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Abstract
With the growing number of biomaterials and printing technologies, bioprinting 
has brought about tremendous potential to fabricate biomimetic architectures 
or living tissue constructs. To make bioprinting and bioprinted constructs more 
powerful, machine learning (ML) is introduced to optimize the relevant processes, 
applied materials, and mechanical/biological performances. The objectives of this 
work were to collate, analyze, categorize, and summarize published articles and 
papers pertaining to ML applications in bioprinting and their impact on bioprinted 
constructs, as well as the directions of potential development. From the available 
references, both traditional ML and deep learning (DL) have been applied to optimize 
the printing process, structural parameters, material properties, and biological/
mechanical performance of bioprinted constructs. The former uses features extracted 
from image or numerical data as inputs in prediction model building, and the latter 
uses the image directly for segmentation or classification model building. All of these 
studies present advanced bioprinting with a stable and reliable printing process, 
desirable fiber/droplet diameter, and precise layer stacking, and also enhance 
the bioprinted constructs with better design and cell performance. The current 
challenges and outlooks in developing process–material–performance models are 
highlighted, which may pave the way for revolutionizing bioprinting technologies 
and bioprinted construct design.

Keywords: Bioprinting; Machine learning; Deep learning; Biomaterials; Bioprinted 
constructs

1. Introduction
Three-dimensional (3D) bioprinting can precisely manipulate biomaterials or bioinks and 
fabricate constructs with well-defined microstructures in a controllable and reproducible 
manner. Such constructs can provide 3D environments for in vitro studies in cell biology, 
tissue engineering, and drug screening[1-3]. A growing number of biomaterials and printing 
technologies are available to fabricate such constructs[3,4]. This creates a tremendous 
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workload when researchers are trying to optimize printing 
materials and process parameters and evaluate their impacts 
on bioprinted constructs. For example, biomaterial/bioink 
should be formulated with the desired performance, the 
printing process should be quantified with consistent printing 
results, and the performance of bioprinted constructs should 
be purposely linked to the material, structure, and process. 
It is extremely difficult to conduct these studies by merely 
using mathematical models or experimental equations. 
To cope with such complicated scenarios, both traditional 
machine learning (ML) and deep learning (DL) methods 
have been adopted, which could potentially provide cost-
effective solutions. 

In the following section, we overview the working 
principles of the most popular bioprinting technologies, 
such as droplet-based bioprinting (DBB), extrusion-based 
printing (EBB) and electrohydrodynamic printing (EHD), 
and their printed constructs. In addition, general strategies 
for applying traditional ML and DL methods to make 
bioprinting more powerful for fabricating custom-made 
structures are discussed.

1.1. Bioprinting technologies for construct 
fabrication
Printing technologies such as DBB, EBB, stereolithography, 
EHD bioprinting, and laser-assisted bioprinting can be 
used to fabricate constructs with micro/nanoscale features 
for 3D cell culture systems to establish in vitro models[1-5]. 
These technologies have been fully investigated and many 
commercial machines have been launched[6,7]. 

As shown in Figure 1a, DBB dispenses droplets from a 
nozzle using thermal, pneumatic, or sonic actuation. This 
technology can precisely control the volume and position of 
biomaterial/bioinks, growth factors, and drugs to produce 
microstructures for tissue engineering, regenerative 
medicine, high-throughput screening, and cancer 
research[1]. This technology is only applicable to a narrow 
range of printable materials with good biocompatibility 

and easy crosslinking mechanisms. Bioprinted constructs 
may have weak mechanical and structural integrity. 
Moreover, the dispensing process induces cell damage 
at substantial levels, which places additional limitations 
when fabricating cell-laden structures. 

As shown in Figure 1b, EBB uses a pressure-controlled 
reservoir and nozzle to spatially pattern hydrogel 
constructs layer by layer with varied pore sizes and 
compositional gradients[2,3]. The combination of relevant 
printing parameters including needle diameter, extrusion 
rate, printer head speed, and temperature of the nozzle and 
material-related factors, such as viscoelastic properties and 
curing mechanism, play critical roles in determining the 
shape fidelity and biocompatibility of constructs[8,9]. As 
low-viscosity materials are used for extrusion, EBB cannot 
be used to fabricate high-resolution bioprinted constructs.

During EHD bioprinting (Figure 1c), a high voltage is 
applied between the nozzle and the collecting substrate to 
electrically eject biomaterial/bioink flows. EHD bioprinting 
uses viscous synthetic polymer solutions or melts to produce 
well-oriented structures with precisely stacked micro/
nanoscale fibers[4]. The polymer inks adopted include poly-
ε-caprolactone (PCL)[6,10,11], polylactic acid (PLA)[12], and 
polyethylene oxide (PEO)[13]. EHD bioprinting can produce 
fibers ranging from hundreds of nanometers to a few 
micrometers, which can regulate cellular behaviors[3,14,15]. This 
process is controlled by the properties of the biomaterial ink 
(viscosity, surface tension, and electrical conductivity), the 
environmental factors (temperature and humidity), and the 
process parameters (nozzle-to-substrate distance, solution 
feeding rate, and nozzle dimensions). EHD bioprinting can 
be disturbed by environmental factors or inhomogeneous 
material properties and then becomes unstable during the 
stacking of printed fiber structures[15]. In addition to printing 
fiber structures, EHD bioprinting can also be used to pattern 
2D structures. For example, a drop-on-demand EHD 
inkjet can use low-viscosity solutions to print droplets with 
organized patterns and form micro/nanoscale dot arrays. 

