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It is widely accepted that the tumor microenvironment (TUMIC) plays a major role in can-
cer and is indispensable for tumor progression. The TUMIC involves many “players” going
well beyond the malignant-transformed cells, including stromal, immune, and endothe-
lial cells (ECs). The non-malignant cells can acquire tumor-promoting functions during
carcinogenesis. In particular, these cells can “orchestrate” the “symphony” of the angio-
genic switch, permitting the creation of new blood vessels that allows rapid expansion
and progression toward malignancy. Considerable attention within the context of tumor
angiogenesis should focus not only on the ECs, representing a fundamental unit, but
also on immune cells and on the inflammatory tumor infiltrate. Immune cells infiltrating
tumors typically show a tumor-induced polarization associated with attenuation of anti-
tumor functions and generation of pro-tumor activities, among these angiogenesis. Here,
we propose a scenario suggesting that the angiogenic switch is an immune switch arising
from the pro-angiogenic polarization of immune cells. This view links immunity, inflamma-
tion, and angiogenesis to tumor progression. Here, we review the data in the literature and
seek to identify the “conductors” of this “orchestra.” We also suggest that interrupting
the immune→ inflammation→ angiogenesis→ tumor progression process can delay or
prevent tumor insurgence and malignant disease.

Keywords: inflammation, angiogenesis, angiogenic switch, immune cells

INTRODUCTION
Tumors are tissues: the mass of most solid tumors contains a
significant portion of untransformed host cells and matrix compo-
nents in addition to transformed tumor cells. Within the “concert
hall” of a tumor there is an extremely heterogenic “orchestra”
where numerous factors interplay with each other at the cellu-
lar and molecular levels, to create a sort of symphony known as
the tumor microenvironment (TUMIC). The TUMIC generally
includes a broad array of immune and inflammatory cells as well
as stromal and endothelial cells (ECs). These cell types are able to
develop a dynamic, often tumor-promoting function at all stages
of carcinogenesis (1).

The links between cancer and angiogenesis as well as between
cancer and inflammation have been extensively documented.
Angiogenesis is a crucial event for cancer survival and progres-
sion, since the vascular system delivers nutrients and oxygen to
cancer cells, as well as furnishing the “roadways” through which
transformed cells can invade distant organs and tissues.

In the 1800s, the observation that most tumors contain numer-
ous inflammatory leukocytes led the pathologist Rudolph Virchow
to suggest a functional relationship between chronic inflammation
and cancer. However in the nineteenth century (2), tumor infil-
trating immune cells were considered an attempt of the immune
system to reject the tumor. Only in the last three decades the role
of immune cells in promoting tumor progression has come back
into light (2–6). Immune cells can act against tumors through
direct and indirect mechanisms, potentially leading to tumor

eradication, or resulting in immuno-editing of tumors (7). Both
innate and adaptive immune cells can show strong anti-tumor
activities. When altered, this functional relationship plays a crucial
role in inducing and shaping tumor angiogenesis, inhibiting anti-
tumor immune responses, and promoting a favorable microenvi-
ronment in which tumor cells can survive and replicate. Within
the TUMIC immune cells can be considered an orchestra con-
ductor of a major symphony: on one hand they can directly or
indirectly destroy cancer cells, on the other hand they may pro-
mote tumor growth and dissemination (4, 5). This “immunologic
switch” within the TUMIC that can promote or inhibit tumor
formation and progression to malignancy is largely due to dif-
ferent polarization states of the immune cells. A classic example
of polarization is that of T cells and macrophages. T helper 1
(Th1) cells are programed to exert cellular cytotoxicity; by anal-
ogy, M1 macrophages are classically activated cells producing Th1
cytokines involved in acute inflammatory responses and potential
cytotoxicity. While Th2 cells are skewed toward humoral immu-
nity, M2 polarized macrophages show a phenotype associated
with Th2 cytokines, tissue reconstruction, growth promotion, and
angiogenesis (4, 5, 8). Recent evidence suggests that many immune
cell subsets show diverse polarization states, particularly within the
TUMIC (4, 5, 8, 9). Both local and systemic immune polarization,
at least in part, explains the difficulty in translating promising
immunotherapy approaches into the clinic, in spite of intensive
efforts over numerous years. While the anti-tumor potential of
immune cells has been extensively reviewed and will be discussed
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elsewhere in this issue, here we focus on the pro-tumor activi-
ties of immune cells, in particular on angiogenesis and selected
mechanisms associated with pro-tumor polarization.

This “orchestration” of tumor angiogenesis, driven by immune
cells, can be considered a common feature both for solid and
hematologic malignancies. It therefore represents a valid target
for anti-tumor therapies and cancer preventive strategies.

