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Although adults’ ability to recognize materials from
complex natural images has been well characterized, we
still know very little about the development of material
perception. When do children exhibit adult-like abilities
to categorize materials? What visual features do they
use to do so as a function of age and material category?
In the present study, we attempted to address both of
these issues in two experiments that we administered to
school-age children (5–10 years old) and adults. In both
tasks, we asked our participants to categorize natural
materials (metal, stone, water, and wood) using original
images of these materials as well as synthetic images
made with the Portilla–Simoncelli algorithm. By
including synthetic images in our stimulus set, we were
able to assess both how material categorization
develops during childhood and how visual summary
statistics are recruited for material perception across age
groups. We observed that when asked to provide
category labels for individual images (Experiment 1),
young children were disproportionately bad at
categorizing some materials after they were synthesized,
suggesting material-specific changes in information use
over the course of development. However, when asked
to match real and synthetic images according to material
category without labeling (Experiment 2), these effects
were weakened. We conclude that while children have
adult-like abilities to encode and compare images based
on summary statistics, the mapping between summary
statistics and category labels undergoes prolonged
development during childhood.

Introduction

Adult observers are capable of recognizing images of
natural materials quickly and accurately (Fleming,
2013). Relative to different types of object recognition,
for example, material categorization from natural
images is as fast as basic-level object categorization
(Wiebel, Valsecchi, & Gegenfurtner, 2013). Indeed,
even when image presentation times are as short as 40
ms, adults are able to achieve impressive levels of

accuracy (;80% correct), even though material cate-
gorization appears to require computations beyond
simple analyses of color, lightness, or texture properties
(Sharan, Rosenholtz, & Adelson, 2014). Adults can
maintain a broad range of material classes (Fleming,
Wiebel & Gegenfurtner, 2013) and are able to assign
natural images to these classes efficiently. This behav-
ioral profile of material categorization performance is
matched by equally impressive neural responses.
BOLD responses elicited by images of natural materials
reflect both image-based representations of materials
and higher-level representations of material appearance
that reflect perceptual similarity (Hiramatsu, Goda, &
Komatsu, 2011). The application of multivoxel classi-
fication techniques to functional magnetic resonance
imaging (fMRI) data has further revealed multiple
areas that carry diagnostic information regarding
material category, including early visual areas (Baum-
gartner & Gegenfurtner, 2016) and higher-order
cortical loci like the parahippocampal gyrus (Jacobs,
Baumgartner, & Gegenfurtner, 2014). Similar classifi-
cation techniques applied to event-related potentials
(ERP) data demonstrate that the timing of diagnostic
neural responses is fairly fast: After approximately 140
ms, ERP responses elicited during a Go/No-Go
judgment are sufficient to distinguish between natural
material categories regardless of task demands (Wiebel,
Valsecchi, & Gegenfurtner, 2014). Overall, material
categorization during adulthood is for the most part
fast and accurate, considered both in terms of
behavioral performance and neural indices of high-level
processing (though this does vary somewhat across
studies; see Sharan, Rosenholtz, & Adelson, 2014).
Moreover, both domains of research have revealed that
there are low-level properties (color, in particular) that
carry useful information for material categorization,
but that there are also higher order features that
contribute to performance as well (Fleming, 2013). The
utility of low-level features versus high-level represen-
tations of appearance differs according to the partic-
ular material judgment being considered, but it seems

Citation: Balas, B. (2017). Children’s use of visual summary statistics for material categorization. Journal of Vision, 17(12):22, 1–
11, doi:10.1167/17.12.22.

Journal of Vision (2017) 17(12):22, 1–11 1

doi: 10 .1167 /17 .12 .22 ISSN 1534-7362 Copyright 2017 The AuthorsReceived April 2, 2017; published October 31, 2017

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

mailto:benjamin.balas@ndsu.edu
mailto:benjamin.balas@ndsu.edu
https://creativecommons.org/licenses/by-nc-nd/4.0/


fair to say that there are useful tools for categorizing
and discriminating between materials across multiple
levels of representation in the visual system.

Although adults’ abilities to categorize natural
materials have been well-characterized, there is a
remarkable paucity of data describing how material
categorization develops. Indeed, the majority of devel-
opmental research relevant to visual material catego-
rization either focuses on the perception of surface
properties like gloss, roughness, and other aspects of
surface reflectance, or is instead focused on character-
izing children’s sensitivity to texture properties in
abstract images. For example, infants are capable of
distinguishing between yellow and gold surfaces (Yang,
Kanazawa, & Yamaguchi, 2013), which suggests that
specularities can be used early in visual development to
discriminate between matte appearance and shiny
materials. More general sensitivity to surface gloss is
also evident in infancy (Yang, Otsuka, Kanazawa,
Yamaguchi, & Motoyoshi, 2011), further demonstrat-
ing that reflectance properties are available to infants in
the first year of life. These abilities obviously reflect
some extant ability to categorize and or discriminate
natural materials, but do not necessarily provide a
great deal of insight into how a broad range of material
classes (e.g., water, wood, plastic, etc.) are categorized
or distinguished. In particular, some surface properties
like gloss (Sharan, Motoyoshi, Nishida, & Adelson,
2008; Weibel, Toscana, & Gegenfurtner, 2016) and
roughness (Padilla, Drbohlav, Green, Spence, &
Chantier, 2008) can be estimated reasonably well using
low-level image statistics, which could mean that young
infants can use low-level visual features to solve some
material categorization problems but lack higher level
representations of materials. Without more extensive
study of infant performance across a broader range of
tasks (and with an emphasis on material categorization
rather than the recovery of reflectance properties), it is
difficult to say (though see Yang et al., 2015 for results
concerning infants’ performance with synthetic textures
similar to the ones used here). Older children’s abilities
to recognize natural materials are even less specified in
the literature, though there is evidence suggesting that
texture perception may change during school-age years,
which may in turn have consequences for material
categorization. Texture segmentation abilities as well as
search performance that depends on texture cues
changes during middle childhood, for example (Sirte-
neau & Rieth, 1992), though this has only been
demonstrated with abstract textures made of discrete,
structured elements. In this same age range (9 to 10
years old), children’s sensitivity to power-law coeffi-
cients in fractal noise also becomes more adult-like
(Ellemberg, Hansen, & Johnson, 2012), which further
suggests that there is important development of texture
processing mechanisms during middle childhood.