Figure 1. Bioprinting technologies. Abbreviations: DBB, droplet-based bioprinting; EBB, extrusion-based printing; EHD, electrohydrodynamic printing.
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Hydrogel scaffolds fabricated using EBB and fibrous 
scaffolds fabricated using EHD can mimic extracellular 
matrix (ECM) components from the native environment 
and influence cell behaviors and outcomes[11,14,16]. Numerous 
experiments have been conducted to investigate material 
properties, process parameters, and their effects on scaffold 
building. However, researchers in cell biology or drug 
screening may not be available or capable of experimenting 
with these factors. This has impeded the widespread 
adoption of these technologies across multiple disciplines. 

In addition, the concept of customized constructs to 
specifically tailor cell responses in 3D cultures has drawn 
ongoing research interest. Such constructs require the precise 
control of biomaterial compositions, structural designs, 
and printing technologies, which cannot be realized using 
experimental or mathematical models. ML has proven its 
capability to model complex processes with multiperformance 
characteristics. It is therefore introduced to systematically 
model materials and parameters, as well as to quantitatively link 
process–material–performance in bioprinted constructs[17].

1.2. Common ML methods used in bioprinting
ML has experienced rapid progress over the past two 
decades and has demonstrated outstanding capability 
in pattern identification and parameter optimization 
for metal machining and printing[17,18]. As an emerging 
technology, it has the potential to streamline the current 
bioprinting workflow through process–material–
performance modeling.

As shown in Figure 2, the current ML applications in 
bioprinting include material property optimization for 
reliable printability and shape fidelity, process optimization 
with the desired fiber or droplet diameter, in situ process 
monitoring for stable fabrication and process adjustment, 
and bioprinted construct optimization for better cell–
microenvironment interactions. Both traditional ML 
and DL methods are applied to develop prediction, 
segmentation, and detection models[19]. 

The traditional ML methods shown in Figure 3a use 
extracted and selected numerical features as inputs for 
prediction tasks. Using the collected dataset or images, 

Figure 2. ML applications in bioprinting.

Figure 3. ML methods.
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many features can be extracted based on the expert users’ 
prior knowledge and practical experience. For numerical 
data, statistical analysis, threshold methods, and frequency 
analysis are typically used for feature extraction. By contrast, 
shape, edge, color, and texture detection are widely used 
for image feature extraction. To achieve better predictions, 
the informative relevance of these features should be 
carefully chosen for each task[20]. Traditional ML methods, 
such as Support Vector Machines (SVM) and K-Nearest 
Neighbors, are typically used to build classification or 
regression models for such prediction tasks. For example, 
classification models can classify Taylor cone shapes in 
EHD bioprinting, identify the reliability of printability, 
and judge the shape fidelity. Regression models can be 
used to optimize the printing parameters and material 
properties for the desired fiber diameter. One of the most 
commonly used ML methods is SVM, and a few powerful 
SVM toolboxes have been launched for prediction models 
built in MATLAB or other platforms with user-friendly 
interfaces and simple instructions[21]. 

As illustrated in Figure 3b, DL methods can 
automatically discover underlying patterns and identify the 
most descriptive and salient features in image-recognition 
tasks. Feature extraction and selection steps are omitted in 
this type of learning method. DL methods have achieved 
significant success in many image application scenarios, 
and convolutional neural networks (CNN) are the most 
popular DL methods[15]. Unlike traditional ML methods, 
DL methods can handle more complex tasks, such as 
classification, segmentation, and object detection, which 
require relatively large-scale datasets.

Traditional ML and DL methods used in bioprinting 
applications can also be categorized into supervised and 
unsupervised learning[21]. Supervised ML methods can 
establish mathematical models between inputs and outputs 
using labeled datasets, such as multilayer perceptron 
(MLP)[24], SVM[22,25,26], CNN[15,22], and backpropagation 
neural network (BPNN)[27]. Because of the complicated 
nature of images, some objects are difficult to label, such 
as nuclei, morphological phenotypes, and cell shapes 
during proliferation and migration. Unsupervised ML 
methods have been proposed to explore unlabeled objects 
as patterns or clusters and to identify hidden patterns or 
similarities through self-taught rules[28,29]. It was believed 
that ML applications in process optimization, dimensional 
accuracy analysis, manufacturing defect detection, 
and material property prediction may accelerate the 
perspectives of bioprinting development[22].

In short, traditional ML methods are fully transparent, 
and researchers can transfer their insights and knowledge to 
domain-specific tasks. DL methods are superior in terms of 

flexibility in discovering hidden patterns and relationships in 
complex images. For both methods, the parameters could be 
adjusted to improve the classification and regression models. 
Labeled/unlabeled datasets, dataset size, and task complexity 
are key factors in ML method selection.