MACROPHAGES
Macrophages are immune cells recruited in response to tissue dam-
age and inflammation, acting as “professional” phagocytic cells
specialized in the clearance of pathogens and antigen presentation
to the adaptive immune system. Macrophages undergo activation
to various polarization states on the basis of the signals coming
from the surrounding microenvironment. M1 macrophages pro-
duce significant quantities of pro-inflammatory cytokines, medi-
ate resistance against pathogens, and can kill tumor cells. M1
macrophages are generally characterized by an interleukin (IL)-
12high, IL-23high, IL-10low phenotype, driving Th1 response; they
can also produce reactive oxygen and nitrogen species (ROS and
NOS) (8, 10–13).

M2 activation is closely related to the tumor-associated
macrophage (TAM) profile (8). In vitro, M2 polarization can be
obtained by treating cells with specific cytokines/immune stimu-
lants resulting in the generation of different cellular subsets. For
example, the anti-inflammatory M2a phenotype is produced by
IL-4 and IL-13, the M2b phenotype is generated in response to
immune complexes and toll-like receptor (TLR)/IL-1 receptor lig-
ands; finally, the M2c phenotype is induced in the presence of
IL-10. M2a polarized macrophages produce Th2 cytokines with an
IL-12low, IL-23low, IL-10high phenotype. Overall, M2 macrophages
promote tissue remodeling and angiogenesis (8, 12, 13). TAMs
show a similar molecular profile (Figure 1), influencing angiogen-
esis, invasion, and metastasis (8), as well as subversion of adaptive
immunity (13). Both M1 and M2 macrophages are recruited into
tumors from circulating blood monocytes by chemokines, but they
can also migrate from adjacent tissues (8).

TUMOR-ASSOCIATED MACROPHAGES
Tumor-associated macrophages are largely derived from periph-
eral blood monocytes recruited into the tumor mass by growth
factors and chemokines. Among these are CCL2, vascular endothe-
lial growth factor (VEGF), and the molecules involved in the
CXCL12/CXCR4 signaling axis (8, 14, 15). TAMs are recruited
into and tend to accumulate in necrotic areas where they remove
the tissue debris and stimulate repair processes (16–19). In keep-
ing with this, higher numbers of TAMs are found in tumors with
extensive necrosis as compared to those with limited necrotic areas
(20). In addition, hypoxia stimulates production of VEGF and
CXCL12 by both tumor and normal cells, these factors are asso-
ciated with M2 polarization (8, 14, 15). Hypoxia stimulates TAMs
to co-operate with tumor cells in promoting revascularization (21,
22). Key players in response to hypoxia are the hypoxia-inducible
factor (HIF)-1α and HIF-2α, the latter of which is expressed in
a more tissue-restricted manner. Although they have extensive
sequence and functional similarity, these two molecules show
several differences and even opposing activities in some cases.

Macrophages cultured under hypoxic conditions express HIF-1α

and HIF-2α both in vitro and in vivo (23, 24). However, under
these conditions, they express higher levels of HIF-1α as com-
pared to HIF-2α, and consistent with these findings, the levels of
HIF-1α are higher in TAMs infiltrating breast and ovarian carci-
nomas (23). HIF-2α is expressed in human cancers and correlates
with poor prognosis (25–27). Murine myeloid specific knockouts
of both HIF-1α and HIF-2α show distinct activities in regulating
the immune response. Mice lacking myeloid HIF-1α show reduced
migration and invasion of macrophages, limited acute inflamma-
tion, and inhibition of bactericidal activity (28–30). Mice lacking
myeloid HIF-2α are resistant to endotoxemia and inflammatory
lesions (31). Further, they showed resistance in a colitis associated
colorectal cancer model and fewer macrophages infiltrating the
tumors (31).

Tumor-associated macrophages can promote angiogenesis
through numerous mechanisms (Figure 1), in particular by
producing pro-angiogenic factors and inducing degradation of
the extracellular matrix (ECM). Among the pro-angiogenic fac-
tors produced by TAMs are VEGF, EGF, members of the FGF
family which are able to stimulate the recruitment and migra-
tion of ECs, PDGF-B, also implicated in pericyte recruitment,
angiogenic CXC chemokines (CXCL8/IL-8 and CXCL12, also
known as stromal derived factor-1, SDF-1), and angiogenesis-
associated factors such as transforming growth factor beta (TGFβ),
tumor necrosis factor alpha (TNFα), and thymidine phospho-
rylase (8, 15). TAM-derived cytokines can also act on angio-
genesis in an indirect manner by autocrine stimulation of TAM
activity.