Again, however, these results were obtained from
artificial stimuli depicting fractal noise with different
power spectra (e.g., pink noise vs. white noise), making
it difficult to generalize from these results to a more
ecologically valid setting. Still, these results, imply that
material categorization may develop gradually during
childhood. Further, in other domains, children exhibit
failures to integrate visual information across space
that may point to more general developmental pro-
cesses that also constrain material perception. For
example, Kovacs, Kozma, Feher, and Benedek (2009)
demonstrated that young children have profound
difficulties interpreting two-tone images of complex
objects, in some cases even after being shown a
grayscale version of the same image. This inability to
integrate structural information and achieve visual
closure in two-tone images may also reflect limits on
pooling operations like those that have been hypoth-
esized to support texture processing, which in turn
supports material perception. Regarding material
perception itself, what is largely unknown is how
children’s development unfolds in the context of
natural images, and also how visual features at
different levels of complexity contribute to material
categorization as a function of age.

Our goal in the current study was therefore to
examine how material categorization develops during
childhood, with an emphasis on children’s and adults’
abilities to use specific visual features for identifying
materials in natural images. Specifically, we chose to
work with children between the ages of 5 and 10 years
old, largely because texture processing appears to be
undergoing development during this age range and
also because other recognition tasks (e.g., face
recognition, see Pascalis et al., 2011) also undergo
development during this span in terms of what visual
information is being used for categorization and
discrimination tasks. The simplest questions we can
ask via these participants are (1) What is the
developmental time course of material categorization
during childhood?, and (2) Does performance with
different material categories develop on different
trajectories? Besides these basic questions about how
material perception develops, we also wanted to
understand how the use of specific visual features may
also change during childhood. To investigate this
aspect of visual development, we tested child and
adult participants using both original images of
natural materials and synthetic images of the same
materials created using the Portilla–Simoncelli texture
synthesis model (Portilla & Simoncelli, 2000). This
model has been increasingly used as a tool for
investigating human vision in multiple ways, and here
we apply it to our images with the goal of determining
how ‘‘summary statistics’’ for texture appearance
support material categorization across development.
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The synthetic images we created using the algorithm
closely match the original images in terms of the
aggregated texture statistics that define the P–S model,
but lack higher-order features that capture extended
features and global image structure. By comparing
performance with real images and synthetic images,
we are thus able to determine how the lack of these
more complex features affects children and adults as a
function of material category. Should the removal of
these features incur a substantial performance cost,
this would suggest that material categorization de-
pends critically on higher-order features. If instead the
removal of these features does not disrupt perfor-
mance much, the alternative account is that material
categorization is largely accomplished via summary
statistics and does not require additional information.
Whether or not this reliance on summary statistics
versus high-order features changes with age or with
material category is the key question we hoped to
address.

In two experiments, we asked our participants to
make material judgments using natural images of
water, wood, metal, and stone. In Experiment 1, we
used a simple four-alternative forced choice (4AFC)
categorization task to describe children’s and adults’
abilities to recognize natural and synthetic materials. In
Experiment 2, we carried out a material discrimination
task with the same images in order to evaluate the
extent to which the need to map materials to labels
constrained children’s abilities to process material
images across categories and appearance conditions. In
both experiments, we find evidence that material
categorization does develop during childhood, both in
terms of information use and possibly also in a
material-specific fashion.

Experiment 1

In our first experiment, we examined children’s
ability to use summary statistics for material categori-
zation relative to adults. Participants in this task
completed a 4AFC categorization task using natural
and synthetic images of real-world materials.

Methods

Participants

We recruited 40 children [5–7 year-olds (n¼ 20) and
8–10 year-olds (n ¼ 20)] as well as 20 adults (aged 18–
25) to take part in this experiment. Children were
recruited from the greater Fargo–Moorhead commu-
nity and adults were recruited from the North Dakota
State University (NDSU) Undergraduate Psychology
study pool. All participants reported either normal or

corrected-to-normal vision. Prior to participation in the
experiment, we obtained written informed consent
from a legal guardian (child participants) or from the
participants (adult participants). Children older than
seven years provided written assent to participate as
well. Consent procedures were consistent with the
principles stated in the Declaration of Helsinki, as
approved by the NDSU Institutional Review Board.

Stimuli

We selected a total of 64 full-color images from the
Flickr Materials Database (Sharan, Rosenholtz, &
Adelson, 2009) drawn from the Metal, Stone, Water,
and Wood categories. Within each category, we
selected 16 original images per category to serve as the
basis for our stimulus set (Figure 1), choosing images to
promote appearance variability within categories (di-
verse colors, orientations, etc.).

We cropped each original image to a size of 512 by
512 pixels and created synthetic versions of each
stimulus using the default parameters of the Portilla–
Simoncelli texture synthesis algorithm (Liang, Simon-
celli & Lei, 2000; Portilla & Simoncelli, 2000). Briefly,
this model adjusts an initial noise image until it matches
the texture statistics of the target image. The texture
statistics used to characterize target images are
comprised of a number of correlations measured
between wavelet coefficients at different positions,
orientations, and spatial scales. See Balas, Nakano, and
Rosenholtz (2009) for a more thorough discussion of
the model.

