formalism. The
nonlinear magnetization models were also considered. The work [153] further generalized
this approach by discretizing the sample volume into a set of mesoscopic volumes with the
microstructure in each of them not directly affecting the other mesoscopic volumes (akin to
FE2 approach). The sample was characterized by a macroscopic average magnetization,
each mesoscopic volume—by a mesoscopic average magnetization that deviated from the
macroscopic average, and each point inside a mesoscopic volume—by a local deviation
from mesoscopic average. Each mesoscopic volume can also be modeled as a dipole with
characteristics corresponding to the averages of the local fields, and thus fmacro is analogous
to fmicro, but represents the dipolar structure on a different scale without taking deviations
into consideration. The Taylor linearization of the general non-linear magnetization with
respect to the deviation of the local magnetic field from the average field served as the
basis for obtaining self-consistent magnetization equation. This work presented a way to
decouple and explicitly calculate the leading magnetic effects corresponding to different
scales of the MAE internal structure.

In [172], several theoretical models were used to describe the MAE behavior and, in
particular, the influence of microstructural effects on the magnetic field-induced deforma-
tions of MAEs. The macroscopic behavior was described using invariant theory and free
energy-based constitutive equations. The microscopic/mesoscopic effects were modeled
using two different approaches: micro-continuum modeling with invariant theory as well as
FEM simulations and dipolar particle interaction theory together with matrix-mediated two-
body and three-body interaction theory proposed by [173]. The results obtained using two
microscopic approaches were compared for 3D helical filler chains, and a good agreement
was demonstrated for interparticle distances corresponding to the applicability limits of
magnetic dipole theory. This work aimed to establish a computationally efficient (compared
to full-field micro-scale FEM models) algorithm for calculating local MAE response to exter-
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nal magnetic fields within a multiscale modeling framework on the basis of dipolar mean
field theory and classic linear theory of elasticity for media containing hard inclusions.

The work [135] further developed the approach proposed in [170]; namely, chain-
like and plane-like structures of the filler were modeled as continuous rods and discs,
respectively (Figure 12). MAE sample deformation and its elastic modulus were then
described using invariant theory for transverse isotropic materials to derive the mechanical
part of the free energy and dipolar mean field theory with a smeared filler particle density
function to derive the magnetic part of the free energy.
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It follows that the current promising trend is the opportunity to move away from
describing ferromagnetic filler microstructures as uniform lattices towards more complex
distributions that resemble the real material structure. Using regular lattices in theoretical
descriptions of MAEs leads to undesirable artifacts appearing in the obtained material
behavior, so introducing new analytical approaches to approximating filler clusters with
simpler shapes or otherwise reducing their structural complexity is one of the requirements
for more universal and less computationally intense multiscale modeling of MAEs.

To summarize, multi-scale theoretical approaches seem to be the most promising line
of research because they are capable of solving very complex problems while keeping the
advantages of simplified theoretical description at a single scale. The inherent nonlinearity
of the problems obtained within coupled multi-scale frameworks seems to constitute the
main challenge for the practical implementations of such methods, which leads to high
computational costs. Various multi-scale approaches are currently being actively developed
and improved in order to understand the connection between microstructural changes and
material sample response to external magnetic fields and mechanical loads. Multi-scale
modeling shows the importance of both the filler structure inside an MAE sample and
the sample shape, as well as the interplay between these factors for both understanding
fundamentals of MAE behavior and achieving desired performance of MAE-based devices in
practical applications. The most challenging aspect of the multi-scale approaches discussed
in this section is their analytical and computational complexity. The work on creating and
utilizing less computationally demanding algorithms for multi-scale MAE modeling would
greatly benefit the scientific community and would naturally accelerate progress in obtaining
a comprehensive and reasonably complete model of magnetopolymer composite materials.

5. Conclusions and Outlook

The above considerations clearly demonstrate that a significant progress has been
achieved in theoretical modeling of MAEs in the past five to ten years. Prior to that, the re-
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search was mostly focused on experiments revealing new physical effects and experimental
elucidation of dependences of them on the material composition and excitation conditions.
The advances in the understanding of the underlying physical phenomena in MAEs have
been made in all theoretical approaches described above.

What should the future directions of theoretical research on MAEs be? In our opinion,
the answer is determined by the observable trends in the experimental works on MAEs and
their potential applications. The current technology of MAE fabrication allows for synthesis
of materials with more sophisticated compositions. The filler becomes more complex, with
particles of different physical natures (e.g., soft-magnetic, hard-magnetic, and non-magnetic
inclusions), different particle sizes (e.g., nm, sub-µm, and µm-sized particles) and shapes
(e.g., spherical, rod-like and plate-like particles). Modern methods of additive manufacturing
also allow us to fabricate elastomers with specific (sophisticated) particle distributions (e.g.,
ordered, randomly or nonuniformly distributed filling particles) in different spatial regions of
a MAE-based functional element. This is done to achieve the desired response of a functional
element (e.g., actuator). The resulting compounds may even include a composite material
inside another composite material (e.g., ferrofluid in an MAE) or several polymers combined
to form a matrix. Future theoretical works will face the challenge of a necessity to describe
the physical effects in magnetoactive polymers with increasing complexity of composition
not only qualitatively but also quantitatively. To do this, the nonlinear effects of both the
mechanical and magnetic properties of constitutive materials have to be treated without the
linearized approximations. The theoretical research of MAEs has not yet reached its goals.
On the contrary, the subject of this review paper will be flourishing in the coming years, once
theoretical modelling is a practical tool for designing MAE materials for functional applications.
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