Moreover, TAMs release different proteases, including matrix
metalloproteinases (MMPs 1, 2, 3, 9, and 12), as well as plas-
min and urokinase plasminogen activator, whose combined action
induces degradation of the basement membrane and ECM com-
ponents, destabilization of the vasculature as well as migration and
proliferation of ECs (8, 15, 21). This co-operation facilitates the
migration and extravasation of tumor cells during the metastatic
process (32).

Tie2-expressing macrophages (TEMs) represent a TAM sub-
set closely associated with the vasculature (33, 34). These cells
appear to have a distinct gene signature (35) in spite of substan-
tial overlaps between TAMs, TEMs, myeloid-derived suppressor
cells (MDSCs), monocytes, and embryonic/fetal macrophages (35,
36). TEMs are also recruited at the tumor site after treatment
with vascular disrupting agents, interfering with and antagonizing
their action (37). This suggests that TEMs could be key targets
for anti-angiogenic therapy; deletion of TEMs inhibits angiogen-
esis and tumor growth (33, 34, 38). TEMs are likely to be among
the myeloid cells associated with generation of the pre-metastatic
niche. The pre-metastatic niche consists in the preparation of a
hospitable local microenvironment that can be easily seeded by
circulating tumor cells. Diverse myeloid cells are clearly involved in
generation of the pre-metastatic niche (8, 39–42), which appears to
be a key factor in metastatic dissemination. Targeting the angiopoi-
etin (Ang)2/Tie2 axis by blocking Ang2 resulted in inhibition of
Tie2 up-regulation in TAMs (43), and inhibits vessel destabiliza-
tion (44), thus influencing the pre-metastatic niche and inhibiting
metastatic dissemination (45).
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FIGURE 1 | Inflammatory orchestration of tumor angiogenesis. Both
solid and hematological malignancies are associated with an
inflammatory state characterized by different innate and adaptive
immune cells. These cells are able to play two different symphonies at
the same: on one hand they can contribute to tumor suppression and
eradication, on the other they play a key role in tumor insurgence and

progression. The TUMIC produces several factors, including TGFβ, PGE2,
VEGF, lactic acid, and adenosine, which contribute to polarization of
immune cells toward a pro-tumor/pro-angiogenic phenotype. Polarization
is not only mediated by tumor cell products, but also involves crosstalk
between immune cells. Ag–Ab, antigen–antibody complexes; CSCs,
cancer stem cells.

NEUTROPHILS
Neutrophils are the most abundant human leukocytes and play a
key role in innate immunity, representing the first immune cell
recruited into sites of infection. In response to several stimuli,
they are quickly recruited into areas producing “danger signals,”
where they employ strategies, based mainly on pattern recognition
mechanisms, to contain and clear infection. Among the response
mechanisms, a key player is neutrophil degranulation, leading
to the release of lytic enzymes, as well as respiratory burst pro-
duction of ROS (O−2 , H2O2, HOCl) with antimicrobial potential
(46). Further, neutrophils are also the source of several cytokines,
including TNFα, IL-1β, IL-1Rα, IL-12, and VEGF and chemokines
such as CXCL1, CXCL8, CXCL9, CXCL10, CCL3, and CCL4 (47)

directly involved in tissue reconstruction and angiogenesis. Neu-
trophils have been shown to be required for vascularization of the
endometrium (48, 49).

Neutrophils can infiltrate tumor tissues (Figure 1), having been
observed in colon adenocarcinoma, myxofibrosarcoma, gastric
carcinoma, and melanoma, suggesting a potential role in tumor
progression and angiogenesis (50). In patients with myxofibrosar-
coma, enhanced neutrophil number correlates with increased
intra-tumor microvessel density (51). Interestingly, CXCL8, which
is abundantly produced by tumor cells, is released in the sur-
rounding environment, representing a potent chemoattractant
for neutrophils within the tumor mass. CXCL8 and other “ELR”
CXC chemokines have been associated with angiogenesis by direct

www.frontiersin.org July 2014 | Volume 4 | Article 131 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Tumor_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bruno et al. Immune modulation of angiogenesis

activation of CXCR2 on ECs (52). However, only a subset of ECs
expresses CXCR2 (53, 54). In vivo neutrophils are required for
angiogenesis induced by CXCR2 ligands in the matrigel sponge
model (55), yet are not necessary in the corneal pocket assay (52),
suggesting that endothelial subtypes may be variably responsive
to CXCR2 ligands, while neutrophils are uniformly responsive
to these molecules. In a ras oncogene driven tumor progres-
sion model, tumor-associated neutrophils (TANs) mediate IL-
8-induced angiogenesis (56, 57). The fact that angiostatin, an
angiogenesis inhibitor identified in vivo (58), effectively targets
monocytes, macrophages, and neutrophils (55, 59–64) clearly
suggests that these cells play a key role in this process.