Figure 1. A schematic view of the material categorization task

used in Experiment 1. Participants were presented with either a

real or synthetic image in the center of the screen and chose

the response image associated with the category they wished

to label it with.
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Procedure

Participants from all age groups completed a 4AFC
material categorization judgment using the real and
synthetic images described already. On each trial, we
presented participants with a single image depicting
either a real image or a synthetic image from one of the
four material categories we selected. Participants were
asked to categorize the target image according to
material category by touching one of the four cartoon
response images arranged around the target image
(Figure 1). Participants had unlimited time to respond
to each image and did not receive feedback regarding
their responses. Participants’ eye movements and head
position were neither constrained nor monitored during
the task (free viewing).

Participants completed the task in a darkened room
using an 800-by-600 Elo touchscreen display (ELO
Touch Solutions, Inc., Milpitas, CA) and were seated at
a comfortable reaching distance. Although this does
mean stimulus size varied somewhat across our age
groups, target images subtended approximately 58–78
of visual angle. Stimulus images were presented in a
pseudorandomized order for each participant and
participants saw each image only once for a total of 128
trials in the experimental session. All stimulus presen-
tation and response collection routines were imple-
mented using the Psychophysics Toolbox Version 3
library for MATLAB (Brainard, 1997; Kleiner et al.,
2007; Pelli, 1997).

Results

We calculated the proportion of correctly labeled
images in each category and analyzed these values
using a mixed-design 2x3x4 analysis of variance
(ANOVA) with texture appearance (real or synthetic)
and material (metal, stone, water, and wood) as within-

subjects factors and age group (5–7 years old, 8–10
years old and adults) as a between-subjects factor. In
Figure 2 we display average accuracy as a function of
all three of these factors.

This analysis revealed main effects of texture
appearance, F(1, 56)¼ 324.24, p , 0.001, partial g2 ¼
0.85; material category, F(3, 168) ¼ 5.55, p¼ 0.001,
partial g2¼ 0.09; and age group, F(2, 56)¼ 15.85, p ,
0.001, partial g2 ¼ 0.36. The main effect of texture
appearance was the result of higher performance for
real textures [M¼ 0.89, 95% CI ¼ [(0.85–0.92)] than
synthetic textures [M¼0.65, 95% CI¼ (0.62–0.68)]. The
main effect of material category was the result of
significant differences between performance with metal
images (M ¼ 0.71) relative to stone images [M¼ 0.82,
95% CI of the difference¼ (0.05–0.18)] and perfor-
mance with metal relative to water images [M¼ 0.76,
95% CI of the difference¼ (0.004–0.18)]. Finally, the
main effect of age group was the result of significantly
lower accuracy in the 5- to 7-year-old age group [M¼
0.65, 95% CI¼ (0.59–0.70)] relative to both the 8- to 10-
year-old age group [M¼ 0.82, 95% CI ¼ (0.76–0.87)]
and adults [M¼ 0.85, 95% CI ¼ (0.79–0.90)].

These main effects were qualified by significant two-
way interactions between texture appearance and
material category, F(3, 168)¼ 11.32, p , 0.001, partial
g2¼ 0.17, and between material category and age
group, F(6, 168) ¼ 2.91, p ¼ 0.010, partial g2¼ 0.09.
These were further qualified by a significant three-way
interaction between all three factors, F(6, 168)¼ 4.48, p
, 0.001, partial g2 ¼ 0.14). To examine the nature of
this interaction, we carried out separate two-way
ANOVAs for real and synthetic images so we could
determine how material category and participant age
affected performance differently when texture appear-
ance was natural or artificial. For real images, the only
significant effect we observed was a main effect of age
group (F(2, 65) ¼ 13.3, p , 0.001, partial g2¼ 0.32).
Neither the main effect of material (p¼ 0.40) nor the

Figure 2. Average performance (proportion correct) across all age groups and material categories for real (left) and synthetic (right)

textures in Experiment 1. Error bars represent 6 SEM.
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interaction between material and age group (p¼ 0.64)
reached significance. For synthetic images, however, we
observed main effects of both material category, F(3,
168) ¼ 9.67, p , 0.001, partial g2¼ 0.15), and age
group, F(2, 56)¼ 14.2, p , 0.001, partial g2¼ 0.97, and
a significant interaction between these factors, F(6, 168)
¼ 4.44, p , 0.001, partial g2 ¼ 0.14). Post-hoc t tests
revealed that this interaction appears to be driven by
significant differences between young children’s per-
formance and adult’s performance with both metal and
wood images, whereas other material categories yielded
no significant age effects.

Discussion

Briefly, these results demonstrate that there are
aspects of material categorization that develop during
childhood. That children get better with age is, of
course, not surprising and certainly reflects more
general cognitive development to some extent. What is
much more interesting is that the way information is
used for material categorization changes with age.
Specifically, although neither material category nor
synthetic appearance does much to impact performance
with real textures in an age-dependent way, these
factors do affect performance with synthetic images
differently in our youngest observers. The ability to use
summary statistics for material categorization appears
to develop at different rates for different material
categories, suggesting material-specific development of
representations for material perception.

We will expand upon the consequences of these
results in the General discussion and offer some ideas
as to what we think they may mean. For now, however,
we raise an important issue that Experiment 1 does not
allow us to address. Poor performance with synthetic
images in this task could imply a few different things
and we would like to try and distinguish between these
possibilities as much as we can. One way to explain
what we have seen here is to say that children may be
unable to measure summary statistics well in all of the
material categories we have used here, so they do not
have as much useful information as adults to use for
labeling synthetic images. Alternatively, they may be
measuring summary statistics just as well as adults in
all cases, but lack the necessary mapping between
summary measurements and material categories. In
Experiment 2, we attempt to distinguish between these
possibilities by asking another group of children and
adults to complete a material matching task using real
and synthetic images. By removing the need to assign
explicit labels to materials, we remove the requirement
that participants maintain any sort of mapping between
summary statistics and material categories. If this is the
critical aspect of material perception that is developing

in childhood, the critical three-way interaction we have
observed in Experiment 1 should disappear. On the
other hand, if young children are not able to measure
summary statistics as effectively as adults, performance
in this task should look much like performance in
Experiment 1.

