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ABSTRACT
Papillary thyroid carcinoma (PTC) is a highly heterogeneous malignancy with diverse prognoses. 
Ferroptosis is a new type of cell death dependent on iron. Nevertheless, the predictive ability of 
ferroptosis-related genes for PTC is unclear. Based on the mRNA expression information from The 
Cancer Genome Atlas, we compared tumor and normal tissues in terms of the gene expression, 
for identifying differentially expressed genes (DEGs). Then, the risk score of a 5-gene signature was 
calculated and a prognostic model was established to test the predictive value of this gene 
signature by virtue of the LASSO Cox regression. The 5 genes were validated in PTC tissues by RT- 
qPCR.At last, functional analysis was implemented to investigate the underlying mechanisms. We 
found a total of 45 ferroptosis-related genes expressed differentially between tumor and normal 
tissues. 6 DEGs exhibited a significant relevance to the overall survival (OS) (P< 0.05). We classified 
patients into group with high risk and group with low risk based on the median risk score of 
a 5-gene signature. Patients in the group with low risk presented a remarkably higher OS relative 
to the group with high risk (P< 0.01). The Cox regression analysis displayed the independent 
predictive ability of the risk score. The receiver operating characteristic analysis helped to validate 
the predictive power owned by the gene signature. After validation, the 5 genes were abnormally 
expressed between PTC and normal tissues. Functional analysis showed two groups had different 
immune status. A new ferroptosis-related gene signature can predict the outcomes of PTC 
patients.
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Introduction

Papillary thyroid carcinoma (PTC) is considered 
the most common endocrine malignancy with 
multiple prognoses. The incidence of PTC has 
steadily increased over the last few years in many 
countries [1]. The survival rates of PTC patients 
vary greatly. While most PTC patients had an 
optimistic prognosis with a 10-year survival rate 
of 80–90%, some only had survival rates of 25% at 
5-year and 10% at 10-year [2,3]. Therefore, it is 
necessary to develop novel predictive models 
for PTC.

Ferroptosis – characterized by lipid peroxida
tion and iron accumulation – is a form of pro
grammed cell death [4,5]. Regulating the 
ferroptosis pathway has the potential to slow 
down cancer progression [6,7]. Studies showed 
that some genes, such as SLC7A11 [8], GPX4 [9] 
and p53 [10], regulated ferroptosis in cancer cells 
and affected the prognosis of hepatocellular carci
noma [11] and breast cancer [12]. However, it 
remains unclear whether these ferroptosis-related 
genes have an effect on the prognosis of PTC.

The purpose of this study was to explore the 
effect on the prognosis of PTC of ferroptosis- 
related genes and facilitate the development of 
prognostic models for PTC patients. We obtained 
PTC patients’ clinical data as well as mRNA 
expression information from The Cancer 
Genome Atlas (TCGA). The ferroptosis-related 
differentially expressed genes (DEGs) were used 
for constructing a prognostic model. Then, we 
validated the model. Finally, we explored the 
underlying mechanisms using functional enrich
ment analysis.

Materials and Methods

Data collection

The clinical data as well as the mRNA expression 
information regarding 507 PTC patients were 
obtained from the TCGA database (https://portal. 
gdc.cancer.gov/, up to December 2020). We used 
the ‘limma’ R package to normalize gene expres
sion data. This study was exempted from ethics 
reviews since all data we used were publicly avail
able, and we followed the TCGA Ethics & Policies. 

We selected a total of 60 ferroptosis-related genes 
based on previous literature [13–15].

Construction and validation of a signature with 
ferroptosis-related genes

We compared gene expression levels between tumor 
and adjacent normal tissues to identify the DEGs 
using the ‘limma’ R package [16]. The criterion of 
DEGs was a false discovery rate (FDR) < 0.05. Cox 
analysis assisted in examining the ability of ferrop
tosis-related genes to predict overall survival (OS). 
Benjamini-Hochberg adjusted p-values were used to 
decrease FDR. The ‘glmnet’ R package served for 
a LASSO Cox regression – a powerful technique for 
variable selection and regularization – to analyze if 
DEGs could predict the OS and the status of the 
PTC patients [17]. The optimal value of the penalty 
parameter (λ), which corresponds to the minimum 
of the partial likelihood deviance, was identified by 
ten-fold cross-validation. We calculated the risk 
score using the following formula: risk score = esum 
(the normalized expression level regarding each 
gene× its regression coefficient) [11]. We then 
used the median risk score as the standard for 
classifying patients into group with high risk and 
group with low risk. We depicted the gene distribu
tion in two groups by performing PCA and t-SNE 
using the ‘stats’ and the ‘Rtsne’ R package [18]. The 
‘surv_cutpoint’ function of the ‘survminer’ 
R package served for the survival analysis to identify 
the optimal cutoff values for gene expression [19]. 
We then used the ‘survivalROC’ R package to per
form time-dependent ROC analysis to estimate if 
the gene signature has predictive ability [20]. We 
then used the univariate and multivariate Cox 
regression analyses for determining if the risk 
score could independently predict patients’ prog
nosis in terms of the OS.