Activated neutrophils can release a variety of proteases that
can degrade and remodel the ECM (Figure 1), in particular
MMP9. Neutrophil-derived MMP9 has been found to be impor-
tant in models of skin and rip-Tag pancreatic cancers (1) where
they sustain tumor angiogenesis. TNFα, a cytokine released into
the TUMIC and linked to tumor progression (65), induces neu-
trophil degranulation and VEGF release (66) and CXCL8, CXCL1
production (67), thus favoring angiogenesis.

Neutrophils have also been reported to produce angiostatin
itself (68) and are associated with anti-angiogenic tumor repres-
sion in peroxisome proliferator-activated receptor alpha (PPARα)
deficient mice (69). The pro- and anti-angiogenic activities of
neutrophils, and their role in tissue destruction or reconstruc-
tion, suggest that subsets of neutrophils characterized by different
activities may exist (5, 70). Experimental evidence in murine mod-
els supports this hypothesis (71–73). When TGFβ activity was
blocked, anti-tumor “N1” neutrophils were found to be associ-
ated with direct tumor cell killing as well as activation of CD8+

T cells. In control animals, pro-tumor “N2” neutrophils were
instead observed (70), indicating a role for TGFβ. Depletion of
neutrophils under the TGFβ blockade impaired CD8+ T cell acti-
vation and enhanced tumor growth,while in control animals TANs
depletion resulted in slower growth and increased CD8+ activa-
tion (Figure 1). However, to date little is known concerning the
existence and eventual role of neutrophil subsets in humans.

DENDRITIC CELLS
Dendritic cells (DCs) are fundamental innate immune cells with
a key role in priming, orientation, and regulation of adaptive
immune responses (74). DCs represent a heterogeneous popu-
lation, including two major cell types: conventional (or myeloid)
DCs (cDCs) and plasmacytoid DCs (pDCs) (75). They act as sen-
tinels in the periphery, and after recognizing and capturing micro-
bial antigens, they migrate in the secondary lymphoid organs,
process foreign antigens and present peptide epitopes to naïve
T lymphocytes, acting as potent antigen-presenting cells (APCs)
(76). Both DCs subsets become fully mature following stimula-
tion, typically in response to invading microbial pathogens, to
become APCs. The cDCs mainly secrete IL-12, while pDCs release
interferon (IFN)α (77, 78). However, in an immature state, they
function as tolerance-inducing cells, impeding and regulating the
activation of pool of latent and auto-reactive T cells and autoim-
munity. Since DCs play a key role in T cell responses to antigens,
several preclinical and clinical studies have been addressed to
reinforce their APC function, in order to enhance anti-tumor

T immune responses (79–84). DCs represent another immune
cell type that could be altered in its “conventional” function by
tumor cells and the TUMIC (75, 85–89), thus contributing to the
inflammatory “orchestration” of tumor angiogenesis.

Clinical studies have shown that in diverse tumor types, DCs
display specific alterations in their stimulatory capacity, and the
host can develop anomalous myeloid cell differentiation (90–96).
One of the mechanisms driving this abnormal myeloid cell differ-
entiation is the constitutive activation of signal transducers and
activator of transcription-3 (STAT3) that promotes the contin-
uous proliferation and accumulation of immature myeloid cells,
including DCs, thus contributing to the suppression of tumor-
specific immune responses (97). STAT3 signaling in myeloid cells
has been associated with angiogenesis (98). Potential therapeu-
tic strategies might include inhibition of STAT3 signaling (97).
Soluble factors, such as VEGF, IL-6, and TGFβ, can contribute
to reduction of mature DC numbers, expansion and accumula-
tion of immature tolerant DCs, and eventual polarization of DCs
toward Th2 or T regulatory (Treg) induction, all features that con-
tribute to tumor evasion from immune response. These features,
described in both cancer patients and in tumor-bearing animals,
have lead to the definition of a new DC cell subtype, termed reg-
ulatory DCs (regDCs) (99, 100). These tumor-associated DCs are
potent immune-suppressive cells with different phenotypes and
functions, including pDCs, cDCs, and also MDSCs, as it has very
recently been described in a Lewis Lung (LL3) mouse model (101).