Experiment 2

In our second experiment, we examined material
categorization abilities using a discrimination task. By
removing the need to ask participants to label
individual images according to category, we hoped to
determine whether children’s abilities to categorize real
and synthetic materials were limited by their ability to
assign the right name to a candidate image, or by their
ability to distinguish materials based on visual content.

Participants

As in Experiment 1, we recruited a total of 40
children [5- to 7-year-olds (n ¼ 20) and 8- to 10-year-
olds (n ¼ 20) and 20 adults to take part in this task.
None of these individuals had taken part in Experiment
1, and all participants reported normal or corrected-to-
normal vision. All procedures for obtaining informed
consent were the same as described in Experiment 1.

Stimuli

We used the same stimulus images as described
previously in Experiment 1.

Procedure

Participants in this experiment were asked to make a
match-to-sample judgment based on material charac-
teristics. On each trial, we simultaneously presented a
sample image at the top of the screen and two test
images at the bottom of the screen (Figure 3). One of
the test images was a different exemplar from the same
material category as the sample, and the other was an
exemplar of a different material. All of the images
presented on each trial were either real textures or
synthetic textures. Participants chose which test image
they believed matched the sample according to material
category by touching the test image and had unlimited
time to make their response.

We presented participants with a total of 200 trials
(25 trials per condition) presented in a pseudor-
andomized order. All stimulus parameters and testing
procedures were identical to the methods described in
Experiment 1.
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Results

As in Experiment 1, we calculated the proportion of
correct trials in each material category and analyzed
these values using a mixed-design 2x3x4 ANOVA with
texture appearance (real or synthetic) and material
(metal, stone, water, and wood) as within-subjects

factors and age group (5- to 7-year-olds, 8- to 10-year-
olds, and adults) as a between-subjects factor. In Figure
4 we display average accuracy as a function of all three
of these factors.

This analysis revealed significant main effects of
texture appearance, F(1, 55)¼ 309.7, p , 0.001, partial
g2¼ 0.85, and material category, F(3, 165)¼ 7.59, p ,
0.001, partial g2¼ 0.12, as well as a main effect of age
group, F(2, 55)¼ 7.22, p¼ 0.002, partial g2¼ 0.21. The
effect of texture appearance was the result of better
accuracy for real images [M¼ 0.88, 95% CI ¼ (0.85–
0.90)] than synthetic images [M¼ 0.67, 95% CI¼ (0.65–
0.69)], and the effect of material category was the result
of better performance with images of water [M¼ 0.82,
95% CI ¼ (0.80–0.84)] than all three of the other
categories. Finally, the main effect of age group was the
result of significantly lower performance in 5- to 7-year-
olds [M ¼ 0.72, 95% CI ¼ (0.68–0.76)] than both 8- to
10-year-olds [M¼ 0.80, 95% CI ¼ (0.76–0.84)] and
adults [M¼ 0.81, 95% CI ¼ (0.77–0.84)].

These main effects were qualified by significant two-
way interactions between texture appearance and age
group, F(2, 55) ¼ 3.35, p ¼ 0.042, partial g2 ¼ 0.0.11,
and between texture appearance and material, F(3, 165)
¼ 16.0, p , 0.001, partial g2 ¼ 0.23. The three-way
interaction between all of our factors did not reach
significance. The interaction between texture appear-
ance and age group was driven by significant differ-
ences in performance across age groups in the real
images condition that were not evident in the synthetic
images condition. Specifically, 5- to 7-year olds [M ¼
0.80, 95% CI ¼ (0.76–0.85)] performed more poorly
than 8- to 10-year-olds [M¼ 0.92, 95% CI ¼ (0.87–
0.96)] and adults [M¼0.92, 95% CI¼ (0.88–0.96)] when
real images were used, but performance across all three
groups did not differ when synthetic images were used
[5- to 7-year-olds, M¼ 0.64, (0.60–0.67); 8- to 10-year-
olds, M ¼ 0.68, (0.64–0.72); adults, M ¼ 0.70, (0.66–
0.73)].

Figure 3. A schematic view of the material discrimination task

used in Experiment 2. Participants were presented with a

sample image depicting a real or synthetic texture and were

asked to choose the test image that depicted the same

material. All three images were either real or synthetic.

Figure 4. Average performance (proportion correct) across all age groups and material categories for real (left) and synthetic (right)

textures in Experiment 2. Error bars represent 6 SEM.
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The interaction between texture appearance and
material category was the result of different effects of
material category for real and synthetic textures. For
real textures, performance with water images [M¼0.95,
95% CI ¼ (0.93–0.97)] was significantly higher than all
three of the other conditions [Metal, M ¼ 0.88, (0.84–
0.91); Stone, M ¼ 0.83, (0.80–0.87); Wood, M ¼ 0.85,
(0.81–0.89)]. For synthetic images, performance with
metal images [M ¼ 0.61, 95% CI ¼ (0.57–0.64)] was
significantly lower than performance with stone [M ¼
0.71, 95% CI ¼ (0.67–0.74)] and water images [M¼
0.68, 95% CI ¼ (0.65–0.71)].

