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Abstract: Supramolecular architectures that are built artificially from biomolecules, such as nucleic
acids or peptides, with structural hierarchical orders ranging from the molecular to nano-scales have
attracted increased attention in molecular science research fields. The engineering of nanostructures
with such biomolecule-based supramolecular architectures could offer an opportunity for the
development of biocompatible supramolecular (nano)materials. In this review, we highlighted a
variety of supramolecular architectures that were assembled from both nucleic acids and peptides
through the non-covalent interactions between them or the covalently conjugated molecular hybrids
between them.

Keywords: supramolecular architectures; self-assembly; nanostructures; nucleic acids; peptides;
molecular hybrid

1. Introduction

The construction of supramolecular architectures comprising nucleic acids as well as peptides
(including oligopeptides and polypeptides in this paper) has greatly progressed recently [1–3].
Particularly, deoxyribonucleic acid (DNA) nanotechnology, a concept that was introduced by Seeman
in the 1980s [4,5], has greatly expanded the range of rationally designed nanostructures (Figure 1A).
For instance, the DNA origami technology, which was invented by Rothemund [6,7], is widely
accepted as a promising strategy to construct supramolecular architectures with custom nanoscale
shapes via the bottom-up approach. Therein, a long single-stranded DNA (ssDNA) was folded by
the addition of hundreds of short ssDNAs, namely, staple strands, followed by one-pot thermal
annealing to obtain the rationally designed shape of the supramolecular architectures (the DNA
origami). Apart from the DNA origami technology, the DNA tiles and bricks (in which the long
ssDNAs are not prerequisite but the sequence-designed ssDNAs with the characteristic structural
motif like the holiday junction [8–11] are required) offer supramolecular architectures with various
morphology such as fibers [12–14], tubes [15–20], and polyhedrons [21–23]. Evidently, the high fidelity
of the predictable Watson–Crick (WC) base pairings and the regular formation of the well-defined
double-stranded DNA (dsDNA) structures are indispensable to the design and construction of such
beautiful supramolecular architectures based on DNA nanotechnology.
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These DNA nanostructures offer a variety of bio-applications, such as scaffolds for enzymes in the
construction of bioreactors [24,25], vehicles for drug delivery [26], biosensors [27], and robotics [28–31].
Despite these promising functions and advantages of DNA nanostructures, several drawbacks are
directly related to the intrinsic properties of DNA. One of the most fundamental drawbacks is the
relatively low stability of DNA against nucleases that exist rather abundantly under physiological
conditions or in biological fluids [32,33]. Furthermore, several DNA nanostructures require high salt
concentrations, which are occasionally incompatible with biosystems and/or deviate significantly from
the standard salt concentration for biological fluids or cell culture media [34]. However, to overcome
these drawbacks, a variety of strategies, including molecular hybrid approaches that are described
herein, has been proposed and investigated [35–40].

The self-assembly of oligopeptides or polypeptides is also an actively investigated research topic
in the field of biomolecular science (Figure 1B) [41–43]. For example, the self-assembled fibrous
nanostructures of proteins, such as actin filaments and microtubules, are keys to cellular movement
and elasticity [44]. Such fibrous self-assembled nanostructures of peptides are present both inside and
outside living cells [45]. Particularly, amyloid fibril formations are beneficial research targets because
of their severe pathological outcomes [46]. Very recently, the detailed structure of the amyloid-β
peptide in the potentially pathological self-assembled state was successfully solved at the atom
level by cryogenic transmission electron microscopy (cryoTEM) techniques [47]. As shown there,
most of the amyloid fibril comprised the β-sheet structures, that is, the cross-β structures. In the
cross-β structural motif, the peptide strands folded into (at least partially) elongated β-strands to
self-assemble into (or stack) fibrous structures in which the long axis of the peptide strands was
perpendicular to that of the fibrous structures. Conversely, very recently, self-assembled fibrous
nanostructures comprising an α-helix-folded peptide (the cross-α structures) were observed for the
first time [48,49]. This unique finding and the other structural motifs of the peptide self-assemblies
under investigation, such as the coiled-coil structures [50–52], could further elucidate the design of
supramolecular peptide architectures.
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The above briefly mentioned supramolecular architectures that are composed of nucleic acids or
peptides could show several advantages in the research fields of supramolecular architectures. First of
all, biomolecules bear potential biocompatibility and biodegradability as well as they are versatile
and sustainable. In addition, reliable automatic synthesis for nucleic acids and peptides have been
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established [53–56] so that those with designated length and sequence can be synthesized and are even
commercially available. These well-established synthetic technologies have allowed for the progress of
the research fields.

Despite the rapid progress in the development of supramolecular architectures that are composed
solely of nucleic acids or peptides, the combination of the two biomolecules for the development of
hybrid supramolecular architectures remains less explored. Therefore, this review non-exhaustively
aims to highlight recently published examples to underscore hierarchical structures and the promising
(future) applications of supramolecular architectures that comprised both nucleic acids and peptides
by dividing them into two sections: Section 2 (nucleic acid/oligopeptide hybrids) and Section 3 (nucleic
acid/polypeptide (protein) hybrids), based on their component peptides, oligopeptides (generally
<~20 amino acids (aa) and peptides that are obtained by solid-phase peptide synthesis without ligations
or gene expression (recombinant) technology) or polypeptides (proteins), by referring to “peptides
with <~10–20 residues as oligopeptides and those with more residues as polypeptides” [57].

2. Nucleic Acid/Oligopeptide Hybrids

2.1. Non-Covalently Conjugated Nucleic Acid/Oligopeptide Hybrids

In this subsection, we introduce supramolecular architectures that are constructed from nucleic
acids and oligopeptides (without any covalent conjugation between them) in which the non-covalent
bond interactions between them are in turn indispensable. On the basis of the final morphology
(spherical, fibrous, etc.) of the constructed supramolecular architectures, we further discussed them
in several subsubsections (Sections 2.1.1–2.1.3). In most of the examples, the oligopeptides bearing
nucleic acid-binding domains derived from nucleic acid-binding proteins or simple cationic peptide
domains were fused to self-assembling peptides with or without spacers to obtain the constituent
oligopeptide derivatives. The inherent structures, e.g., one-dimensional and circular, of nucleic acids
and/or their supramolecular nanostructures are used as templates for directing the formation of hybrid
supramolecular architectures. Consequently, the sizes, shapes, and stoichiometric compositions of the
final hybrid supramolecular architectures are difficult to predict. Nevertheless, rather monodispersed
and uniformly fabricated supramolecular architectures have been occasionally constructed by exploiting
the recent progress in DNA and peptide nanotechnology. In the following subsubsections, we highlighted
some recent but not comprehensive reports [24] on such well-defined supramolecular architectures.