Researchers worldwide have explored ML applications in 
bioprinting from fundamental perspectives to performance 
modeling. The potential adoptions of DL in design and 
fabrication of patient-specific 3D tissue-engineered 
constructs were reviewed, such as image-processing and 
segmentation, optimization and in situ correction of printing 
parameters and refinement of the tissue maturation process[5]. 
The authors also reported some relevant practical applications 
and summarized that the availability of huge training datasets 
and well-defined evaluation metrics are the key factors to 
accelerate the corresponding research areas.

Shin et al.[23] discussed the supervised ML, unsupervised 
ML, semi-supervised ML and reinforcement ML methods, 
and their applications in preprinting, printing, and 
postprinting. They concluded that ML can optimize printing 
parameters and bioinks, save printing time, and detect 
the anomalies. The identified bottlenecks are the limited 
amount of data and the transferability of current models, 
since these models heavily depend on mathematical features 
of the training data and may suffer from inconsistency when 
dealing with data from other sources.

The aim of this work is to collect and summarize the 
publications and present a state-of-the-art review, and 
highlight the emerging scientific potential of ML when 
applied to bioprinting. First, ML applications in process 
monitoring, printing parameters, and biomaterial/
bioink design are discussed. Second, ML applications in 
cell performance analysis are investigated. After that, a 
literature-based analysis of challenges and outlook is given.

2. ML applications in process, parameter, 
and material optimization
The published papers on ML applications in bioprinting 
are summarized in Table 1, along with the application 
areas, specific tasks, and proposed ML algorithms. 
Current applications are divided into four categories: 
image analysis-based in situ process monitoring, printing 
parameter optimization, biomaterial/bioink optimization, 
and cell performance analysis. Various properties are 
considered for parameter optimization such as fiber 
resolution, integrity of the printed constructs, cell viability 
after extrusion and the integration of them. Even though 
diverse tasks are listed, the focus is on building process–
material–performance models. It can be seen that both 
traditional ML and DL methods can be applied, and the 
ML method selection often considers the task complexity 
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and available dataset. Moreover, multiple methods have 
been compared to identify a competitive model with better 
performance[24,25]. One task can also be organized into 
either a classification or regression model, and then solved 
accordingly based on data processing strategies[26,30-34]. 

These studies aimed to enhance the reliability and 
stability of the bioprinting process as well as the mechanical 
and biological performance of bioprinted constructs. In the 
following section, ML methods are discussed with regard 
to application areas.

2.1. Image-based in situ process monitoring
To maintain the stability and reliability of bioprinting in 
large-scale and long-term fabrication, the development of 
in situ process monitoring is necessary. As such, the quality 
of bioprinted constructs relies on intelligent printing 
process control rather than operator experience.

Similar to the manufacturing process, bioprinting 
process monitoring often collects real-time extrusion and 
deposition images, as shown in Figure 4. Subsequently, 
image preprocessing methods are utilized to extract key 
features from the captured images, which are the inputs of 
the corresponding ML models. These features reflect the 
difference between the standard cone and identified cone 
in EHD and deliver critical information to the ML model 

for identification purposes. The extrusion parameters were 
adjusted based on model outputs. Similarly, the deposited 
images can be compared with predefined patterns using the 
extracted features to depict the fiber quality and pattern. 
The identification model built using such features can be 
directly linked to the adjustment strategy for the deposition 
parameters. Generally, extrusion and deposition images 
are used to monitor EHD[15] and EBB[25], respectively. 

Both traditional ML and DL methods can be used to 
analyze the collected images. The former extracts image 

Table 1. Summary of ML algorithms in bioprinting

Application area Tasks ML methods Ref.

Image analysis-
based in situ 
monitoring

Identify cone mode in scaffold fabrication process in EHD 
jetting

CNN [14]

Identify deposit fibers’ continuity, uniformity, and regularity in 
EBB

Four-layer CNN, ResNeXt-50 network, linear SVM 
classifier

[25]

Extract the flow pattern and droplet evolution in DBB Deep recurrent neural network (DRNN) [29]

Printing parameter 
optimization

Predict the electrospun diameter of PCL/Gt nanofibers Multiple regression, multilayer perceptron ANN [24]

Identify suitable printing conditions for PPF scaffold in EBB Random forest classifiers (RFc), random forest 
regression (RFr)

[26]

Optimize ink composition and printing parameters in EBB SVM classifier [27]

Predict the droplet diameter in EHD inkjet printing Statistical regression analysis, GA-NN, BPNN [28]

Optimize printing parameters for GelMA and HAMA bioinks Bayesian optimization (BO) [30]

Optimize the droplet size and printing frequency in EHD inkjet Desirability function analysis [31]

Biomaterial/bioink 
optimization

Achieve high shape fidelity in EBB Inductive logic programming, multiple regression [32]

Achieve ideal linewidth and shape fidelity in EBB Hierarchical machine learning [33]

Predict filament diameter in EBB RFr, linear regression, intrastudy linear regression [34]

Cell performance 
analysis

Predict cell viability SVM regression, linear regression, RFr, SVM classi-
fier, RFc, logistic regression classifier

[34]

Detect the impact of scaffold morphology on cell shape pheno-
types

SVM classifier [35]

Analyze cell-scaffold interaction AD-GAN [36]

Predict cell-material interactions in fibrous scaffold RFr model [37]

Associate cell morphologies with diverse microenvironment SVM classifier [38]

Figure 4. Image-based in situ process monitoring.
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features as inputs for model building and the latter uses 
images directly to discover underlying patterns for the 
same task. 