General discussion

Our results from both experiments confirm prior
reports that the summary statistics comprising the
Portilla–Simoncelli model do not support the synthesis
of true metamers for natural materials. That is,
removing higher-order structures via texture synthesis
leads to consistent performance decrements for mate-
rial categorization (Experiment 1) and discrimination
(Experiment 2), similar to the outcomes reported in a
range of previous studies concerned with different
aspects of texture perception and other types of
‘‘statistical’’ vision. For example, Wallis, Bethe, and
Wichmann (2016) recently demonstrated that P–S
textures were not true metamers (Freeman & Simon-
celli, 2011) of natural scenes in a peripheral discrimi-
nation task and Balas, Conlin, and Shipman (2016)
reported similar results in a peripheral material
categorization task. Other features of peripheral
encoding that are apparently not adequately captured
by the P–S algorithm include the perception of
numerosity in peripherally presented dot arrays (Balas,
2016) and the appearance of natural textures of various
types (Balas, 2006). Thus, despite important advances
in characterizing visual crowding (Balas et al., 2009)
and visual search (Rosenholtz et al., 2012) in terms of
summary-statistic representations, these results provide
additional evidence that the particular texture code
used by the P–S algorithm also has important
shortcomings in settings where it may seem to offer
good expressive power. By itself, this is not particularly
surprising to see given that material images in both
tasks were presented at the fovea in this task (not in
peripheral vision like many of the studies described
already), and so we would expect observers to be
capable of measuring features beyond those available in
P–S summary statistics, as is evident in foveal tasks
requiring invariant texture recognition (Balas & Con-
lin, 2015b) and ERP results demonstrating sensitivity
to higher-order structure at early visual components
(Balas & Conlin, 2015a) Nonetheless it is an important

demonstration that material images contain diagnostic
information in higher-order visual features and that
observers use this information for categorization. In
particular, contextualizing our results this way is useful
because whereas studies examining the limits of true
metamerism for the P–S representation of textures (or
other representations such as those obtained from deep
neural nets) usually emphasize discrimination at the
level of an image, the representational vocabulary of
such a feature set can also be evaluated at the level of a
category even if the image level representation is not
high-fidelity. That is, even though we know from
multiple studies that the P–S algorithm will not in
general yield a synthetic image that is indistinguishable
from the original when viewed foveally, which does not
imply that the synthetic image does not contain
sufficient information for a range of category judg-
ments. Thus, though there was no reason to expect
strong metamerism in these experiments, our results
further demonstrate the limits of this representation for
carrying information that reliably signals material
categories.

Critically, the results of Experiment 1 demonstrate
that the cost incurred by synthesizing natural materials
varies as a function of age and material. Specifically,
the three-way interaction we observed between these
three factors supports the hypothesis that children’s use
of higher-order visual features for material categoriza-
tion develops in a material specific way. Although
performance with real textures exhibited straightfor-
ward improvement with age across materials, material
categorization was disproportionately affected by
synthetic appearance in our youngest age groups such
that categorization of some images was at or near
chance levels. For our purposes, it is not so important
that texture synthesis affects some materials different-
ly—we would anticipate that the P–S feature vocabu-
lary would be intrinsically more useful for some kinds
of images than others—but it is interesting to see that
this impact differs with age, reflecting properties of the
developing appearance code for material categories.
Also, the disproportionate cost of synthetic appearance
in young childhood is consistent with developmental
outcomes observed in other domains, including face
recognition. Just as there are multiple information
channels available for material categorization (oper-
ationalized here as summary statistics and an unspec-
ified set of higher-level features not explicitly matched
by the P–S algorithm), face recognition has frequently
been evaluated when independent information channels
defined by spatial frequency (Ruiz-Soler & Beltran,
2006) or orientation energy (Dakin & Watt, 2009) are
available or not. In some cases, young children’s
performance with suboptimal features (e.g. vertical
orientation sub-bands for faces) exhibits the same kind
of disproportionately low values as we have observed
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here (Balas, Huynh, Saville, & Schmidt, 2015; Balas et
al., 2017). This may reflect a more general principle
underlying the development of representations for
visual recognition: Children may quickly develop
representations that depend on the ‘‘best’’ features for
recognition (e.g., midrange spatial frequency bands and
horizontal orientation energy for faces, higher-level
correlations for material categorization), but only
incorporate other features more slowly, leading to
profound costs when more highly diagnostic features
are unavailable to younger observers. We note that we
cannot make strong statements about what those
higher-order features are, however. The P–S algorithm
works by explicitly matching a set of correlations
between wavelet coefficients, but the space of candidate
features that are not matched by the algorithm is too
vast to be meaningfully commented on based on our
results. Although we could cite specific candidate
features that we expect may not be matched following
application of the P–S synthesis routines (e.g., joint
statistics describing co-occurrence of wavelet orienta-
tions and positions across spatial scales), we cannot
provide any evidence that any of these candidates are
features children or adults are definitely sensitive to and
using for categorization. Thus, our results provide a
sort of existence proof for useful information beyond
the P–S descriptors without offering insights into what
that information is.

The results of Experiment 2 also require that we
include an important caveat when we consider the
account described already. Specifically, the lack of a
three-way interaction between age group, material
category, and real/synthetic appearance in this task
suggests that removing the need to explicitly categorize
images according to material changes the nature of
developmental effects. In fact, although we observed
profound differences in performance across our syn-
thetic image conditions in Experiment 1, performance
with these images in Experiment 2 is flat across age
groups. We suggest that this means children’s ability to
match summary statistics across different images is
more or less mature in young childhood, but that the
ability to map summary-statistic measurements to
material categories is the critical aspect of visual
recognition that is changing during this period. That is,
our data imply that a lack of robust mapping between
summary statistics and category labels at a young age
contributes to the poorer performance exhibited by
young children in material categorization tasks. To our
knowledge, this aspect of visual recognition has not
been systematically examined in other contexts, so it’s
possible that this is also a more general feature of
development. Regardless, the present study demon-
strates that while children’s ability to use summary
statistics for material categorization develops in a
material-specific fashion during childhood, their ability

to match material images according to summary
statistics is stable. This latter outcome is important to
interpreting the first, both because it suggests a key
dissociation of distinct recognition tasks, but also
because it implies that the failure to successfully
categorize materials in Experiment 1 is probably not
due to some failure to encode summary statistics
effectively at young ages. Were this the case (that young
children just were not measuring enough relevant
summary statistics to categorize materials well), we
would expect that this difference in encoding would
lead to measurable differences in distinguishing be-
tween images based on their summary statistics. Also,
while Experiment 1 and Experiment 2 did differ in
terms of response format (4AFC vs. two-alternative
forced choice or 2AFC), our data cannot be easily
explained in terms of any main effect of task difficulty
associated with that difference. Critically, the pattern of
interaction effects (and their absence) across tasks does
not lend itself easily to an explanation based on any
main effect of task difficulty, especially given the
absence of any clear ceiling or floor effects. Although
comparing children’s performance across tasks can be
challenging given the varying demands placed on
children’s perceptual and cognitive abilities as a
function of different testing paradigms, the current
results are not easily accounted for solely by task
effects. We conclude therefore, that children probably
measure summary statistics (at least, these summary
statistics) about as well as adults, but do not use them
as effectively to assign material categories to images.