2.1.1. Spherical Supramolecular Architectures

A series of well-organized spherical supramolecular architectures of nucleic acids and oligopeptides
were recently developed by Ni and Chau [58–60]. For instance, they developed a parapoxvirus mimetic
ellipsoid, that is, “nanococoons” (approximately 65 × 45 nm2, as estimated by atomic force microscopy
(AFM) and TEM), by the synergistic co-assembly of a self-assembling peptide derivative (K3C6SPD:
KKK-C6-WLVFFAQQ-GSPD, 15 aa, and a C6 spacer; Figure 2A) and a plasmid DNA (pDNA, 4.7 kbp) [58].
The K3C6SPD peptide contains a DNA-binding cationic tripeptide domain (K3), a self-assembled
β-sheet domain (a hydrophobic segment that was derived from an amyloid-β peptide {Aβ (17–21)}),
and a hydrophilic segment at the C-terminus, which was designed according to viral capsid proteins,
for controlled water dispersibility. As illustrated in Figure 2B, K3C6SPD can independently self-assemble
into antiparallelβ-sheet bilayer-based filamentous nanoribbons (approximately 4 × 12 nm2, as estimated
by AFM and TEM). Upon adding pDNA in an appropriate n/p ratio of 20, K3C6SPD was simultaneously
coated around pDNA and eventually formed the nanococoons (Figure 2C(a)). The unique structural
model of the nanococoons was proposed, as shown in Figure 2C(b), based on the TEM images and the
other analyses. Noteworthily, the nanococoons exhibited significant tolerance against degradations
by enzymes, e.g., trypsin or chymotrypsin as the proteases and deoxyribonuclease I (DNase I) as the
nucleases, most probably because of the strong association between the self-assembled K3C6SPD and
pDNA and the compactly assembled total structure.
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Figure 2. (A) Chemical structure of the self-assembling peptide derivatives containing K3, a self-
assembling β-sheet domain, and a hydrophilic segment at the C-terminus for controlled water
dispersibility. (B) Schematic illustration of the self-assembly of the peptide derivatives to form the
nanoribbons. (C) (a) Schematic illustration of the co-assembly of the peptide derivatives with plasmid
DNA (pDNA) to form a variety of hybrid nanostructures. (b) Cross-sectional view of the nanococoons.
Adapted from [58]. Copyright 2014 American Chemical Society. Adapted from [59]. Copyright 2017
John Wiley and Sons Publisher.

Thereafter, the same research group successfully tuned the morphology, stability, and cellular
uptake (gene transfection) efficiency of the peptide–DNA virus-mimicking complexes by modulating
the amino acid sequence in the central self-assembling β-sheet segment (originally, 8 aa: WLVFFAQQ)
of the peptide components [59]. Exhaustively, six different central segments that comprised leucine
(L) and/or alanine (A) (L8: LLLLLLLL, L6: LLLLLL, L4: LLLL, A8: AAAAAAAA, A6: AAAAAA,
and (L2A2)2: LLAALLAA, from 8 to 4 aa) were investigated (Figure 2A), and it was observed that
increasing the hydrophobicity of the amino acid side chains (from A to L) and the length (from 4 to 8
aa) of the central segment of the peptides enhanced the inter-nanofibril association and thus controlled
the final morphology of the peptide/DNA virus-mimicking complexes. Various morphologies, e.g.,
the tangles for A6/DNA, the nanofibril networks for A8/DNA, the striped nanococoons for L4 or L6 or
(L2A2)2/DNA, and the coexistence of nanofibrils and nanococoons for L8/DNA, were observed in the
n/p ratio of 20 (Figure 2C(a)). Expectedly, the strength of the inter-nanofibril association regulated
the stability of the structure and DNA protection, as well as the gene transfection efficiency of the
nanococoons. Fortunately, such a strong inter-nanofibril association that increased the stability of the
nanococoon structures did not exert significantly negative impact on the gene transfection efficiency in
their study, and the strategy might be beneficial for exploring gene delivery systems.

Very recently, the same research group constructed pH-responsive peptide/DNA complexes,
that is, “nanoberries,” with a structurally lower aspect ratio (a more planer structure) [60] than that
of the nanococoons described above. These nanoberries comprised a peptide (H4K5HCBzlCBzlH:
HHHHKKKKK-C12-LLHCBzlCBzlHLLGSPD; 21 aa, including an unnatural amino acid, “benzylated
cysteine (CBzl),” and a C12 spacer; Figure 3A), and pDNA (4.7 kbp), as shown in Figure 3B.
The H4K5HCBzlCBzlH peptide was rationally designed from similar peptides and optimized to install
pH responsiveness through the introductions of histidine residues at the DNA-binding domain, as well
as the self-assembling central domain (to promote endosomal escape inside living cells) and the aromatic
residues of CBzl for the formation of the self-assembled nanostructure. Indeed, H4K5HCBzlCBzlH
was assembled into uniform nanodiscs (approximately 7 × 7 nm2 (width × length), as estimated
by TEM, and approximately 4 nm (height), as estimated by AFM) comprising β-sheet structures.
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Upon complexation with pDNA, the peptide/DNA complexes, which exhibited the morphology
of the nanoberries (approximately 50 nm, as estimated by TEM), were obtained (Figure 3C,D);
a virus-mimetic structural model of the nanoberries, in which the core DNA was wrapped by nanodiscs,
was proposed. Crucially, the nanoberries exhibited a distinct structural transition from the compactly
packed nanoberries to loosen complexes with heterogeneous sizes due to the acidic pH shift (from 7
to 5). Subsequently, the encapsulated DNA was released via polyanion exchange with heparin
(an anionic polysaccharide). Such an acidic pH shift-initiated stepwise structural changes and the
concurrent release of the encapsulated DNA for the virus-mimicking artificial peptide/DNA nanoberries
could greatly contribute to gene delivery like natural viruses. Indeed, the transfection ability of the
nanoberries was demonstrated by an enhanced expression of the green fluorescent protein (GFP) that
was encoded into the encapsulated pDNA.
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(B) Schematic illustration of a nanodisc that was constructed via the self-assembly of H4K5HCBzlCBzlH.
(C) Schematic illustration and (D) representative TEM image (magnified in inset) of the co-assembly
between H4K5HCBzlCBzlH with pDNA to form the nanoberries. Adapted from [60]. Copyright 2020
John Wiley and Sons Publisher.