One of the most dominant DL-based methods is CNN. 
This method has been used to identify either the standard 
cone mode for stable fabrication in EHD bioprinting 
or deformed cones for the adaptive tuning of printing 
parameters[15]. To compare the performances of the CNN 
algorithms, two CNN algorithms (self-designed four-layer 
CNN network and pretrained ResNeXt-52 network) were 
constructed to evaluate the fiber quality, printout pattern, 
and location information of the deposition layers in the 
EBB[25]. For benchmarking purposes, a linear SVM model 
was built using the histogram of oriented gradients from 
the deposition images. The performances of the three 
methods were compared, and the pretrained ResNeXt-52 
network achieved the best detection accuracy on fiber 
continuity, regularity, and surface uniformity in the overall 
anomaly cases. The identification of printing defects, 
printout patterns, and location information can facilitate 
the implementation of dynamic parameter tuning.

Traditional ML classification and regression methods 
have also been applied to evaluate the spacing and pore 
size when building EBB scaffolds[26]. With layer-by-
layer imaging, the random forest classifiers (RFCs) can 
categorize the deviation of fiber spacing and diameter 
as “low” or “high” in deposition monitoring. For the 
same task, the regression models used the quantitative 
deviation of the fiber spacing and diameter as inputs. Both 
proved their capability in identifying suitable scaffold-
printing conditions. However, these models have not been 
integrated with EBB for adaptive-parameter control.

For in situ process monitoring, it is relatively easy to 
label the captured images quantitatively or qualitatively, 
such as fiber quality, diameter, and interfiber spacing. 
However, it is difficult to label flow patterns and droplet 
evolution. Unsupervised ML methods such as DRNN 
have been introduced to predict the spatial and temporal 

information of the flow pattern and droplet evolution 
in droplet-based inkjet printing[29]. As expected, the 
prediction task in the droplet forming, motion, and jetting 
behaviors is computationally expensive as a self-learning 
process using unlabeled data.

2.2. Printing parameter optimization
The droplet size or fiber diameter reflects the bioprinting 
resolution and governs the mechanical properties of the 
bioprinted constructs. High-resolution droplets or fibers 
can be obtained by optimizing the printing parameters. 
Owing to the intricate biomaterial/bioink properties, 
researchers cannot mathematically model the relationship 
between process parameters and printing resolution in 
an effective manner. To solve this problem, ML has been 
applied as an alternative choice for model building.

Before using ML to handle this task, a dataset is collected, 
as shown in Figure 5, where the printing parameters were 
taken as inputs and the printing performance indices 
were chosen as outputs. Using this dataset, ML can model 
the printing process and optimize the relevant printing 
parameters to achieve a desirable fiber or droplet size.

Traditional ML methods, such as SVM, linear 
regression and random forest, have been used to develop 
prediction models for the fiber diameter[26,33,34]. The 
polymer weight fraction, solvent concentration, feed rate, 
applied voltage, and collector distance were the inputs of 
the prediction models[34]. The SVM method has also been 
used to study other printing parameters, such as nozzle 
temperature and diameter, ink composition, and path 
height when extruding Pluronic F128 in EBB[27]. The ink 
composition, nozzle temperature, and printing path height 
were identified as key parameters to determine the shape 
fidelity of the deposited filaments and the corresponding 
structural printability. In fact, the SVM method can not 
only reveal the complex relationship between inputs and 
outputs but also optimize the relevant parameters for 
high-quality prints. Only 12 experimental samples were 
collected to build this SVM model, and the effectiveness 

Figure 5. ML applications in printing parameter optimization.
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of the developed model for a wide range of material 
properties was questionable. Hence, fine-tuning of the 
optimized printing parameters may be utilized to further 
improve the bioprinting performance.

In addition to printing resolution, bioprinting often 
requires good regularity in EBB layer stacking. Two of 
these can be incorporated into one scoring metric for 
printing quality evaluation. To optimize this metric, 
Bayesian optimization (BO) has been used to explore 
the printing parameter space for various bioinks[30]. The 
inputs of this BO model consisted of gelatin methacryloyl 
(GelMA) inks with three concentrations, three inks with 
mixed concentrations of GelMA and hyaluronic acid 
methacrylate (HAMA), and printing parameters (bioink 
reservoir temperature, extrusion pressure, print-head 
speed, and platform temperature). Compared to trial-and-
error experiments, this ML application can systematically 
accelerate the retrieval speed of printing parameters and 
bioinks for high-quality printing.

Traditional ML methods have also been applied to 
optimize process parameters for EHD inkjet printing 
and electrospinning. For example, statistical regression 
analysis, neural networks (NNs) trained with genetic 
algorithms (GA-NN), and backpropagation NNs have 
been compared when predicting droplet diameter in EHD 
inkjet printing[28]. The standoff height, applied voltage, and 
ink flow rate were the inputs to the prediction models. 
The GA-NN model outperformed the other two models 
in most cases when predicting droplet diameter. Similarly, 
multiple regression (MLR), multilayer perceptron 
artificial neural network (ANN), and SVM models have 
been used to predict the electrospun diameter of PCL/Gt 
nanofibers[24]. With the key input parameters identified by 
saliency analysis, the ANN model demonstrated the best 
performance compared with other models[24,39].