There are many interesting questions regarding other
aspects of material categorization that our current
results do not allow us to speak to. Some of these
concern simple extensions of our approach to include
other candidate summary statistics (Briand, Vacher,
Galerne, & Rabin, 2014; Efros & Freeman, 2001;
Heeger & Bergen, 1995) and a wider variety of material
categories—how general are the effects we observed
here? More interesting, however, is the potential for
further exploring the nature of the developmental
effects we observed in Experiment 1 and how they
reflect the diagnosticity of summary statistics for
material categorization across different materials.
Specifically, we have suggested that young children may
lack a representational vocabulary that includes
summary statistics for some materials, depending
critically on how diagnostic higher-order features are
relative to summary features: If summary features are
not very diagnostic, it will take longer to develop adult-
like competence with them. Testing this conjecture is
complicated, however, by the fact that the diagnosticity
of summary statistics for material categorization will
depend on both how reliably a given set of summary
statistics signals a material category and how well
original images belonging to some category tend to be
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well-rendered by a candidate synthesis model. The
former property can be measured using adult observers
by asking them to carry out a task much like our
Experiment 1, but the second property will require a
task more like what Wallis et al. (2016) carried out in
peripheral vision. They key idea is that summary
statistics might seem more diagnostic either because
they support a synthetic image that does not differ
much from the original or because even a poor
synthetic image carries sufficient information about
appearance to disambiguate the material depicted in
the parent image. Measuring both of these properties
for a wide range of material categories and character-
izing developmental effects relative to these character-
istics would help provide important insights into how
feature diagnosticity determines the content of repre-
sentations for visual recognition as a function of age. In
particular, our participants were only presented with
images drawn from four material categories, which
obviously is a meaningful limitation of the present
results. Although there are practical limitations on how
long testing sessions involving child participants can be,
continued efforts to examine material perception
developmentally would benefit from the inclusion of a
broader set of material categories.

Another important limitation of the current study is
that we have not considered the role that simple global
features like color distributions may play in material
categorization as a function of age. By synthesizing
material images (and removing/disrupting a range of
higher-order feature correlations), we may also be
leading children to rely more heavily on low-level
features like hue and saturation. We took no special
measures in this study to manipulate or control color
appearance across categories, opting instead to maxi-
mize color variability across images within a category
such that color would not be especially useful for
material categorization. An advantage of this approach
is that the current results have reasonable ecological
validity: In natural settings, materials’ color variability
is neither controlled nor manipulated and our data thus
likely reflect how performance may unfold in real-
world environments. An obvious drawback, however,
is that differences in color variability as a function of
material category may underlie our results to some
extent. For example, young children in Experiment 1
were particularly bad at categorizing synthetic metal
images accurately. Could that be the result of higher
color variability for this category? Critically, the answer
to that specific question is no. Because the P–S
algorithm offers robust color histogram matching, the
disproportionately poor performance with synthetic
metal images cannot be explained by color variability
within this category. Were this the case, we should
observe the same level of performance for the real metal
textures, which are instead categorized far more

accurately by young children. Although we must be
careful drawing strong inferences about how aspects of
natural material appearance like color variability may
drive performance across different material categories,
we can be confident that these properties are not the
basis of the interactions we observed with synthetic
texture appearance. Nonetheless, by either manipulat-
ing color availability explicitly or examining confusion
matrices in more detail, we could potentially also
examine how developing representations for material
perception recruit low-level features for recognition
and discrimination. We also encourage readers to
examine our full stimulus set, which is available at the
following link: https://dl.dropboxusercontent.com/u/
4961099/balas_jov_kidmat_images.zip, so that they
may assess for themselves how various image properties
may vary across the material categories we chose to use
here, and the images we selected as members of that
category.

Finally, we also note that by using texture synthesis
as a tool for ‘‘lesioning’’ natural images such that some
classes of visual features are excluded from some of our
stimulus conditions, we are able to maintain local
correlational structure while disrupting aspects of
global appearance. The other half of this manipulation
could be an important means of characterizing what
information children are and are not using at different
developmental stages, but how do we disrupt local
structure while preserving aspects of global appear-
ance? One possible means of doing so that we have
explored in previous work with adults (Balas, 2012) and
infants (Balas & Woods, 2014) is contrast negation.
Contrast-negated images preserve the global layout of
edges (and spatial layout more broadly) while disrupt-
ing the local polarity of contrast relationships. If young
children are relying heavily on higher-order correla-
tions for some material categorization judgments (as in
Experiment 1) we would predict that this manipulation
should have less of an impact on these categories than
on others, even with the profound change in image
appearance that accompanies negation. Were this the
case, it would be important supporting evidence in
favor of our conjecture regarding the way representa-
tions of appearance are changing with development.

Overall, our results demonstrate that the way
children use summary statistics for material categori-
zation changes between the ages of 5 and 10 years.
Critically, these effects do not appear to reflect broad
inabilities to measure summary statistics or distinguish
between different sets of summary features. Instead,
reliance on summary features vs. higher-order mea-
surements varies by material. Understanding how the
diagnosticity of summary statistics across material
categories (or other properties of these categories)
predicts these relationships is a key question for future
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work and may yield insight into how rich representa-
tions for recognition develop more generally.