2.1.2. Fibrous Supramolecular Architectures

Since the early stage of supramolecular chemistry and self-assembly [61,62], fibrous tobacco
mosaic virus (TMV) has been one of the most attractive and referenced fibrous bio-supramolecular
architectures comprising a single-stranded genetic ribonucleic acid (ssRNA) (approximately 6400 nt)
that is surrounded by constituent coat proteins [63]. Very recently, the bio-supramolecular architecture
of TMV was applied to construct morphologically unique supramolecular architectures by combining
it with the DNA origami nanotechnology. For example, Wang and coworkers recently designed a DNA
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origami nanotube that was tethered to an ssRNA strand via hybridization with a complementary DNA
strand that was connected to the nanotube [64]. The in situ assembly of the TMV coat proteins formed
semi-artificial TMV nanostructures at designated positions of the DNA origami nanotubes, as shown
in Figure 4A. More recently, they successfully controlled the spatiotemporally precise assembly of
the TMV protein more on the surface of a DNA origami triangle in a similar design [65], although
they applied a toehold mediated strand displacement (TMSD) reaction, as outlined in Figure 4B.
In detail, the short DNA strands that protruded from the DNA origami triangle were designed to
bind a specific sequence of the ssRNA strand, which was captured at programmed points on the
surface of the triangle. The programmed points functioned as “locks” to stop the assembly of the TMV
protein. Thereafter, a complementary short DNA strand containing a toehold region released ssRNA
via the TMSD reaction, thereby resulting in the TMV protein assembly up to the following “locks”
point. This strategy allowed the precise control of a specific protein assembly within the kinetic system
containing a travel pathway, the positions, and the assembly stoichiometries, which was crucial to the
construction of further sophisticated and functional hybrid nanostructures.
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Figure 4. (A) (i) Schematic illustration of the formation of a semi-artificial tobacco mosaic virus (TMV)
nanostructure at a designated position of the DNA origami nanotube and (ii) representative TEM
images of the in situ assembled protein nanotubes on DNA origami nanotubes with one docking site.
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a DNA origami triangle, (ii,iii) representative TEM images of each state illustrated in (i). Scale bar:
50 nm. Adapted from [64,65]. Copyright 2018 and 2020 American Chemical Society.
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To artificially create a virus-like filamentous supramolecular architecture with a well-defined
length, Stupp and coworkers described a distinct strategy, which applies the self-assembly of
the designed artificial peptide-based nanostructures (Figure 5) on a linear or circular dsDNA,
as a template [66]. This sophisticated supramolecular design would be a reminiscence of the
aforementioned TMVs of biosystems. The mushroom-shaped nanostructures were constructed through
the self-assembly of triblock peptide-based molecules (PEGylated coiled-coil peptides: SP-CC-PEG)
containing a cationic spermine unit at one terminus (a binding site for dsDNA); a coiled-coil peptide
(REGVAKALRAVANALHYNASALEEVADALQKVKM: 34 aa), which aggregates into heptameric
structures; and a long poly(ethylene glycol) (PEG) chain, which imparts it with water solubility,
as well as steric repulsion between the PEG clusters in the self-assembled structure. Interestingly,
the longer PEG was critical to both the formation of the monodispersed filamentous complexes and the
suppression of amorphous (not-well-ordered structure) formation. Upon complexing SP-CC-PEG5000

with dsDNAs (150, 300, 600, and 1200 bp) or extended supercoiled pDNAs (2.7, 4.4, and 10.2 kbp),
homogenous supramolecular rod-like objects with controlled lengths were successfully constructed.
The development of this kind of supramolecular architectures in which the nucleic acids are enwrapped
in the peptides and/or their supramolecular nanostructures have been actively investigated for
applications in non-viral gene delivery systems [67].
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with dsDNAs. Adapted from [66]. Copyright 2013 American Chemical Society.

Ke and coworkers have demonstrated that the co-assembly of two-layered DNA origami
nanosheets (DNA TL nanosheets) and collagen-mimetic peptides obtained one-dimensional peptide/

DNA hybrid nanowires (Figure 6) [68]. Specifically, three collagen-like triple helix-forming peptides
(CP+: (PRG)7(P-Hyp-G)4(E-Hyp-G)4 {45 aa}, CP++: (PRG)3(P-Hyp-G)7(PRG)3 {39 aa}, and sCP++:
(PRG)3(P-Hyp-G)4(PRG)3 {30 aa}; Figure 6A) were investigated for the construction of well-defined
hybrid nanostructures with the DNA TL nanosheets. It would be reasonable to expect that the
polyanionic DNA TL nanosheets (approximately 50 × 50 × 5 nm3, estimated by TEM) would form
complexes with the cationic collagen-like triple helices bearing arginine-rich overhangs through
electrostatic attractions. They initially confirmed that the arrangement of CP+ on the DNA TL
nanosheet was not structurally well-ordered. In sharp contrast, CP++ and sCP++ bearing cationic
(PRG) triads in both the N- and C-terminal ends co-assembled with the DNA TL nanosheets to
form striped well-ordered nanowire structures. Crucially, the distances between the TL nanosheets
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(the inter-sheet distances) were successfully estimated by TEM and synchrotron small- and wide-angle
X-ray scattering (SAXS/WAXS) and were well consistent with the length of the cationic peptides.
This indicated that the peptide helices could align perpendicularly to the surface of the DNA TL
nanosheets, as depicted in Figure 6B,C.
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Figure 6. (A) Sequences of the three collagen-like triple helix-forming peptides (CP+, CP++, and sCP++).
(B) Schematic illustration of the co-assembly of the two-layered DNA origami nanosheets (DNA TL
nanosheets) and the collagen-mimetic peptides (CP++ and sCP++) to obtain the one-dimensional
peptide/DNA hybrid nanowires. (C) Representative TEM images of assembled with DNA TL nanosheets
and CP++. Scale bar: 50 nm. Adapted from [68]. Copyright 2017 American Chemical Society.