Functional enrichment analysis

We conducted the Gene Ontology (GO) enrich
ment as well as the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis of the 
DEGs between two groups with the 
‘clusterProfiler’ R package and |log2 (fold- 
change)| ≥ 1 and FDR <0.05 were considered as 
the criteria for the DEGs [21]. The ‘gsva’ 
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R package was applied to the single-sample gene 
set enrichment analysis (ssGSEA) for calculating 
the enrichment score regarding immune cells as 
well as immune-related pathways [22].

Patients and Specimens

We selected 15 papillary thyroid carcinoma tissues and 
10 normal tissues from the First Hospital of Jiaxing 
between 2020 and 2021. Postoperative pathological 
examination confirmed papillary thyroid carcinoma. 
This study was approved by the Ethics Committee of 
the First Hospital of Jiaxing. Each patient signed an 
informed consent. All specimens were placed in liquid 
nitrogen and stored at −80°C immediately.

Quantitative Real-Time PCR

Trizol extracts total RNA from tissues and then 
reverse transcripts it into cDNA. PCR was per
formed using TB Green®Premix Ex Taq™II kit 
(Takara, China). The reaction process is as follows: 
94°C for 30 s, 58°C for 30s, 72°C for 60 s, 40 
cycles. GAPDH as internal control. The relative 
expression level was determined by 2− ΔΔ CT.

Statistical analyses

Student’s t-test served for comparing the gene expres
sions between tumor issues and adjacent normal tis
sues. Chi-square test assisted in examining the 
differences in proportions between group with high 
risk and group with low risk. We performed the 
Mann–Whitney test for comparing the enrichment 
scores regarding immune cells as well as immune- 
related pathways between the two groups. The 
Kaplan–Meier method together with the log-rank test 
were conducted to depict the survival curves. We then 
conducted Cox regression analysis to figure out the 
factors that could predict OS. We performed all statis
tical analyses in R (Version 4.0.3). A two-tailed P value 
< 0.05 exhibited statistical significance.

Results

In our research, we set up a prognostic model by using 
ferroptosis-related DEGs to investigate the effect of 
ferroptosis-related genes on the prognosis of PTC, 
and then we verified the model by internal validation 

and tissues validation. At last, we explored the under
lying mechanisms. The results were as follows:

Baseline data regarding PTC patients
A total of 507 PTC patients were selected from 

the TCGA cohort whose median age was 46 (range 
15–89) years. Most subjects were female and were 
in stage Ι. Distant metastasis occurred in a few 
patients. They had the median OS of 714 (range 
6–5423) days. Table 1 lists the detailed character
istics of the subjects.

Identification of ferroptosis-related DEGs with 
predictive value

We found 45 ferroptosis-related genes expressed 
differentially between tumor and adjacent normal 
tissues, 6 of which presented a significant associa
tion with OS (Figure 1a, p < 0.05). The forest plots 
displayed the associations of gene expression with 
OS (Figure 1b). The heatmap indicated tumor and 
adjacent normal tissues could be distinguished by 
the DEGs (Figure 1c). Figure 1d showed the asso
ciations between these genes.

Table 1. Clinicopathologic characteristics of thyroid carcinoma 
patients.

Characteristics Number of case (%)
Age(years)
<45 229 (45.2)
≥45 278 (54.8)
Median (range) 46 (15–89)
Gender
Female 371(73.2)
Male 136(26.8)
Tumor stage
Ι 285(56.2)
ΙΙ 52(10.3)
ΙΙΙ 113(22.3)
� 55(10.8)
NA 2(0.4)
T stage
T1 144(28.4)
T2 167(32.9)
T3 171(33.8)
T4 23(4.5)
Tx 2(0.4)
N stage
N0 231(45.6)
N1 226(44.6)
Nx 50(9.8)
M stage
M0 283(55.8)
M1 9(1.8)
Mx 214(42.2)
NA 1(0.2)
OS days (median) 714
NA- Not Available
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Construction of a prognostic model

Aforementioned 6 genes were employed for estab
lishing a prognostic model by virtue of LASSO Cox 
regression analysis, which were associated with OS. 
A 5-gene signature was then determined according 
to the optimal value of λ. We used the following 
formula to calculate the risk score: e (1.051 * the level of 

expression of HMGCR + 0.913 * the level of expression of GSS + 

1.098 * the level of expression of TFRC +0.977 * the level of 

expression of DPP4 + 1.008 * the level of expression of PGD). We 
used the median risk score as the standard for 
classifying patients into group with high risk and 
group with low risk (as shown in Figure 2a). 
Between the two groups, the stages of cancer were 
significantly different (Table 2, P< 0.05). PCA and 
t-SNE analysis showed the patients with PTC were 