Keywords: visual development, material perception,
summary statistics

Acknowledgments

This study was supported by NSF grant BCS-
1727427 awarded to BB. Special thanks to all the
families who volunteered to participate in both
experiments, and also to Dan Gu for technical support.

Commercial relationships: none.
Corresponding author: Benjamin Balas.
Email: benjamin.balas@ndsu.edu.
Address: Department of Psychology and Center for
Visual and Cognitive Neuroscience, North Dakota
State University, Fargo, ND, USA.

References

Balas, B. (2006). Texture synthesis and perception:
Using computational models to study texture
representations in the human visual system. Vision
Research, 46, 299–309.

Balas, B. (2012). Contrast-negation and texture syn-
thesis differentially disrupt texture discrimination.
Frontiers in Perception Science, 3, 515.

Balas, B. (2016). Seeing number using texture: How
summary statistics account for reduced numerosity
in the visual periphery. Attention, Perception &
Psychophysics, 78, 2313–2319.

Balas, B., Auen, A., Saville, A., & Schmidt, J. (2017).
Body emotion recognition disproportionately de-
pends on vertical orientations during childhood.
International Journal of Behavioral Development, E-
pub ahead of print, doi:10.1177/0165025417690267.

Balas, B., & Conlin, C. (2015a). The visual N1 is
sensitive to deviations from natural texture ap-
pearance. PLoS One, 10(9), e0136471.

Balas, B. & Conlin, C. (2015b) Invariant texture
perception is harder with synthetic textures: Impli-
cations for models of texture processing. Vision
Research, 115, 271–279.

Balas, B., Conlin, C., & Shipman, D. (2016). Summary-
statistics and material categorization in the visual
periphery. Transactions on Applied Perception, 14,
2, 8.

Balas, B., Huynh, C., Saville, A., & Schmidt, J. (2015).
Orientation biases for facial emotion recognition in

early childhood and adulthood. Journal of Exper-
imental Child Psychology, 140, 71–83.

Balas, B., Nakano, L., & Rosenholtz, R. (2009). A
summary-statistic representation in peripheral vi-
sion explains visual crowding. Journal of Vision,
9(12):13, 1–18, doi:10.1167/9.12.13. [PubMed]
[Article]

Balas, B., & Woods, R. (2014). Infant preference for
natural texture statistics is modulated by contrast
polarity, Infancy, 19, 262–280.

Baumgartner, E. & Gegenfurtner, K.R. (2016). Image
statistics and the representation of material prop-
erties in the visual cortex. Frontiers in Psychology,
7, 1185, doi: 10.3389/fpsyg.2016.01185.

Brainard D. H. (1997). The psychophysics toolbox.
Spatial Vision, 10, 433–436.

Briand, T., Vacher, J., Galerne, B., & Rabin, J. (2014).
The Heeger-Bergen pyramid-based texture synthe-
sis algorithm. Image Processing Online, 4, 276–299.

Dakin, S., & Watt, R. J. (2009). Biological ‘‘bar codes’’
in human faces. Journal of Vision, 9(4):2, 1–10, doi:
10.1167/9.4.2. [PubMed] [Article]

Efros, A. A., & Freeman, W. T. (2001). Image quilting
for texture synthesis and transfer. Proceedings of
the 28th annual conference on computer graphics and
interactive techniques (pp. 341–346). New York:
ACM.

Ellemberg, D., Hansen, C., & Johnson, A. (2012). The
developing visual system is not optimally sensitive
to the spatial statistics of natural images. Vision
Research, 67, 1–7.

Fleming, R. W. (2013). Visual perception of materials
and their properties. Vision Research, 94, 62–75.

Fleming, R. W., Wiebel, C. M., & Gegenfurtner, K. R.
(2013). Perceptual qualities and material classes.
Journal of Vision, 13(9):8, 1–12, doi:10.1167/13.9.
8. [PubMed] [Article]

Freeman J., & Simoncelli, E. P. (2011). Metamers of
the ventral stream. Nature Neuroscience, 14, 1195–
1201.

Heeger, D. J., & Bergen, J. R. (1995). Pyramid-based
texture analysis/synthesis. Proceedings of the 22nd
Annual Conference on Computer Graphics & Inter-
active Techniques, 30, 229–238.

Hiramatsu, C., Goda, N. & Komatsu, H. (2011).
Transformation from image-based to perceptual
representation of materials along the human
ventral visual pathway. NeuroImage, 57, 482–494.

Jacobs, R. H. A. H., Baumgartner, E., & Gegenfurtner,
K. R. (2014). The representation of material
categories in the brain. Frontiers in Psychology, 5,
146.

Journal of Vision (2017) 17(12):22, 1–11 Balas 10

mailto:benjamin.balas@ndsu.edu
http://dx.doi.org/10.1177/0165025417690267
http://dx.doi.org/10.1167/9.12.13
https://www.ncbi.nlm.nih.gov/pubmed/20053104
http://jov.arvojournals.org/article.aspx?articleid=2122150
http://dx.doi.org/10.3389/fpsyg.2016.01185
http://dx.doi.org/10.1167/9.4.2
https://www.ncbi.nlm.nih.gov/pubmed/19757911
http://jov.arvojournals.org/article.aspx?articleid=2193426
http://dx.doi.org/10.1167/13.9.8
http://dx.doi.org/10.1167/13.9.8
https://www.ncbi.nlm.nih.gov/pubmed/23847302
http://jov.arvojournals.org/article.aspx?articleid=2194004


Kleiner, M., Brainard, D., Pelli, D., Ingling, A.,
Murray, R., & Broussard, C. (2007). What’s new in
Psychtoolbox-3. Perception, 36, 1.