In human ovarian carcinomas, CXCL12-recruited pDCs have
been shown to produce TNFα and IL-8 (Figure 1), favoring
tumor angiogenesis (102). Tumor-conditioned pDCs can also
act as potent immuno-suppressive cells, exerting a strong reduc-
tion of an efficient immune response (103–105). Human ovar-
ian cancer-derived DCs co-express EC and DC markers and
can therefore also significantly influence tumor angiogenesis by
trans-differentiating into endothelial-like cells (Figure 1), thus
promoting the formation of fully functional blood vessels (106).

In their immature state, DCs acquire the ability to trigger
and guide development of Treg cells (Tregs) through TGFβ pro-
duction (Figure 1), inducing a tolerogenic TUMIC (107–110).
Hypoxia, which represents a key feature in the TUMIC, together
with adenosine release severely inhibits DC migratory capacity
(111, 112). In hypoxia, DCs are polarized to a Th2-stimulating
phenotype (113). DCs differentiated in the presence of adeno-
sine express higher levels of VEGF, IL-6, IL-8, IL-10, COX2, TGFβ,
and indoleamine 2,3-dioxygenase (IDO) (114), thus sustaining
tumor angiogenesis. DCs alternatively activated with IL-10, cal-
citriol, and prostaglandin (PG) E2, acquire pro-angiogenic activi-
ties (115). Interestingly, many tumor-derived soluble factors, like
VEGF (116), adenosine (117), PGE2 (118), and TGFβ (119), which
are crucial for EC activation, migration, and functionality, are
also able to mediate inhibitory effects on DC activation, resulting
in T cell suppression and induction of Tregs. The strong alter-
ation and inhibition in antigen presentation and DC maturation
observed in cancer patients is thought to be mainly due to VEGF
(120–122). Moreover, tumor-associated cDCs express high lev-
els of the programed cell death ligand 1 (PDL1), an important
negative-regulatory ligand that suppresses T cell activation, in
response to tumor-derived VEGF (102).
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Two pro-inflammatory molecules released by DCs, TNFα (123,
124), and osteopontin (125–127), can also function as angio-
genic factors (128–130). Other cytokines released by DCs that
affect angiogenesis include IL-6 and TGFβ (129). Finally DCs
can secrete pro-angiogenic chemokines such as CXCL1, CXCL2,
CXCL3, CXCL5, CXCL8, and CCL2 (131–133).

On the contrary, mature cDCs can inhibit angiogenesis by
releasing cytokines such as IL-12 (64, 77, 102), and angiostatic
chemokines (CXCL9, CXCL10, and CCL21) (134). Mature pDCs
can produce high amounts of the anti-angiogenic cytokine IFNα

(78, 135, 136). Finally DCs can also produce anti-angiogenic ECM
components including thrombospondin 1 (TSP) (137, 138) and
long pentraxin-3 (PTX3) (139, 140) that regulate angiogenesis.

MYELOID-DERIVED SUPPRESSOR CELLS
Myeloid-derived suppressor cells represent another immune
component that plays an active role in the “orchestration” of
tumor promotion and immune evasion (141–143). These cells
appear to be immature myeloid cells with features of both
monocytes/macrophages and granulocytes. High levels of pro-
inflammatory factors, such as GM-CSF, IL-1β, IL-6, and S-100
within the TUMIC induce recruitment and expansion of MDSCs,
and enhance their pro-tumor activity (144, 145). Moreover,
MDSCs are endowed with diverse and potent immuno-suppressive
machinery on innate and adaptive immune effectors. Two mainly
distinct MDSC subsets have been defined in both humans and
mice with some differences: granulocytic MDSCs and monocytic
MDSCs [reviewed in Ref. (141, 142)].

Interestingly in cancer patients these cells share several features
and properties with progranulocytes or immature promyelocytes
(146), and their blood levels correlate with clinical cancer stage,
metastatic tumor burden, and are inversely correlated with clinical
outcomes (146, 147). Noteworthy, MDSCs have a direct function
in promoting tumor angiogenesis through releasing soluble fac-
tors, such as MMP9 and VEGF (Figure 1), and experimental data
from mouse models suggest that they are also able to differentiate
into ECs (21, 148).

Thanks to their high plasticity these cells can acquire diverse
mechanisms for suppressing anti-tumor CD8+ T and natural
killer (NK) cells. These include inducible forms of nitric oxide
synthetase (NOS2) and arginase (ARG1), and by generating ROS
(149–151). Further, MDSCs possess some common features with
TAMs and TANs (5, 21). During hypoxia in the TUMIC, infiltrat-
ing mouse MDSCs have been shown to differentiate into TAMs
(152), whereas MDSCs from lungs of tumor-free mice cultured
with a tumor cell conditioned medium polarized into regDCs
(101), further adding a new piece in the complex puzzle of the
TUMIC society.