Theoretically, the printing process parameters usually 
have conflicting multiperformance characteristics. For 
example, a higher applied voltage may increase the 
biomaterial/bioink printability but lower the printing 
resolution. A statistical-based method named “desirability 
function analysis” has been reported to simplify 
the process parameter optimization in multicriteria 
objectives[31]. Furthermore, this statistical method that 
relies on composite desirability may not be able to handle 
the delicate relationship between the process parameters in 
EHD inkjet printing. 

As discussed above, traditional ML algorithms have 
been used to rank input feature relevance, establish 
printing performance models, and optimize the process 
parameters. This may simplify the process–material–
performance model building with limited in-depth 

knowledge, experiments, and empirical experience. It 
also provides a simulation tool to model the impact of 
the printing parameters on the filament/droplet diameter, 
fiber quality, shape fidelity, and layer stacking. Although 
the current models are developed under a controllable 
range of material properties, they may suffer from poor 
generalization and robustness under varied material 
properties or modified experimental protocols. 

2.3. ML in biomaterial/bioink optimization
An increase in cell culture applications in tissue engineering 
and drug screening has resulted in a growing demand 
for biomaterial/bioinks[14,16]. Higher concentrations of 
bioink/biomaterial may yield good shape fidelity, but poor 
printability during extrusion. 

Increasing the viscosity of biomaterial/bioink can 
improve shape fidelity, but may compromise printability. 
Because traditional governing equations cannot effectively 
and efficiently handle such bioink/biomaterial optimization 
tasks, manual calibration with numerous experiments was 
conducted. 

To support a new material design workflow, several 
ML methods have been implemented to optimize the 
composition and viscosity of biomaterial/bioink to 
digitally manipulate printability and shape fidelity[40-42]. For 
example, inductive logic programming has been applied 
to investigate the rheological properties of hydrogel inks 
and their corresponding printing qualities[32]. Rheological 
properties, such as elastic modulus and yield stress, were 
classified into three classes, and extrusion capability and 
shape fidelity were classified into two classes. The analysis 
results from the ML models indicate that printable 
ink should have a high elastic modulus for high shape 
fidelity and low yield stress for extrusion. Based on this, 
a multiple regression model was proposed to quantify the 
relationship between ink formulations and printability. 
Another regression model, hierarchical machine learning 
(HML), was reported to determine the material properties 
of sodium alginate prints with high/low fidelity[33]. 
The middle layer in the HML was constructed based 
on acquired knowledge of the flow-gelation process 
of alginate. The dimensional similarity between the 
deposited structure and original design was used to 
evaluate the HML model. This method can effectively 
guide high-fidelity EBB scaffold fabrication by optimizing 
biomaterial formulation and printing parameters. This 
may be a promising way to scale up the biomaterial/
bioink shape fidelity study through the combination of a 
small number of iterative tests, practical experience, and 
theoretical knowledge. 

In addition, hydrogel inks may require crosslinking 
to maintain the shape and retain the printed structures 
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after deposition. ML is expected to optimize process-
related parameters, such as the type of crosslinking and the 
density of the formed crosslinks, and to explore the trade-
off between the stiffness of the deposited structures and 
the printability of hydrogel inks. However, to date, no such 
studies have been reported.

It is often assumed that ML methods can accelerate 
biomaterial/bioink studies by optimizing formulations, 
viscosity, and the consequent rheological properties to 
control the biological and mechanical performance. The 
integration of multiple properties can also be considered 
as the evaluation metrics for the optimization tasks. To 
develop a stable Col-I bioink which is a mixture of 15 
compositions[43], the bioink concentration should be 
optimized in terms of both mechanical properties and 
transparency. Such research would significantly advance 
the manipulation of cell proliferation, migration, and 
differentiation in bioprinted constructs. Moreover, ML 
models are expected to link biomaterial/bioink with 
complex biological functions, such as biodegradability, 
and even their effectiveness in in vivo experiments. These 
studies will create new avenues for bioprinted construct 
applications in tissue engineering and drug screening. 
Leveraging ML modeling capabilities would also drive 
informative biomaterial/bioink designs with more 
flexibility. 

3. ML applications in cell performance 
studies
ML applications in cell performance include cell viability 
prediction and cell–microenvironment interaction 
analysis.

3.1. Cell viability in printing
EBB can incorporate cells for cell-laden construct building, 
and the extrusion force may damage the incorporated cells 
when they pass through an extrusion nozzle. Since the 
printability and cell viability are two critical issues in EBB, 
the selection of appropriate process parameters and bioink 
properties would help fragile and sensitive cells survive 
during and after extrusion, and benefit cell growth in 
culture. ML has been applied to search for these parameters 
with the aim of minimizing the negative influence of this 
extrusion force. 