The two-dimensional, as well as the one-dimensional DNA origami nanostructures, were organized
by exploiting specific peptide self-assemblies. For instance, Turberfield and coworkers have
very recently reported that two distinct one-dimensional DNA origami nanostructures can be
connected by the specific formation of peptide coiled-coil heterodimers (CC-Di-EK: Ac-GEIAALEQ-
ENAALEQ-KIAALKW-KNAALKQG: 30 aa, CC-Di-KE: Ac-GKIAALKQ-KNAALKY-EIAALEQ-
ENAALEQG: 30 aa), as depicted in Figure 7A. The overall charges of each peptide were designed to be
close to or exactly zero at a neutral pH to avoid nonspecific electrostatic interactions. To optimize the
formation of the connected heterodimer structure as depicted in Figure 7B, the number of peptides (n)
to be attached to one side of each one-dimensional DNA origami nanostructure was varied from 1 to 3.
The TEM observations clearly revealed the formation of the heterodimer, and the formation efficiency
attained approximately 40% at n = 3, although it was <5% at n = 1 or 2 (Figure 7C) [69]. Moreover,
further elongated nanostructures (micrometer-long one-dimensional arrays) were constructed by
a similar architectural design to that of Stephanopoulos and coworkers. They designed similar
peptide coiled-coil heterodimers (EI: Ac-EIAALEK-EIAALEK-ENAALEW-EIAALEK: 28 aa, KI:
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Ac-KIAALKE-KIAALKE-KNAALKW-KIAALKE: 28 aa (Figure 7D)), although they attached the
two distinct peptides to both sides of the DNA origami cuboid nanostructure (16 × 19.5 × 32 nm3)
through DNA–DNA hybridizations, which allowed for the formation of an elongated one-dimensional
array, as shown in Figure 7E. They also investigated the optimal number of peptides (m) required for
the design and observed via AFM that the formation of long arrays comprising 30–45 cuboids occurred
at m = 8 (Figure 7F). Such long arrays were not observed at m = 10 and 12, and shorter oligomers
(mainly <15 cuboids) were mainly obtained at m < 8 (0, 1, 2, 4, and 6). This clearly indicated that m = 8
would be optimal to obtain long one-dimensional arrays of the DNA origami cuboid nanostructure for
reasons that remain currently unclear according to their study [70].
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Figure 7. (A) Sequences of the coiled-coil heterodimers that formed the peptides (CC-Di-EK and
CC-Di-KE) that were conjugated to the oligonucleotides (α, β). (B) Schematic illustration and
(C) a representative TEM image of the connection of two distinct one-dimensional DNA origami
nanostructures (Origamis A and B) by the specific formation of peptide coiled-coil heterodimers.
(D) Sequences of the coiled-coil heterodimers that formed the peptides (EI and KI) that were conjugated
to the oligonucleotides (DNA A and B). (E) Schematic illustration and (F) representative AFM images to
obtain long one-dimensional arrays of DNA origami cuboid nanostructures. Scale bar: 50 nm for C and
1 µm (250 nm (inset)) for F. Adapted from [69,70]. Copyright 2019 and 2020 American Chemical Society.
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2.1.3. Orthogonal Supramolecular Architectures Without Random Co-Assembly

Orthogonal supramolecular architectures through self-sorting phenomena to form plural distinct
supramolecular nanostructures of molecular constituents without a random co-assembly have attracted
increased attention [71–74]. In this context, Seeman and coworkers developed DNA origami nanotubes
in which the amyloid fibrils were sheathed, and the resultant fibril-filled DNA origami nanotubes were
further organized into the other DNA origami platforms (two-dimensional planar monolayer structures
that comprised four flat DNA origami hollow square motifs) via DNA–DNA hybridizations, as depicted
in Figure 8A [75]. To construct the self-sorted, fibril-filled DNA origami nanotubes, a staple DNA strand
(31 nt) was covalently conjugated to a fibril-forming peptide (AcTTR1-GGK {TTR105–115 with a tripeptide
(GGK) segment extension and an acetyl cap at the N-terminus}; Ac-YTIAALLSPYSGGK: 14 aa) that
was derived from the amyloidogenic protein transthyretin (TTR). The staple DNA that conjugated
with AcTTR1-GGK afforded a nucleation site, which was positioned inside the DNA origami nanotube.
Notably, the negatively charged fibril-forming sequence (AcTTR1-GGE; Ac-YTIAALLSPYSGGE: 14 aa)
was designed to avoid the nonspecific interactions between the DNA nanotubes and the peptide fibrils.
The fibril formation of the AcTTR1-GGE peptide without DNA, which indicated the presence of a
typical cross-β structure, was first revealed by TEM and AFM observations, as well as X-ray fiber
diffraction. After the thermal annealing of an M13 scaffold DNA strand with staple strands including
one, which was conjugated to AcTTR1-GGK, the formation of an unbranched amyloid fibril proceeded
simultaneously through the addition of the AcTTR1-GGE peptides. The formation of the fiber inside
the DNA origami nanotubes was indirectly demonstrated by several constructs, e.g., the decoration
of gold nanoparticles on the outer surface of the DNA origami nanotubes. Finally, a programmable
DNA design could enable the precise positioning of fibril-filled DNA origami nanotubes on prepared
two-dimensional planar DNA origami platforms, which was further demonstrated by AFM (Figure 8B).
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Figure 8. (A) Schematic illustration and (B) a representative AFM image of amyloid fibril-filled DNA
origami nanotubes that were organized onto two-dimensional DNA origami platforms. Scale bars:
250 nm. The colour scale bar indicates height. Adapted from [75]. Copyright 2014 Springer Nature.