Myeloid-derived suppressor cells down-modulate naïve CD4+

and CD8+ T lymphocyte trafficking and re-circulation (153),
inhibit CD8+ T cell tumor and tumor-draining lymph node
infiltration (154), suppress NK cells (155, 156) and promote
the conversion of naive CD4+ T cells into induced Tregs
(157–159). It has also been shown that human monocytic
MDSCs are able to produce TGFβ and retinoids thus supporting
the trans-differentiation of Th17 cells into FOXP3+-induced
Tregs (160).

Recently, a novel function for MDSCs as osteoclast progenitors
has been reported, suggesting a direct involvement in the osteolysis
process, a common complication in breast, lung, prostate carcino-
mas as well as multiple myelomas (Figure 1). Osteolytic lesions are
associated with a poor prognosis (161). Interestingly, an abnormal
expansion of a novel subset of MDSCs in peripheral blood of pedi-
atric patients with metastatic sarcomas with features of fibrocytes
as been also characterized (162). Fibrocytes are hematopoietic
stem cell-derived fibroblast precursors that are involved in chronic
inflammation, fibrosis, as well as wound healing.

NATURAL KILLER CELLS
Natural killer cells are effectors lymphocytes of innate immunity
that can potentially control tumors by their cytotoxic activity.
Multiple human NK cells subsets have been found. The major
subset is represented by CD56dimCD16+ NK cells that constitute
about 90–95% of peripheral blood NK cells. The CD56dimCD16+

NK cells readily kill target cells upon proper recognition, and
only briefly secrete high cytokine levels (163). In contrast, the
CD56brightCD16− NK cells (about 5–10% of peripheral blood NK
cells) are poorly cytotoxic but produce large amounts of cytokines,
including IFNγ, TNFα, and GM-CSF. Moreover, a third NK sub-
set, decidual NK (dNK) cells, is found in the decidua (164) that are
characterized by a CD56superbrightCD16− phenotype. This pecu-
liar subset is able to release significant amounts of pro-angiogenic
factors, in particular VEGF, PlGF, and IL-8, necessary for spi-
ral artery formation during decidualization (164, 165). The low
cytolytic activity of dNK cells appears to be involved in embryonic
implantation to avoid a non-self rejection process.

Similarly to several other immune cells, NK cells can also infil-
trate the tumor mass where they are apparently recruited. The
TUMIC is also able to affect NK functionality by a wide array
or cytokines and soluble factors, either inhibiting their cytotoxic
function or promoting a pro-tumor/pro-angiogenic phenotype
(Figure 1). The NK CD56brightCD16− subset predominates in
non-small cell lung cancer (NSCLC), exerting very low cytotox-
icity on K562 tumor cells (166, 167). We have recently reported
that tumor infiltrating NKs in NSCLC also produce elevated lev-
els of VEGF, PlGF, IL-8 and induce, ex vivo, EC chemotaxis, and
tube formation, recapitulating the angiogenic activity of the dNK
subset (9).

Transforming growth factor beta is released in the decidua
and by the TUMIC, and TGFβ appears to be able to polar-
ize the peripheral cytotoxic CD56+CD16+ NK subset toward a
CD56brightCD16− subset with some characteristics of dNK cells
(168, 169). We observed that TGFβ induced peripheral blood
NK cells to produce angiogenic factors (9), suggesting that TGFβ

may be involved in “flipping” the angiogenic switch of tumor
infiltrating NKs, sustaining tumor progression (Figure 1).

There is mounting evidence that NK cells are involved in reg-
ulating metastatic dissemination. NK cells are often shown to
reduce metastatic efficiency of tumor lines in vivo when using
the experimental metastasis assay (170, 171). Recent studies on
the metastatic process have suggested that the tumor micro- and
macro-environments may play critical roles in metastatic dissem-
ination [reviewed in Ref. (172, 173)]. One of the more novel con-
cepts is that of the pre-metastatic niche, where the innate immune
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system plays a key role (41, 42, 174). Attenuation of NK cell activ-
ity is associated with generation of the pre-metastatic niche and
metastasis efficiency in murine models (40), where conditioned
media from hypoxic tumor cells was associated with increased NK
recruitment and reduced NK cytolytic activity. MDSCs were also
enhanced within the pre-metastatic niche and may play a key role
in suppressing NK activity (40). A recent study has shown that
the TAM family of tyrosine kinases are involved in NK-mediated
attenuation of metastasis formation and that inhibition of their
activity results in NK “licensing” to kill metastatic cells in murine
models of in both hematogenous and lymphatic dissemination
(175), suggesting potential clinical applications.