The workflow of ML applications in cell viability 
analysis is shown in Figure 6, where the dataset is prepared 
with the inputs from the extrusion parameters and bioink 
properties, and the output, that is, the corresponding cell 
viability. Various cell viability prediction models can be 
constructed using this workflow. The prediction methods 
for cell viability studies are determined by the available 

data. When the actual value of cell viability is known, three 
traditional ML regression models were built, including 
SVM, linear regression, and random forest, when printing 
alginate/gelatin-based hydrogels loaded with cells[34]. For 
the same task, classification methods can be applied when 
using a threshold to judge the cell viability. Three binary 
classifiers including random forest, logistic regression 
classification, and SVM, were constructed to classify cell 
viability using a threshold of 80%. All of them are also 
capable of ranking the impact of bioink properties and 
process parameters and establishing their individual cell 
viability prediction models. 

In addition to the extrusion parameters, the nozzle 
geometry was further investigated in terms of its influence 
on shear stress and resultant cell viability. The Gaussian 
process was utilized to identify the key geometric 
parameters among the radius of the middle and exit of the 
nozzle and the nozzle length[44]. As a result, the influence 
of nozzle geometry on cell viability was quantitatively 
assessed using a relatively small number of preliminary 
experiments when extruding the hydrogel bioink.

 With the aid of traditional ML methods, cell viability 
can be optimized by selecting appropriate biomaterial/
bioink and printing parameters. Researchers may doubt 
the overall performance of a single method or model 
when handling different material properties and printing 
conditions. Thus, an ensemble learning algorithm was 
proposed by combining neural networks, ridge regression, 
K-nearest neighbors, and random forest (RF) to predict 
cell viability in constructs printed by stereolithography[45]. 
The experimental dataset consisted of the UV intensity, 
UV exposure time, gelatin methacrylate concentration, 
layer thickness, and associated cell viability. By exploiting 

Figure 6. ML application in cell viability analysis.



International Journal of Bioprinting Machine learning and 3D bioprinting

Volume 9 Issue 4 (2023) https://doi.org/10.18063/ijb.71756

the advantages of multiple ML methods, this learning 
algorithm used the weighted average of multiple ML models 
to improve its robustness. This model demonstrated a high 
prediction accuracy under various printing conditions. 
Although the necessity of this cell viability study is high, 
the available datasets for this research topic are limited[46]. 
This is in part caused by the tedious and expensive cell 
viability data collection process. 

DL methods, such as CNN, can advance cell viability 
studies by segmenting cells directly in fluorescence 
images, which can rapidly screen the images with less 
manpower and effort. A dataset comprising images of 
4974 single spheroids with corresponding labels was 
used to build the prediction model. The developed CNN 
model successfully categorized cell viability into three 
classes with a balanced accuracy of 78.7%. CNN has 
also demonstrated good generalization performance 
when predicting the cell viability of bioprinted renal 
spheroids under varied inhibitory concentrations as well 
as experimental settings[47]. This may be a new pathway to 
prompt efficient cell viability studies by segmenting cell/
nuclei in fluorescence images and then counting live/dead 
cells using the developed DL models. Nevertheless, cell 
assays using multidimensional fluorescence images are 
required for more comprehensive and accurate analysis.

3.2. Cell–microenvironment interaction
Cell–microenvironment interactions are crucial for 
immune response and tissue regeneration. It is well known 
that the cell response varies with both materials and their 
forms. Even for the same material, the cell response may 
vary significantly when interacting with nanoparticles, 
scaffolds, coatings, or films. Some cell types may 
experience the benefits/risks associated with particular 
material compositions or forms. To investigate the needs 
and preferences of cell growth in bioprinted constructs, 
their behavior should be digitalized for in situ analysis. 

There has been a growing interest in applying ML 
to identify cell types, phenotypes, and shapes. ML has 
outperformed experts in segmenting and classifying 
cell/nuclei in biological images across various tasks[48,49]. 
Motivated by this progress, researchers have initiated 
studies applying ML for cell–microenvironment 
interaction analysis, that is, cell–scaffold interaction, cell–
cell interaction, and cell–material interaction[35,36].

Traditional ML methods can model the relationship 
between cell proliferation and the physicochemical 
properties of electrospun scaffolds with regard to the fiber 
diameter, pore diameter, water contact angle, and Young’s 
modulus[50]. Six regression algorithms, namely, linear 
regression, SVM regression, RFr, lasso regression, decision 

tree regression, and k-nearest neighbor (KNN) regression, 
were developed and compared. The RFr model yielded 
the highest accuracy when predicting the proliferation 
rate of L929 fibroblast cells after a 7-day culture, and this 
prediction model also coincided with the data collected 
from in vivo studies. This demonstrates the potential 
of ML for discovering the impact of fiber diameter on 
angiogenesis. However, the generalization performance of 
the developed model has not been verified for more cell 
types and scaffold structures.

Traditional ML algorithms, including KNN, logistic 
regression, RFc, SVM, and ANN, have also been utilized 
to evaluate delta permittivity in a scaffold-based cell 
culture environment. Four cell types were cultured on the 
PCL scaffolds, and the corresponding delta permittivity 
was measured over time using dielectric impedance 
spectroscopy to build the dataset. Input features were 
extracted from the relative permittivities at different 
frequencies, time points, and cell types[50]. Among the 
developed ML models, KNN yielded the best accuracy in 
classifying cell types and culture durations. 