Figure 1. Identification of prognostic ferroptosis-related differentially expressed genes.a.Venn plot of the differentially expressed 
genes between tumor and normal tissue that were correlated with OS.b. Forest plot of the results of the univariate Cox regression 
analysis between gene expression and OS.c.Heatmap of the differentially expressed genes associated with OS.d. The correlation of 
the differentially expressed genes associated with OS.
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distributed in two directions between the two 
groups (Figure 2c-d). Patients in group with high 
risk exhibited a higher mortality rate relative to 
group with low risk (Figure 2b). Similarly, the 
Kaplan–Meier curve displayed that group with low 
risk had remarkably higher OS relative to group 
with high risk (Figure 2e, p< 0.05). Figure 2f showed 
the OS predictive power of the risk score, with the 

area under the curve (AUC) of 0.621, 0.728, and 
0.875 at 1 year, 2 years, 3 years, respectively.

Independent predictive ability of the risk score

Cox regression analysis served for confirming if the 
risk score could predict OS independently. As found 
by the univariate Cox regression analysis, the risk 

Figure 2. Prognostic analysis of the 5-gene signature model. a. The distribution and median value of the risk scores. b. The 
distributions of OS status, OS and risk score. c. PCA analysis of the TCGA cohort. d. t-SNE analysis of the TCGA cohort. e. Kaplan– 
Meier curves of the OS in the two groups. f.AUC of time-dependent ROC curves evaluated the prognostic capacity of the risk score.
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score exhibited a significant association with OS 
(HR = 10.697, 95% CI = 1.328–86.173, P = 0.026) 
(Figure 3a). Consistently, the multivariate Cox regres
sion analysis discovered a significant association 
between the risk score and OS (HR = 11.682, 95% 
CI = 1.454–93.878, P = 0.021) (Figure 3b).

Functional analysis in the TCGA

We conducted the GO enrichment as well as 
KEGG pathway analysis of the DEGs for identify
ing the biological functions and pathways related 
to the risk score. Figure 4a showed the top 10 BP 
terms, CC terms, and MF terms. The main 

enriched Go terms were digestion, neuronal cell 
body, synaptic membrane, passive transmembrane 
transporter activity, and channel activity. Figure 4b 
showed the top 6 KEGG pathways, namely the 
neuroactive ligand–receptor interaction, the yto
kine-cytokine receptor interaction, the cAMP sig
naling pathway, the ECM–receptor interaction, 
and the PPAR signaling pathway.

The immune status was quantified by ssGSEA 
using the enrichment score and its association with 
the risk score was analyzed. Between two groups, the 
enrichment scores of Treg, TIL, Th1-cells, T-helper- 
cells, pDCs, NK-cells, Neutrophils, Mast-cells, 
Macrophages, IDCs, and DCs were significantly dif
ferent (adjusted P< 0.05, Figure 5a). The two groups 

Table 2. Clinicopathologic characteristics of the patients in different risk groups.
Characteristics High risk Low risk P value
Age(%) 0.443
≥45y 142(28.3) 108(21.6)
<45y 133(26.5) 118(23.6)
Gender(%) 1.000
Female 183(36.5) 183(36.5)
Male 67(13.4) 68(13.6)
Tumor stage(%) 0.002
I+ II 185(36.9) 148(29.5)
III+IV 64(12.8) 102(20.4)
unknown 1(0.2) 1(0.2)
T stage <0.001
T1+ T2 175(34.9) 131(26.1)
T3+ T4 74(14.8) 119(23.8)
unknown 1(0.2) 1(0.2)
N stage <0.001
N0 140(27.9) 89(17.8)
N1 74(14.8) 148(29.5)
Unknown 36(7.2) 14(2.8)
M stage 0.475
M0 134(26.7) 148(29.5)
M1 5(1.0) 4(0.8)
unknown 111(22.2) 99(19.8)

Figure 3. Results of univariate and multivariate Cox regression analysis on OS.
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presented an obvious difference in terms of scores of 
MHC-class-I, Parainflammation, HLA, CCR, T-cell- 
co-stimulation, T-cell-co-inhibition, Inflammation- 
promoting, APC-co-stimulation, APC-co-inhibition, 
Check-point, Type-I-IFN-Response, as well as Type- 
II–IFN-Response (adjusted P< 0.05, Figure 5b).

Internal validation of the 5-gene signature

We randomly selected half of the data to per
form time-dependent ROC analysis for internal 
validation, the results showed that the area 
under the curve (AUC) of 0.613, 0.689, and 
0.815 at 1 year, 2 years, 3 years, respectively 
(Figure 6), which were close to our results 
(Figure 2f) .