T CELLS
The inhibition of T lymphocytes influx during angiogenesis and
tissue stroma remodeling represent a peculiar feature of the
TUMIC, leading to impaired T cell functionality, due to activa-
tion and expansion of tumor-polarized myeloid cells (MDSCs,
M2 macrophages, TAMs, and regDCs) as well as by soluble factors
released by the tumor and by the associated-inflammatory cells.
The typical immuno-suppressive environment of the TUMIC
(176) is characterized by a strong commitment toward induction
of CD4+CD25+FOXP3+ Treg polarization (103, 177), and/or Th2
and Th17 cell activation (160, 178). A novel mechanism by which
Tregs could be directly involved in the tumor angiogenesis has
recently been described (Figure 1). In ovarian cancer, hypoxia-
induced angiogenesis, human, and mouse CD4+CD25+ Tregs
secrete higher amounts of VEGFA (as compared to CD4+CD25−

T cells) and promote EC proliferation in vitro and in vivo (179).
Although this pro-angiogenic effect could be indirect, the deple-
tion of Tregs in ovarian tumor-bearing-mice correlated with a
strong reduction of the VEGFA at the tumor site, suggesting a rel-
evant role of Tregs in promoting tumor angiogenesis in ovarian
cancer (179).

During interaction with DCs, activated CD4+ T cells can
acquire neuropilin 1 (NRP1), a co-receptor that binds VEGF from
DCs by an intercellular transfer mechanism (180). The result-
ing NRP1-expressing T cells bind DC-secreted VEGFA and could
potentially behave asVEGF-carrying cells,promoting angiogenesis
(Figure 1). Furthermore, Tregs selectively recruited and accumu-
lated in the TUMIC by CCL22 and CCL28 secretion, constitutively
express NRP1 (181), indicating a potential major role of these cells
among others CD4+ T cell subsets in transferring additional VEGF
to the tumor site (179).

T regulatory cells could also directly influence and trigger
alternative activation of human monocytes displaying functions
and phenotypes that mirrors M2-like TAMs (182). Interestingly,
the shift from Th1 to Th2 immune microenvironment has been
described during transition from precancerous to invasive stage in
cervical carcinoma (183) and pancreatic cancers (184).

The Th1-type cytokine IFNγ, conventionally a potent anti-
tumor and anti-angiogenic factor (84, 185–190) has also been
shown to play a role in triggering MDSC immune-suppressive
function together with other cytokines, such as IL-10 (149,
191, 192). However, the infiltration of memory cytotoxic CD8+

T lymphocytes and Th1 cells often correlate with good clini-
cal outcome (193), but the origin and type of tumor plays a

crucial role (194–196). Efficacious anti-tumor therapeutic or vac-
cine approaches tested in murine models resulting in protection
from tumors are characterized by strong Th1 polarization, M1
macrophage activation, a TNFα response, and an anti-tumor
IFNγ-producing CD8+ CTL (187, 188, 190, 197). Within the
TUMIC, CD8+ T cells are conditioned to become CD8+FOXP3+

T regulatory cells with similar immuno-suppressive activities
to that of CD4+ Tregs (198–200), adding more complex-
ity to mechanisms by which the tumor polarization switch
impairs immune responses. However, this newly described tumor
immuno-regulatory T subset is a small part of the entire CD8+

T cell population and little is known concerning their role in vivo
and clinical relevance in cancer patients (201).

B CELLS
The role of B cells in tumor initiation, progression, and angiogen-
esis is still debated. However, there is clinical evidence regard-
ing their association with good prognosis of cancer patients
and potential anti-tumor effect (202, 203). Several studies on
mouse models suggest their involvement as inhibitory cells toward
CD8+ CTL responses (204). Experimental data support a tumor-
promoting role for B cells for skin sarcoma development, showing
immunoglobulin deposition within the TUMIC (205) that was
dependent on TNFα (206). The pro-tumor effect of antibody–
antigen complexes was shown by knock out of FcγR receptors
(207). Immune complex activation of these receptors on resident
and recruited myeloid cells was also shown (208, 209). Interest-
ingly, antigen–antibody complexes are involved in differentiation
of M2c macrophages (8). Thus antigen–antibody complexes could
influence the polarization of macrophages (Figure 1), as well as
other immune cell types expressing Fc receptors (granulocytes,
NK cells, DCs, MDSCs). It is not known if M2c macrophages
have pro-angiogenic or even pro-tumor effects. However, these
data also suggest that experiments performed using blocking anti-
bodies must be interpreted with caution, even if proper isotype
controls are used, since antigen–antibody complexes may influ-
ence many innate and even adaptive immune responses, including
angiogenesis. B cell-derived lymphotoxin and activation of the
NF-κB and STAT3 pathways has also been reported to promote
prostate cancer progression (210).