Very recently, we revealed the orthogonal coexistence of DNA microspheres, which can be obtained
from three ssDNAs (30 nt), and supramolecular nanostructures (helical nanofibers, straight nanoribbons,
and flowerlike microaggregates) of semi-artificial glycopeptides comprising a diphenylalanine (FF)
dipeptide (vide infra), as shown in Figure 9 [76]. One of the main factors responsible for such orthogonal
assembly (self-sorting) that was induced only by simple one-pot and one-step thermal annealing,
would be the distinct driving forces of the self-assembly, i.e., the specific WC base pairings of the DNA
strands and the cross β-sheet assembly of the glycopeptides. Additionally, the selective degradation
propensity (in response to biostimuli, such as a protease, DNase, or ssDNA) of each supramolecular
nanostructure was retained and could enable the construction of active soft nanomaterials with excellent
biofunctions. We believe that the combination of self-assembling nucleic acids and peptides would be
a promising strategy for constructing such orthogonal supramolecular architectures, as described in
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this review, thus enabling the construction of more complex and functional hybrid supramolecular
architectures that are otherwise unachievable and yet inaccessible [77].
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Figure 9. (A) Schematic illustration of the orthogonal self-assembly of semi-artificial glycopeptides
(right panel) and ssDNAs (left panel) to produce hybrid soft materials that comprised supramolecular
nanostructures of glycopeptide and DNA microspheres. (B) Representative confocal laser scanning
microscopy (CLSM) images showing the orthogonal coexistence of DNA microsphere and the
supramolecular nanostructures of (a) Z-FF-Mal, (b) Z-FF-Cel, and (c) Z-FF-Lac. Scale bar: 5 µm
for a and 10 µm for b,c. Adapted from [76]. Copyright 2019 John Wiley and Sons Publisher.

2.2. Covalently Conjugated Nucleic Acid-Oligopeptide Hybrids

In this subsection, we mainly highlighted supramolecular architectures comprising covalently
conjugated nucleic acid–oligopeptide hybrids as their components. This subsection is further
divided into two subsubsections (Section 2.2.1: spherical, Section 2.2.2: fibrous) based on the
primary morphology of the supramolecular architectures. Generally, covalent conjugations cause the
self-assembly of the resultant molecular hybrids into supramolecular architectures more predictably
when either the nucleic acid or oligopeptide component exhibits robust ability to form specific
supramolecular architectures. Indeed, most of the following recent research exploited the conjugation
of self-assembling peptides onto the nucleic acids of interest, thereby producing novel supramolecular
architectures under given aqueous conditions.

2.2.1. Spherical Supramolecular Architectures

Since the discovery of self-assembly ability of the FF dipeptide to form nanotubes in water [78],
it has been used as a promising motif to design self-assembling molecules [79–90]. Thus, the design
of a covalently conjugated hybrid containing the FF dipeptide and an oligo DNA (ssDNA:
5′-CTCTCTCTCTTT-3′, 12 nt), that is, ssDNA12-FF (Figure 10A), was expected, followed by an
investigation of the formations of their corresponding supramolecular architectures [91]. Initial
assessments by Vebert-Nardin and coworkers via microscopic observations (AFM and scanning
electron microscopy) revealed that spherical supramolecular nanostructures with sizes ranging
from 200 to 300 nm were successfully obtained by the direct dissolution of ssDNA12-FF in water
(2 mg/mL), followed by extrusion through a filter membrane (0.45 µm). Such a morphology was
not observed by only mixing the unmodified FF dipeptide with the component oligo DNA (12 nt)
without covalent conjugation. Furthermore, their hollow vesicular structures (Figure 10B) were made
evident by detailed microscopic observations (TEM and confocal microscopy) and the encapsulation



Int. J. Mol. Sci. 2020, 21, 9458 12 of 25

ability of a hydrophilic fluorescence dye. Subsequently, the same research group reported that
another aromatic dipeptide (the tryptophan (WW) dipeptide), which conjugated with the same
oligo DNA (ssDNA: 5′-CTCTCTCTCTTT-3′, 12 nt), ssDNA12-WW (Figure 10C), yielded a spherical
supramolecular nanostructure with a size similar to that of its FF counterpart (described above) at
a lowered concentration. Interestingly, at an increased concentration, e.g., 1.0 mM, ssDNA12-WW
produced fibrous supramolecular nanostructures (the diameter ranged between 0.5 and 1.0 µm and
the length was several micrometers), as depicted in Figure 10D [92].
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Figure 10. (A) Chemical structure of ssDNA12-FF. (B) Plausible supramolecular architectures of the
hollow vesicular structures that were obtained through the self-assembly of ssDNA12-FF. (C) Chemical
structure of ssDNA12-WW. (D) Plausible, concentration-dependent supramolecular architectures of
ssDNA12-WW obtained by its self-assembly. Adapted from [91,92]. Copyright 2012 and 2014 Royal
Chemical Society.