Biological images, such as confocal laser scanning 
microscopy (CLSM), are widely used to visualize cell 
behavior and reveal cell–microenvironment interactions[38]. 
However, the cell shape and morphological features of these 
images were difficult to extract using statistical methods. 
ML algorithms have been proposed to quantitatively 
translate and deliver this information to researchers. SVM 
can quantify the diverse cell morphologies of hBMSCs 
populations using CLSM images and associate them 
with specific microenvironments, such as PCL fibrous 
substrates and PCL spin-coated films[51]. SVM can also 
detect the impact of bioprinted construct morphology 
on cell-shape phenotypes[35]. Using the extracted metrics 
from cellular and subcellular morphometry, the developed 
SVM model successfully classified the substrates into 
either woven PCL mesh with precision-stacked microscale 
fibers or nonwoven mesh with randomly oriented fibers. 
As pioneering research has linked cellular and subcellular 
morphometry with substrate topology, the quality of 
the training dataset is critical for reliable identification. 
However, the size and diversity of the datasets used in the 
aforementioned studies were not mentioned. This could 
raise concerns regarding the robustness and convergence 
of the proposed SVM models when dealing with images 
collected from different substrate morphologies.

Owing to the complicated nature of biological images, 
it is difficult to prepare datasets with labeled nuclei, 
morphological phenotypes, or labeled cell shapes for 
proliferation and migration. Therefore, unsupervised 
methods have been applied to model the objects of interest. 
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For example, the nuclei segmentation method AD-GAN 
was proposed to segment cell/nuclei in an unlabeled CLSM 
image dataset[52], which consisted of 40 images from cultured 
A549, 3T3, and HeLa cells. This DL method can distinguish 
nuclei with preserved shape and location information so as 
to rapidly screen cell–microenvironment interactions[36]. 
In addition, self-label clustering has been used to cluster 
and identify distinct morphological phenotypes of a 
single cell type using low-resolution brightfield images[53]. 
Compared with supervised ML methods using datasets 
with concrete labels, unsupervised DL methods can utilize 
prior knowledge from human beings at abstract levels and 
explore raw data with unknown structures or ideas. 

In general, the ML workflow in image-based cell–
microenvironment interaction analysis is summarized in 
Figure 7, which consists of biological image collections 
and subsequent cell/nuclei segmentation, cell phenotype 
identification, and cell type classification. This analysis 
can visually depict the in situ biological performance 
of bioprinted constructs and intuitively illustrate 
the influence of physicochemical properties on cell 
behavior. In addition, the quantitative indication of the 
applied material, morphology, and structural design on 
biological performance provides crucial insights into the 
environmental impact on cell behavior. 

As previously discussed, both traditional ML and 
DL methods can identify cell shapes and phenotypes 
on bioprinted constructs with varied nanotopography 
and diverse structures. Segmented cells may serve as 
candidate templates to offer more effective in situ cell 
morphology analysis, efficient cell counting, and growth 
pattern discovery. This investigation may potentially link 
cell shape and functionalities in the next step. Meanwhile, 
there is still much space to discover methodologies for 
nuclei identification under high cell densities, diverse 
cell morphologies, or multiple cell types, which can be 
observed in dynamic cell phenotype transformations such 
as differentiation, migration, and proliferation. In fact, DL 
methods are more competent in biological image analysis 
than traditional ML methods, considering their ability to 
identify underlying patterns or salient features. This may 

lead to the discovery of additional unknown cell responses 
or functions in the future, which have not been observed 
and analyzed in current laboratory practices.

4. Challenges and outlook
ML methods can be used to develop classification, 
regression, and segmentation models for bioprinting 
processes and bioprinted constructs. It provides a 
systematic solution to diagnose uncontrollable factors, 
maintains the reliability of the bioprinting process, and 
optimizes biomaterial/bioink and process parameters. 
Studies have offered the potential to customize bioprinted 
constructs and manipulate their cell culture responses, as 
expected. However, several challenges and concerns must 
be addressed prior to further exploration.

4.1. Dataset quality and size for ML model building
The performance of ML models is determined by the 
quality of accessible datasets. Comprehensive and 
consistent datasets may benefit the development of 
ML models such that they can be scaled up for wider 
material properties or scaled out for diverse bioprinting 
technologies. However, the quality of the current datasets 
is far below this requirement. First, the datasets collected 
from diverse bioprinters and operational protocols include 
a large amount of noise and bias. Even if the datasets are 
collected under the same experimental setup, material 
composition, and process parameters, they can be easily 
interrupted by uncontrollable factors in micro/nanoscale 
bioprinting. Using such datasets directly may reduce the 
effectiveness and reliability of the developed ML models. 
However, no study has explored dataset cleaning and data 
normalization in bioprinting.