Recently, a regulatory B cell subset (Bregs) has been charac-
terized with pro-tumor function that shows inhibitory activities
toward adaptive immune responses (208). However, the role of
adaptive B cells in the tumor progression and angiogenesis is
still not well understood and recently published controversial
information highlights the need for further investigation (208,
209).

MAST CELLS
Mast cells represent a peculiar subtype of granulocytes found in
peripheral tissue, which play a central role in inflammatory and
immediate allergic reactions. Mast cells were initially suggested to
be involved in vascularization during rheumatoid arthritis (211–
214). They have also been found to be intimately involved in
vascularization of hematological malignancies (215), where they
are able to integrate into the vessel wall (Figure 1) by the process
of vascular mimicry (216).
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Mast cell contribution to the angiogenic switch in tumors is
associated with the production of diverse angiogenesis-associated
cytokines and chemokines (21). Proteases produced by mast cells
promote pre-malignant angiogenesis (217–219) and are becom-
ing a target for anti-angiogenic therapies (220, 221). Moreover,
β-tryptase, a neutral serine protease that represents the most
abundant mediator stored in mast cell granules, plays a crucial
role in inflammation (Figure 1). β-tryptase release activates the
protease-activated receptor type 2 that is directly involved in vascu-
lar relaxation and contraction (222). The pro-angiogenic activity
of mast cells is enhanced by the interaction of their A2B receptors
with adenosine (223), released during tumor growth, tissue injury,
ischemia, and inflammation. The interaction between adenosine
and its A2B receptor leads to secretion of VEGF, IL-8, and possibly
other pro-angiogenic factors (Figure 1). The effect of these fac-
tors on new capillary formation is facilitated by the concomitant
stimulation of mast cell A3 receptors that induce the expression of
Ang2. These, and potentially others, factors released by mast cells
act synergistically, and in a paracrine fashion, on ECs to induce
angiogenesis.

CANCER-ASSOCIATED FIBROBLASTS
Fibroblasts are the most abundant cell type in connective tissues,
forming the structural framework of tissues through their secre-
tion of ECM components (224). Activated fibroblasts are directly
involved in wound healing and fibrosis, both processes sharing a
requirement for tissue remodeling. Since tumors are wounds that
“do not heal” (225), the fibroblasts within the tumor mass, clas-
sified as cancer-associated fibroblasts (CAFs) contribute to the
inflammatory orchestration of tumor angiogenesis (Figure 1).
Interestingly, CAFs are of multiple origins: they can originate from
resident fibroblasts, mesenchymal stem cells, or mutated fibrob-
lasts (226). In this context, CAFs are able to produce cytokines
and chemokines favoring immune cell infiltration, which in turn
promotes angiogenesis and metastasis.

Stromal derived factor-1 producing pancreatic CAFs showed
a synergy with IL-8 in the promotion of a complete angio-
genic response (Figure 1) in recruiting ECs (227). Further,
SDF-1 secreted by breast cancer CAFs has been involved in
mobilization of endothelial precursor cells from bone mar-
row, favoring de novo angiogenesis, as well as in tumor growth
through a paracrine effect on CXCR4-expressing cancer cells
(228). CAFs are also able to produce CXCL14 in prostate can-
cer, this in turn enhances interactions with tumor cells and
favor macrophages infiltration and M2 polarization (222). Recent
studies reported that CAFs associated to incipient neoplasia are
able to exhibit a pro-inflammatory signature, characterized by
an over-expression of SDF-1, IL-6, and IL-1β that contribute to
the recruitment of pro-angiogenic macrophages sustaining tumor
growth (222).

CONCLUDING REMARKS
Taken together, this view suggests that the host cells that constitute
the TUMIC can be polarized to a pro-tumor phenotype character-
ized by a pro-angiogenic activity. Since the presence of these cells
is critical for successful tumor growth to clinical relevance, they
are therefore very interesting clinical targets. Clinical approaches

in line with these findings, yet targeting only the VEGF pathway,
have been recently approved, however, as shown here, there are
many cell types and mediators to target. As our basic understand-
ing of the mechanisms of host cell polarization is increasing and
the effects of these phenomena become evident and appear to be
key factors in tumor biology, it is necessary to find ways to pre-
vent or revert these events, keeping tumors in a dormant, clinically
indolent state.
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