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Introduction
Brain metastasis (BM) is an indication of poor 
prognosis for cancer patients with short overall 
survival and low quality of life.1 The prevalence of 
breast cancer brain metastasis (BCBM) is increas-
ing as treatment of primary cancers and imaging 
techniques improve.2 In addition, the brain is a 
“sanctuary site” for breast cancer cells treated with 
pharmacological agents that have poor drug pene-
tration into central nervous system (CNS). For 
example, among patients who received adjuvant 
trastuzumab (a monoclonal antibody targeting 
HER2) in the HERA study, the brain made up a 
larger proportion of initial relapse sites compared 
with controls.3 Concentration of trastuzumab in 
cerebrospinal fluid (CSF) was detected to be 420-
fold less than in sera of patients treated with trastu-
zumab before radiotherapy.4 Although small 
molecules (e.g., neratinib, molar mass: 557.04 g/mol, 
or afatinib, molar mass: 485.94 g/mol) are more 
able to across the blood-brain barrier (BBB) than 

the monoclonal antibody trastuzumab (molar 
mass: 14,5531.5 g/mol),5,6 the discrepancy of treat-
ment response between extracranial disease con-
trol and intracranial disease progression was also 
observed in metastatic HER2-positive patients 
treated with neratinib or afatinib,7–9 suggesting 
unique disease biology of BCBM and more com-
plicated vulnerability to targeted therapies.

Indeed, BCBMs residing within the neural micro-
environment confront a distinct set of structural 
(especially the BBB), physiological, and molecu-
lar factors, and undergo additional brain-adaptive 
modifications to support tumor survival and out-
growth. Recent studies focusing on tumor–neural 
microenvironment interactions have revealed 
novel therapeutic strategies, especially in reposi-
tioning existing drugs to target potent microenvi-
ronmental factors that promote tumor growth 
(Figure 1). Repurposing known drugs for new 
indications is a promising strategy to accelerate 
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drug discovery of unmet medical need such as 
BCBM. Because of the profiled toxicity and phar-
macokinetic information, drugs that are identified 
through repositioning have the potential for rapid 
clinical translation.10–13 In addition, other emerg-
ing clinical treatment options for BCBM patients 
include novel targeted therapy and immunother-
apy, minimally invasive neurosurgery, and stereo-
tactic radiotherapy (Table 1), have shown promise 
in many clinical studies to improve patient sur-
vival and quality of life.

Targeting tumor–neural microenvironment 
interactions in BCBM
As opposed to molecular mechanisms involving 
cancer cell–host interactions shared by multiple 
cancer types that result in organ specific metasta-
sis, a highly distinct set of structural, anatomic, 
physiological, and molecular factors regulate 
metastasis to the brain. Astrocytes, the most com-
mon glial cells comprising ~50% of all human 
brain cells, are a well-characterized perilesional 
component of BCBM.23–27 Recent discoveries, 
including ours, provide compelling evidence that 
molecular crosstalk between astrocytes and cancer 
cells is integral to BCBM development.14–16,28

The Valiente group showed in clinical BCBM 
 samples and xenograft mouse models, including 
HER2+ and triple-negative (TNBC) subtypes, that 
a subpopulation of reactive astrocytes 
with activated signal transducer and activator of 
transcription 3 (STAT3) contributed to the pro-
metastatic microenvironment.14 These STAT3+ 
astrocytes benefit metastatic breast cancer cells by 
impeding CD8+ lymphocytic infiltration into the 
metastatic area through secretion of infiltration-
suppressive proteins such as vascular endothelial 
growth factor A (VEGF-A) and tissue inhibitor of 
metalloproteinases-1 (TIMP-1), and inhibiting 
the acquired immune response as they also 
express programmed cell death 1 ligand 1 (PD-
L1). In addition, the STAT3+ astrocytes cross-
talk with CD74+ microglia/microphages through 
the MIF–CD74–midkine signaling axis in pro-
moting the brain metastatic tumor growth. To 
this end, silibinin, a commercially available nutra-
ceutical that crosses the BBB to impair STAT3 
activation, was used to treat BCBM animal mod-
els and a cohort of 18 patients. Silibinin alone sig-
nificantly reduced experimental BM even at 
advanced stages of colonization. In BCBM 
patients treated with Silibinin, as a single agent or 
in combination with additional chemotherapy, 

the overall response rate was 75% patients, 
including 3 complete responses (20%) and 10 
partial responses (55%). Given the safety profile 
and oral bioavailability, silibinin supplementation 
provides great hope to increase survival in BCBM 
patients.