Kovacs, I., Kozma, P., Feher, A., & Benedek, G.
(1999). Late maturation of visual spatial integra-
tion in humans, Proceedings of the National
Academy of Sciences, 96, 12204–12209.

Liang, Y., Simoncelli, E. P., & Lei, Z. (2000). Color
channels decorrelation by ICA transformation in
the wavelet domain for color texture analysis and
synthesis. Presented at IEEE Conference on Com-
puter Vision and Pattern Recognition, Hilton
Head, SC, USA.

Padilla, S., Drbohlav, O., Green, P. R., Spence, A., &
Chantier, M. (2008). Perceived roughness of 1/f
beta noise surfaces. Vision Research, 48, 1791–1797.

Pascalis, O., de Vivies, X. D. M., Anzures, G., Quinn,
P. C., Slater, A. M., Tanaka, J. W., & Lee, K.
(2011). Development of face processing. Wiley
Interdisciplinary Reviews of Cognitive Science, 2,
666–675.

Pelli, D. G. (1997). The VideoToolbox software for
visual psychophysics: Transforming numbers into
movies, Spatial Vision, 10, 437–442.

Portilla, J., & Simoncelli, E. (2000). A parametric
texture model based on joint statistics of complex
wavelet coefficients. International Journal of Com-
puter Vision, 40, 49–71.

Rosenholtz, R., Huang, J., Raj, A., Balas, B., & Ile, L.
(2012). A summary-statistic representation in pe-
ripheral vision explains visual search. Journal of
Vision, 12(4):14, 1–17, doi:10.1167/12.4.14.
[PubMed] [Article]

Ruiz-Soler, M., & Beltran, F. S. (2006). Face percep-
tion: An integrative review of the role of spatial
frequencies. Psychological Research, 70, 273–292.

Sharan, L., Li, Y., Motoyoshi, I., Nishida, S., &
Adelson, E.H. (2008). Image statistics for surface
reflectance perception. Journal of the Optical
Society of America, A, 25, 846–865.

Sharan, L., Rosenholtz, R., Adelson, E. H. (2009).
Material perception: What can you see in a brief
glance? Journal of Vision, 9(8): 784, doi:10.1167/9.8.
784. [Abstract]

Sharan, L., Rosenholtz, R. & Adelson, E. H. (2014).
Accuracy and speed of material categorization in
real-world images. Journal of Vision, 14(9):12, 1–24,
doi:10.1167/14.9.12. [PubMed] [Article]

Sireteanu, R., & Rieth, C. (1992). Texture segregation
in infants and children. Behavioural Brain Research,
49, 133–139.

Wallis, T. S. A., Bethge, M., & Wichmann, F. A.
(2016). Testing models of peripheral encoding using
metamerism in an oddity paradigm. Journal of
Vision, 16(2):4, 1–30, doi:10.1167/16.2.4. [PubMed]
[Article]

Wiebel, C., Toscani, M., & Gegenfurtner, K. R. (2015).
Statistical correlates of perceived gloss in natural
images. Vision Research, 115B, 175–187.

Wiebel, C., Valsecchi, M. & Gegenfurtner, K. R.
(2013). The speed and accuracy of material
recognition in natural image. Attention, Perception,
& Psychophysics, 75, 954–966.

Wiebel, C. B., Valsecchi, M., & Gegenfurtner, K. R.
(2014). Early differential processing of material
images: Evidence from ERP classification. Journal
of Vision, 14(7):10, 1–13, doi:10.1167/14.7.10.
[PubMed] [Article]

Yang, J., Kanazawa, S., & Yamaguchi, M. K. (2013).
Can infants tell the difference between gold and
yellow? PLoS One, 8(6), e67535.

Yang, J., Kanazawa, S., Yamaguchi, M. K., &
Motoyoshi, I. (2015). Pre-constancy vision in
infants. Current Biology, 25, 3209–3212.

Yang, J., Otsuka, Y., Kanazawa, S., Yamaguchi, M.
K., & Motoyoshi, I. (2011). Perception of surface
glossiness by infants aged 5 to 8 months. Percep-
tion, 40, 1491–1502.

Journal of Vision (2017) 17(12):22, 1–11 Balas 11

http://dx.doi.org/10.1167/12.4.14
https://www.ncbi.nlm.nih.gov/pubmed/22523401
http://jov.arvojournals.org/article.aspx?articleid=2121117
http://dx.doi.org/10.1167/9.8.784
http://dx.doi.org/10.1167/9.8.784
http://jov.arvojournals.org/article.aspx?articleid=2136241&resultClick=1
http://dx.doi.org/10.1167/14.9.12
https://www.ncbi.nlm.nih.gov/pubmed/25122216
http://jov.arvojournals.org/article.aspx?articleid=2194073
http://dx.doi.org/10.1167/16.2.4
https://www.ncbi.nlm.nih.gov/pubmed/26968866
http://jov.arvojournals.org/article.aspx?articleid=2503433
http://dx.doi.org/10.1167/14.7.10
https://www.ncbi.nlm.nih.gov/pubmed/24961247
http://jov.arvojournals.org/article.aspx?articleid=2194007

	Introduction
	Experiment 1
	f01
	f02
	Experiment 2
	f03
	f04
	General discussion
	Balas1
	Balas2
	Balas3
	Balas4
	Balas5
	Balas6
	Balas7
	Balas8
	Balas9
	Balas10
	Baumgartner1
	Brainard1
	Briand1
	Dakin1
	Efros1
	Ellemberg1
	Fleming1
	Fleming2
	Freeman1
	Heeger1
	Hiramatsu1
	Jacobs1
	Kleiner1
	Kovacs1
	Liang1
	Padilla1
	Pascalis1
	Pelli1
	Portilla1
	Rosenholtz1
	RuizSoler1
	Sharan1
	Sharan3
	Sharan4
	Sireteanu1
	Wallis1
	Wiebel1
	Wiebel2
	Wiebel3
	Yang1
	Yang3
	Yang2