Spherical capsular architectures, which displayed nucleic acids at their surfaces (exterior),
were successfully constructed by Matsuura and coworkers [93] through the self-assembly of a
DNA/peptide hybrid, βAF-dA20 (Figure 11A), comprising a peptide (INHVGGTGGAIMAPVAVTR
QLVGS, 24 aa) that was covalently conjugated to the nucleic acid (ssDNA: A20, 20 nt). The 24-mer
peptide is a β-annulus fragment (βAF), which is a structural motif of the internal skeleton of the
tomato bushy stunt virus capsid. The research group demonstrated that the 24-mer β-annulus peptide
fragment could self-assemble into spherical capsular nanostructures with a size of 30–50 nm in
water [94]. Similarly, βAF-dA20 could self-assemble into spherical nanostructures, as depicted in
Figure 11A, which was observed by TEM and dynamic light scattering (DLS) measurements (98± 63 nm,
the average hydrodynamic diameter). Although the DNA strand (dA20) was attached to the 24-mer
β-annulus peptide fragment, βAF-dA20 could still self-assemble at lower concentrations compared
with that of the original DNA-unmodified peptide fragment. Similarly, the spherical nanostructures
obtained fromβAF-dT20 (Figure 11A) with an average hydrodynamic diameter of 65± 20 nm (estimated
by DLS) were constructed under the same conditions. Thereafter, to confirm the hybridization ability
of DNAs that were displayed on the spherical nanostructures, the two spherical nanostructures
were mixed equimolarly. The TEM observations and DLS measurements revealed the presence
of their aggregates, which were constructed through the hybridization of complementary DNAs
(dA20•dT20). Further experimental pieces of evidence for the DNA hybridization ability of the spherical
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nanostructures of βAF-dT20 were obtained by complexing βAF-dT20 with long complementary DNA
strands. For example, the addition of polydA caused extensive aggregations of the βAF-dT20 spherical
nanostructures, whereas no aggregation was observed upon adding polydT. Subsequently, another
DNA/peptide hybrid, βAF-ssDNA23 (ssDNA23: TCTACAAAGGGAAGCCCTTTCTG; 23 nt) in which
the ssDNA strands were directed inside the capsular architectures, was designed (Figure 11B).
The obtained DNA-encapsulated spherical nanostructure exhibited reduction-responsive disassembly
that was due to the reductive cleavage of the disulfide bonds between DNA and the peptide,
which eventually resulted in the controlled release of the encapsulated DNAs [95]. Overall, the spherical
architectures of the 24-mer peptide β-annulus conjugates were sufficiently robust [96–103] so that
various DNAs could be introduced into the exterior and interior parts of the capsular structure since
the introduced DNA did not destroy the ability of the peptides to form the capsular structure.
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Figure 11. (A) Schematic representation of the self-assembly of β-annulus fragment (βAF)_dN20 [N = A
(βAF_dA20) or T (βAF_dT20)] to form spherical capsular architectures that displayed the nucleic acids
at their exterior surfaces. (B) Schematic representation of the self-assembly of βAF_ssDNA23 to form
spherical capsular architectures that encapsulated the nucleic acids. Adapted from ref 88. Copyright
2017 John Wiley and Sons Publisher. Adapted from [95]. Copyright 2019 the Chemical Society of Japan.

Lim and a coworker designed two DNA/peptide hybrids, β-suRGD-AS and β-suRGD-S
(Figure 12), comprising ssDNAs (β-suRGD-AS: GCGAGCTGCACGCTGCCGTC, 20 nt; β-suRGD-S:
GACGGCAGCGTGCAGCTC, 18 nt) and a β-sheet peptide (β-suRGD: KWKWEWYWKWEWKRG
DRGD, 19 aa) containing a self-assembly motif and a cationic segment. They demonstrated that
the simultaneous and orthogonal molecular self-assembly abilities of DNA and the peptide moiety
in the hybrids (β-suRGD-AS and β-suRGD-S) enabled the construction of well-defined toroidal
nanostructures. More specifically, the two DNA/peptide hybrids (β-suRGD-AS and β-suRGD-S) were
mixed in a 1:1 stoichiometric ratio, whereas two distinct protocols were applied to control the assembly
pathways (pathway 1: peptide assembly to DNA assembly, pathway 2: DNA assembly to peptide
assembly), as outlined in Figure 12. The two pathways caused the formation of toroidal nanostructures,
as revealed by cryoTEM (3D reconstruction of a single particle) (particle size = 9 nm, as estimated
by TEM, AFM, and DLS), which were almost identical (β-suRGD-AS/β-suRGD-S). By contrast,
heterogeneous structures were obtained by simple dissolution (without any protocol to control the
assembly pathways) most probably because of the formations of kinetically trapped structures [104,105].
Interestingly, the structural transition from the monodispersed toroidal nanostructures to the entangled
fibers, including the giant toroidal structures, could be induced upon adding mRNA, which contains a
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sequence (20 nt) that is complementary to DNA AS, and this should be related to the antisense effect of
the nanostructures (β-suRGD-AS/β-suRGD-S) demonstrated in the study.
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two distinct protocols that controlled their assembly pathway to yield the monodispersed toroidal
nanostructures (β-suRGD-AS/β-suRGD-S). Adapted from [104]. Copyright 2016 John Wiley and
Sons Publisher.

2.2.2. Fibrous Supramolecular Architectures

As described by several examples in Section 2.2.1, the morphology of supramolecular
architectures that are obtained from covalently conjugated nucleic acid–oligopeptide hybrids is
conditional. Fibrous supramolecular nanostructures could be preferentially obtained by strengthening
the self-assembly ability of peptides for the direct formation of one-dimensional structures.
Indeed, fibrous supramolecular nanostructures have been constructed more efficiently by attaching
ssDNA to fluorenylmethyloxycarbonyl (Fmoc)-FF, as shown in Figure 13A. The Fmoc group
(one of the most common protecting groups for amino acids) is currently widely accepted as
a powerful self-assembly motif because of its ability to form one-dimensional supramolecular
nanostructures [106–108]. Interestingly, Freeman and coworkers revealed that the morphology
of the fibrous supramolecular nanostructures strongly depended on the length of ssDNA [109].
In detail, Fmoc-FF-ssDNA19 (ssDNA19: CTCAGTGGACAGCCTTTTT; 19 nt) afforded twisted fibers
with average width and pitch of 20 and 150 nm, respectively, whereas Fmoc-FF-ssDNA46 (ssDNA46:
CAGTACAGTTTCGTCCAACGCTCCAGAACTGAGGCTGTCCACTGAG: 46 nt) afforded loosely
twisted but wider fibers compared with those of Fmoc-FF-ssDNA19 with average width and pitch of
44 and 630 nm, respectively. Under the investigated conditions, Fmoc-FF did not produce twisted
fibers, thus suggesting that helical structures and their propensity to form self-assembled structures
of Fmoc-FF-ssDNAs are dictated by the length of ssDNA. Additionally, they confirmed that the
hybridization of the DNA segment in Fmoc-FF-ssDNA46 caused fiber bundling, which could be more
clearly observed in the co-assembly of Fmoc-FF-ssDNA19 and Fmoc-FF-ss(as)DNA19 in which the
complementary ssDNA (ss(as)DNA19) against ssDNA19 was introduced, as shown in Figure 13B,C.
Accordingly, precise the base pairing (hybridization) ability of nucleic acids (DNA) was undoubtedly
beneficial to the control of assembled structures at molecular and supramolecular levels, as highlighted
in this paper. In fact, Stupp and coworkers, including the same author (Freeman), reported earlier
that peptide amphiphiles, which contained nucleic acids, produced super-structured networks