Validation of the 5 ferroptosis-related genes in 
PTC tissues

We further validated the mRNA expression levels 
of the 5 ferroptosis-related genes in PTC tissues 
and normal tissues by RT-qPCR, the results 
showed that DPP4 (Figure 7a), GSS (Figure 7b), 
HMGCR (Figure 7c), PGD (Figure 7d), TFRC 
(Figure 7e) were all significantly higher in PTC 
tissues than in normal tissues (P< 0.001).

Discussion

Ferroptosis was first proposed by Dixon [4] in 
2012 and was crucial in the occurrence and devel
opment of many tumors. Previous studies [23,24] 
found several ferroptosis-related genes may be 
involved in PTC. However, their associations 

Figure 4. Functional enrichment analysis of DEGs. a. Top 10 biological process (BP) terms, cellular components (CC) terms, molecular 
functions (MF) terms. b. Top 6 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.
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with the OS of PTC patients remained unknown. 
In this research, we explored the correlation 
between 60 ferroptosis-related genes and the 

prognosis of PTC. We further constructed a new 
predictive model with 5 genes related to 
ferroptosis.

Figure 5. Comparison of the ssGSEA scores between different risk groups.a. The scores of 16 immune cells.b.The scores of 13 
immune-related functions. Adjusted P values were showed as: ns, not significant; *, P< 0.05; **,P< 0.01; ***, P< 0.001.

Figure 6. AUC of time-dependent ROC curves of the internal validation.
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In our study, most ferroptosis-related genes 
(75%, 45/60) expressed differentially between 
tumor and adjacent normal tissues and six genes 
were related to the OS, which implied ferroptosis 
was involved in PTC and showed the possible 
predictive value of these genes.

We used 5 ferroptosis-related genes (DPP4, 
GSS, HMGCR, PGD, TFRC) to construct 
a predictive model. These genes act through dif
ferent mechanisms [7,13]. DPP4, which is involved 
in glutathione and amino acid metabolism, pro
motes lipid peroxidation through NOXs. 
Ferroptosis could be limited by the p53 by block
ing DPP4 activity in colorectal cancer cells [25]. 
GSS is the target gene of NRF2, which promotes 
resistance to ferroptosis [26]. The inhibition of 
HMGCR results in enhancing FIN-56-induced fer
roptosis and blocking mevalonic acid synthesis 
[27]. PGD acts through pentose phosphate path
way and is an important regulator in tumor cells. 
In non-small-cell lung cancer (NSCLC) cells Calu- 
1, knockdown of PGD inhibits erastin-triggered 
ferroptosis [27]. For iron metabolism, silencing 
TFRC can inhibit erastin-triggered ferroptosis 
[28]. Similarly, knockdown of TFRC inhibits 

ferroptosis caused by the deprivation of amino 
acid/cystine [29,30].To sum up, three of the 
genes (DPP4, PGD, TFRC) in the prognostic 
model can accelerate ferroptosis, while the other 
two genes (GSS, HMGCR) can protect cells from 
ferroptosis. Some studies [12,31] reported that 
DPP4 was upregulated in PTC patients and 
TFRC was associated with unfavorable prognoses. 
In our study, all the 5 ferroptosis-related genes 
were upregulated among PTC patients and were 
related to unfavorable clinical outcomes. However, 
whether these genes affecting the prognosis of 
PTC through regulating ferroptosis deserves 
further research.

As the mechanisms of ferroptosis in tumors was 
still elusive, we conducted GO enrichment and 
KEGG pathway analysis. We found digestion, neu
ronal cell body, synaptic membrane, passive trans
membrane transporter activity, and channel 
activity were enriched, which provide a new direc
tion for future research. Interestingly, the higher- 
risk group had remarkably higher contents of 
macrophages and Treg cells than group with low 
risk in this study. Considering tumor-associated 
macrophages [32,33] and Treg cells [34] are 

Figure 7. RT-qPCR detecting the mRNA expression levels of DPP4 (a), GSS (b), HMGCR (c), PGD (d), TFRC (e) in PTC and normal 
tissues.
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significantly related to cancer cell migration and 
poor prognoses in PTC patients, the unfavorable 
clinical outcomes in group with high risk might be 
caused by the impaired antitumor immunity.

Admittedly, our prognostic model was limited 
by using public databases. It is necessary to con
duct more in vitro and in vivo studies for verifying 
the clinical application value owned by this model.

Conclusion

Our research identified a new predictive model 
using 5 ferroptosis-related genes. The risk score 
could predict the OS of PTC independently. The 
underlying mechanism of the association of the 
ferroptosis-related genes and PTC is unclear and 
deserves further study.
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