In addition to dataset quality, the size of the datasets 
is another issue. Owing to the expensive and tedious 
data collection process, only a small dataset is currently 
available for ML applications in bioprinting, particularly 
in material optimization and cell performance analysis. 
For example, Tian et al.[34] built a dataset consisting of 
617 instances regarding cell viability and 339 instances 
regarding filament diameter using 75 published research 

Figure 7. Cell–microenvironment interaction analysis in bioprinted constructs.
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papers by searching the Web of Science database. A 
nuclei segmentation dataset, Scaffold-A549, was built by 
collecting human lung cancer cell images for cell–scaffold 
interaction studies. This dataset consisted of 20 high-
resolution unlabeled CLSM images and one fully labeled 
image with approximately 800 segmented nuclei. Although 
data augmentation can artificially enlarge a dataset by 
adding noise and interpolating or extrapolating between 
samples in a feature space, its application in bioprinting 
has not yet been reported.

To advance bioprinting using ML, it is essential to 
make additional experimental data publicly available 
or accessible upon request. Using similar open-source 
software for bioprinters and establishing a worldwide 
data-sharing network could be promising[46]. However, 
researchers may not wish to publish the collected data 
because of expenses related to the materials, manpower, 
and facilities. This has impeded the advancement of ML 
applications for bioprinting.

4.2. Information integration and coordination from 
multiple sources
Apart from dataset quality, information integration from 
multiple formats and sources is an ongoing research 
issue. In current studies, the collected numerical data or 
images in bioprinting are used individually for specific 
prediction tasks. For example, features extracted from 
the process parameters or material properties can be 
conveniently used to develop prediction models[20,39,54]. 
However, it is difficult to deliver a prediction task when 
both image and numerical data are input. They are 
equally important and should be synchronously used to 
develop process–material–performance models or refine 
bioprinted construct designs for better cell performance. 
Further strategic studies should be conducted to integrate 
the diverse data formats when developing ML prediction 
models. In addition, the emerging technologies, such 
as big data and digital twin, may also contribute to the 
information integration and coordination. One way is 
to build ML training databases using big data curation, 
and the other is to build digital twins of human tissue/
organs with cellular resolution and properties[17]. As such, 
a standard bioprinting simulation practice is expected to 
balance virtual and physical experiments and maximize 
bioprinting resource utilization.

Information integration and coordination is of 
increasing interest in multi-material printing. To achieve 
a cost-effective and time-efficient printing, ML is expected 
to integrate and coordinate diverse information in this 
process so as to enhance printing resolution, printing path 
planning, G-code error detection, and structural stability 
of bioprinted construct. ML can also facilitate the material 

selection and the subsequent crosslinking at different 
degrees to build biological constructs with desired shape 
fidelity.

4.3. Unlabeled data in cell performance analysis
The application of supervised ML methods relies on a 
carefully and precisely labeled dataset. However, it is 
difficult to label nuclei or cells on bioprinted constructs 
using biological images. First, several overlapping cells or 
thousands of nuclei with irregular or deformed shapes are 
observed. Varied cell shapes, phenotypes, and types cause 
this labeling task to worsen. Moreover, a single-cell type 
may exhibit a wide range of morphologies in terms of 
adhesion, proliferation, and migration. Thus, the interest 
in applying unsupervised ML methods to model such 
complex unlabeled datasets has continued to grow. Such 
studies aim to automatically identify cell types or behaviors, 
assist in the discovery of biological phenomena at the 
single cell level, and upgrade cell laboratory workflow.

4.4. Digitalized in situ performance analysis
The bioprinted constructs are biologically evaluated based 
on the overall performance of comparative samples. This 
gap has motivated researchers to explore in situ evaluation 
methods. As the biological images of these constructs 
are collected, DL can digitalize them by segmenting cell/
nuclei, classifying cell types, and identifying phenotypes. 
This is valuable when analyzing bioprinted constructs 
with multilayer heterogeneous or gradient structures. 
Currently, overall performance evaluation cannot provide 
in situ information about the biological response of a 
structure. The digitalized cell distribution can also present 
an intuitive biological response to the structural design, 
layer-specific fiber diameter and pore size, and biomaterial 
composition. Consequently, the cell number and spatial 
behavior of bioprinted constructs can be subjectively and 
quantitatively evaluated. This would impel researchers 
to combine diverse materials and structures and 
support functional scaffold design with better biological 
performance and revolutionize construct-based organ or 
disease model studies. More studies using ML to predict 
tissue formation and create organoid and tumoroid models 
are expected, although these topics seem significantly 
challenging.

5. Conclusion
Bioprinting has demonstrated its ability to produce 
constructs for cell culture in tissue engineering and drug 
screening. These applications are still primitive because of 
the limited fundamental research on process–material–
performance. 

In this review, the current status, challenges, and 
outlook of ML applications in bioprinting are discussed. 
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Both the traditional ML and DL methods can empower 
bioprinting by manipulating and optimizing micro/
nanostructures, materials, and printing parameters. 
This capability, when applied to bioprinted constructs, 
can generate more advanced concepts, enhance their 
biological and mechanical performance, and prompt 
effective cell–microenvironment interactions. These 
customized bioprinted constructs with controlled material 
compositions as well as specific micro/nanostructures 
would establish a solid foundation for developing organoid 
and tumoroid models from a technical perspective. It is no 
doubt that ML methods would expand their applications to 
facilitate diverse printing scenarios and application topics 
in the near future.
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