Int. J. Mol. Sci. 2020, 21, 9458 15 of 25

with controlled and reversible bundling of supramolecular fibrous structures [110]. In the study,
more crucially, the bundling of the fibrous structures influenced the phenotypic transformations in
the astrocytes (neural cells) that were in contact with the materials. Conversely, the polyanionic
property of nucleic acid can, in turn, afford a means of controlling the nucleation of the peptide
self-assembly, which might be involved in polyanion-induced amyloid fibrillation that is associated
with the corresponding diseases. For example, Lyn and coworkers recently succeeded to obtain
high-resolution structural information on the self-assembled nanostructures of a positively charged
peptide (Ac-KLVIIAG-NH2: 7 aa) that was templated by nucleic acids, which was facilitated by the
structural complementarity between the nucleic acid backbone and the antiparallel cross-β structures
of the peptides for electrostatic interactions [111].
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Figure 13. (A) Chemical structure of Fmoc-FF-ssDNAs. (B) Schematic representation of the self- assembly
of Fmoc-FF-ssDNAs to form hierarchical nanostructures through DNA hybridization. (C) Representative
TEM images obtained from co-assembly of Fmoc-FF-ssDNA19 and Fmoc-FF-ss(as)DNA19. Scale bar:
200 nm. Adapted from [109]. Copyright 2019 American Chemical Society.

3. Nucleic Acid/Polypeptide (Protein) Hybrids

In this section, we briefly highlighted supramolecular architectures comprising nucleic
acid/polypeptide(protein) hybrids as their components, and the hybrids are discussed in two subsections
based on their types of conjugations.

3.1. Non-Covalently Conjugated Hybrids

Mayo and coworkers designed and constructed well-defined supramolecular nanowires
comprising dsDNA/artificially modified protein (dualENH) complexes in which a sophisticated
supramolecular assembly was obtained via selective protein–protein interaction (homodimerization)
that was aided by a computational design, as well as by inherent protein/dsDNA interactions [112].
They selected the well-studied Drosophila engrailed homeodomain (ENH) as the scaffold protein.
Homeodomains, including ENH, are common eukaryotic DNA-binding domains comprising three
helices (conventionally defined as 60 aa in length based on homology) [113]. The homodimerization
interface of dualENH was engineered on the exterior sides of helices 1 and 2 of ENH that are
structurally opposite its DNA-binding helix 3. To obtain a one-dimensional DNA/dualENH
assembly, dsDNA requires two protein-binding sites with the desired geometry (180◦). Specifically,
upon complexing dsDNA (25 bp) containing an 11-nucleotide binding motif (TAATTTAATTT, TAATTT:
ENH-binding motif) with dualENH, the nanowire structures (width, ~15 nm; length, ~300 nm;
as estimated by AFM) were successfully obtained. Noteworthily, the crystal structure of the complex
was also solved in which a slightly kinked (may not reflect the structure of the nanowire in the solution
state) but infinitely repeated formation of the dsDNA/protein nanowires was evident (Figure 14).
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Figure 14. (A) Schematic representation of the formation of nanowires comprising a computationally
designed protein/dualENH and a short dsDNA. (B) A representative AFM image obtained after mixing
dualENH with the dsDNA (25 bp). Adapted from [112]. Copyright 2014 Springer Nature.

3.2. Covalently Conjugated Hybrids

3.2.1. Linear Supramolecular Architectures

Recently, the hybridization chain reaction (HCR) of nucleic acids is recognized as a robust strategy
for constructing dsDNA-based supramolecular architectures for a variety of bio-applications [114,115].
As a covalently conjugated DNA/protein hybrid, Mirkin and coworkers constructed a set of mutant
GFPs bearing a hairpin-shaped ssDNA and demonstrated the formation of linear supramolecular
oligomers (several tens of nanometers in length, as estimated by AFM), which tethered the protein
through a chain growth polymerization reaction that was induced by the addition of an initiator
(ssDNA) [116] (Figure 15). Notably, a further extension of the chain could be induced because the
HCR system exhibited a living character that was similar to the living polymerization of covalent
polymers. Furthermore, the same research group very recently reported that the length of the linear
supramolecular oligomers can be finely modulated by carefully designing a metastable hairpin-shaped
ssDNA (with the introduction of mismatched base pairs) that would be attached to the protein [117].
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Figure 15. Schematic representation of the formation of linear supramolecular architectures that
tethered the proteins by exploiting hybridization chain reaction (HCR) of nucleic acids. Adapted
from [116]. Copyright 2018 American Chemical Society.

3.2.2. Cage-Like Supramolecular Architectures

Stephanopoulos and coworkers developed discrete three-dimensional cage-like supramolecular
architectures by exploiting the specific self-assembly process of both the proteins and the nucleic
acids [118]. A homotrimeric protein containing three ssDNAs was constructed through the
covalent conjugation of ssDNAs to a cysteine residue (introduced by site-directed mutagenesis)
of 2-dehydro-3-deoxyphosphogluconate aldolase (25 kDa, C3-symmetric homotrimer) (Figure 16).
This covalently conjugated DNA/protein hybrid can form a discrete three-dimensional cage-like
supramolecular architecture by complexing with a triangular DNA nanostructure bearing three
complementary ssDNAs through DNA hybridization (Figure 16). The size of the three-dimensional
cage-like supramolecular architecture can be varied by changing the lengths of DNAs. Indeed,
two different sizes of the supramolecular architectures (triangular pyramid: 8 nm (height) × 10 nm
(side of the triangle), 12 nm (height) × 14 nm (side of the triangle)) were constructed and visualized
via AFM.
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Figure 16. Three-dimensional cage-like supramolecular architecture obtained by the complexation of a
homotrimeric protein containing three ssDNAs with a triangular DNA nanostructure bearing three
complementary ssDNAs through DNA hybridization. Adapted from [118]. Copyright 2019 American
Chemical Society.

3.2.3. Crystalline Supramolecular Architectures

Tezcan and coworkers designed and constructed discrete crystalline nucleoprotein architectures
through the three distinct cooperative interactions: (i) the WC base pairing, (ii) the DNA/protein
interactions, and (iii) the protein–metal coordination [119]. Figure 17 shows the molecular design of
the nucleoprotein (covalently conjugated protein/nucleic acid hybrid). Therein, a modified cytochrome,
RIDC3 (an engineered variant of the monomeric four-helix bundle protein cytochrome, cb562),
which was developed by the same group [120–122], was used as the protein component. Complementary
ssDNAs (TTATTAAAA and TTTTAATTAA for RIDC3-10a and RIDC3-10b, respectively, 10 nt) were
attached to RIDC3 by exploiting a single cysteine residue of RIDC3. Essentially, RIDC3 itself
can self-assemble into one-, two-, and three-dimensional crystalline arrays through Zn2+-mediated
interactions (protein–metal coordination). As shown in Figure 17, ordered crystalline architectures
(thin, micrometer-sized crystals) were obtained from RIDC3-10a and RIDC3-10b, although under a
rather small window of conditions {pH (4.75–5), temperature (4–10 ◦C), and stoichiometry between
Zn2+ and RIDC3-10a/10b (2–10 equiv.)}. For example, the solutions of RIDC3-10a/10b did not produce
any discretely assembled architecture (crystals) in the absence of Zn2+. Furthermore, the addition of
ethylenediaminetetraacetic acid to the suspension of the RIDC3-10a/10b crystals dissolved it, as well as
its incubation at >40 ◦C. These results implied that Zn2+- and DNA hybridization-mediated interactions
are keys to the formation of the ordered crystalline architectures. Furthermore, by combining several
techniques (negative stain TEM, cryoTEM, SAXS, and molecular dynamics simulations), the structural
characterization of the ordered crystalline architectures was comprehensively accomplished.
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One challenge for this research field is the hierarchical combination of plural supramolecular 
architectures obtained from not only self-assembling peptides but also self-assembling nucleic acids 
at meso-scale as described in Section 2.1.3. Such examples are still rare and often require a multi-step 
and tedious process. Nevertheless, careful molecular design enabling the orthogonal molecular 
self-assembling could allow for simple one-pot production process to obtain unique hierarchical 
supramolecular architectures [76,77]. Another simple but important challenge is cost issue. 
Although reliable and reproducible automatic synthesis of nucleic acids and peptides are available, 
the production cost issue remains, especially for DNA origami requiring over a hundred ssDNAs 
with different length and sequence [123] Biotechnological mass production might be optional, 
whereas it poses additional issues such as sterilization and batch-to-batch variability, which could 
result in the increase in the production costs. It might be worth noting that catalytic peptide 
synthesis has attracted increasing attentions recently [124–128], which could overcome the 
production cost issue of peptides. 

In a natural system, the ribosome, which consists of RNA and polypeptides, i.e., ribosomal 
RNA (rRNA) and proteins, respectively [129–132], is one of the most complex hierarchical 
bio-supramolecular architectures and exhibits a precise function to synthesize proteins (decoding 
center or factory). This hybrid bio-supramolecular architecture clearly reflects a strong structure–
function relationship through the construction of evolutional but sophisticated hybrid architectures. 
In sharp contrast, the formations of rather structureless liquid droplets in living cells, namely, the 
liquid–liquid phase separation, have very recently attracted increased attention in the fundamental 
and applied research fields of biology, as well as chemistry [133–135]. Recent studies have revealed 
that the dynamic and transient formation of nucleic acid/protein droplets in the cells is closely 
related to crucial biological processes, such as cell polarization [136–139]. These findings could 
significantly affect the design principles of molecular hybrid materials in the future. 
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construction and engineering of such supramolecular architectures to equip them with desired 
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Figure 17. (A) Molecular design of the nucleoproteins (RIDC3-10a and RIDC3-10b). (B) Schematic
representation and (C) a representative TEM image of the ordered crystalline architectures obtained
through the complexation of RIDC3-10a/10b with Zn2+ under a small window of conditions. Scale bar:
5 µm. Adapted from [119]. Copyright 2018 American Chemical Society.

4. Conclusions

One challenge for this research field is the hierarchical combination of plural supramolecular
architectures obtained from not only self-assembling peptides but also self-assembling nucleic acids at
meso-scale as described in Section 2.1.3. Such examples are still rare and often require a multi-step
and tedious process. Nevertheless, careful molecular design enabling the orthogonal molecular
self-assembling could allow for simple one-pot production process to obtain unique hierarchical
supramolecular architectures [76,77]. Another simple but important challenge is cost issue. Although
reliable and reproducible automatic synthesis of nucleic acids and peptides are available, the production
cost issue remains, especially for DNA origami requiring over a hundred ssDNAs with different length
and sequence [123] Biotechnological mass production might be optional, whereas it poses additional
issues such as sterilization and batch-to-batch variability, which could result in the increase in the
production costs. It might be worth noting that catalytic peptide synthesis has attracted increasing
attentions recently [124–128], which could overcome the production cost issue of peptides.

In a natural system, the ribosome, which consists of RNA and polypeptides, i.e., ribosomal RNA
(rRNA) and proteins, respectively [129–132], is one of the most complex hierarchical bio-supramolecular
architectures and exhibits a precise function to synthesize proteins (decoding center or factory).
This hybrid bio-supramolecular architecture clearly reflects a strong structure–function relationship
through the construction of evolutional but sophisticated hybrid architectures. In sharp contrast,
the formations of rather structureless liquid droplets in living cells, namely, the liquid–liquid phase
separation, have very recently attracted increased attention in the fundamental and applied research
fields of biology, as well as chemistry [133–135]. Recent studies have revealed that the dynamic and
transient formation of nucleic acid/protein droplets in the cells is closely related to crucial biological
processes, such as cell polarization [136–139]. These findings could significantly affect the design
principles of molecular hybrid materials in the future.

Conclusively, this review has described a variety of supramolecular architectures that were
assembled from both nucleic acids and peptides with structural orders that ranged from the molecular
to nano-scales. The rational and modular molecular and structural designs for the construction and
engineering of such supramolecular architectures to equip them with desired functions and properties
would facilitate the elucidation of their beneficial bio-applications, such as sensor [140], cell-culturing
matrix for regenerative medicine [141–143], and drug-releasing material [144–147]. Furthermore,
synergistically combining the strengths of both molecules (nucleic acids and peptides) would be
essential to widening the scope of future research projects.
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