Recent reports from our group and the Massagué 
group identified other BCBM-astrocyte crosstalk 
signaling focusing on protocadherin7 (PCDH7). 
Using TNBC patient-derived BCBM samples 
and animal models, we demonstrated that a 
brain-tropic cancer stem cell population drives 
tumor metastasis in the brain, and interactions 
with astrocytes mediated by high PCDH7 expres-
sion promoted in vivo tumor growth through 
PCDH7-PLCβ signaling.16 Notably, in animal 
studies immuno-reactive PCDH7 expression was 
redetected in brain metastatic lesions in the 
PCDH7 shRNA group, as well as tumor sur-
rounding astrocytes.16 The re-expression of 
PCDH7 in the surviving brain metastatic tumor 
cells suggests that selection for tumor cell PCDH7 
expression promotes cell survival and tumor 
growth in vivo. In late stage TNBC and HER2+ 
BCBMs, elevated PCDH7 expression on tumor 
cells was required to establish PCDH7-Cx43 gap 
junctions that mediated paracrine signaling 
between brain metastatic tumor cells and astro-
cytes.15 Through the gap junction channel between 
both cell types, Ca2 and secondary messenger 
cGAMP contribute to chemoresistance in BCBM. 
Cancer cells from TNBC and HER2+ breast 
cancer cells co-opted the gap junction connection 
with astrocytes to reduce their excessive calcium 
burden, for which the excessive intracellular cal-
cium could be detrimental for cancer cells by trig-
gering DNA damage and inducing apoptosis.29 
As a consequence, the decrease of intracellular 
calcium facilitates resistance to chemotherapy 
and aggressive colonization in the brain.15 
Reciprocally and initiated by the transfer of sec-
ond messenger from tumor cells to astrocytes, 
cGAMP activated astrocytic STING, which leads 
to phosphorylation of IRF3,30 and subsequently 
induced expression and secretion of TNFα and 
INFα. These two cytokines in turn activated 
NFκβ and STAT1 in brain metastatic cells that 
contribute to an accelerated proliferation and 
resistance to chemotherapeutic stress.15 Two 
proof-of-concept therapeutic strategies were veri-
fied in the TNBC BCBM animal models, one is 
the repositioning of edelfosine, a phase II clinical 
trial drug in treating leukemia with bone marrow 
transplants that blocks PLCβ, and the other is the 
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gap junction directed therapy of repositioning 
meclofenamate, a FDA-approved anti-inflamma-
tory drug that inhibits Cx43 gap junction gating. 
To recapitulate clinical situation where BM 
tumors are established before treatment, edelfos-
ine treatment in mice started when micro-metas-
tases were detected (around 10 days post tumor 
cell inoculation into left ventricle). During a 
15-day treatment regimen (i.p., once daily, 30 mg/
kg/day), brain metastatic tumor growth was con-
tinuously suppressed in the edelfosine group, and 
it was noted that the formation of macro-metasta-
ses (>50 cells) in the treated mice was inhibited 
by 90% at the end of 15-day treatment (p < 0.01). 
Activations of cellular PLCβ and Ki-67-positive 
tumor cell proliferation were repressed remarka-
bly by the edelfosine treatment.16 In the same ani-
mal model, meclofenamate (i.p., once daily, 
20 mg/kg/day) in combination with chemothera-
peutic drug carboplatin profoundly inhibited 
BM.15

Of importance, in independent studies, shRNA-
mediated PCDH7 depletion in TNBC and 
HER2+ breast cancer cells inhibited brain meta-
static growth in immunocompetent and xenograft 
models. This suggests that PCDH7, a brain-spe-
cific gene, may be a robust multi-functional 
mediator of BCBM-astrocyte crosstalk and a new 
potential therapeutic target. PCDH7 is a brain-
specific gene.31,32

Adult human brain endothelial cells and primary 
microglia have no detectable, or very low, level of 
PCDH7 expression.15 Primary astrocytes have 
moderate expression of PCDH7, whereas astro-
cyte PCDH7 expression exhibits a dramatic 
increase in response to the brain metastatic tumor 
insult.15,16 These data suggest that astrocytic 
PCDH7 has a pro-metastatic role in BCBM. 
Pharmacological blocking or targeting the astro-
cytic PCDH7 may not have profound side-effects 
on other brain resident cells, especially given that 
overexpression of PCDH7 inhibits neuronal sur-
vival.32 To this end, we are exploring small mole-
cules to block the PCDH7 homophilic and 
PCDH7-Cx43 heterophilic binding for potential 
BCBM treatment.

In a series of studies by the Cittelly group, estro-
gen receptor (ER)-positive astrocytes were pro-
metastatic in BM in the TNBC subtype.33,34 
Astrocytes express classical ERs (ERα and ERβ). 
In vitro, estrogen treatment up-regulated epider-
mal growth factor receptor (EGFR) ligands and 

brain-derived neurotrophic factor in astrocytes 
and activated EGFR and tropomyosin kinase 
receptor B in TNBC brain metastatic cells. 
Estrogen also stimulated release of astrocyte-
derived paracrine factors to promote tumor pro-
liferation. In TNBC BCBM mouse models, 
ovariectomy decreased the magnetic resonance 
imaging (MRI) detectable lesions by 56% com-
pared with estrogen supplementation, and the 
combination of ovariectomy and letrozole further 
reduced the large lesions to 14.4% compared 
with control.33 Letrozole is a clinical aromatase 
inhibitor that blocks the enzyme that produces 
estrogen, and is used widely for ER+ breast can-
cer treatment. These important findings provide 
a therapeutic rationale to use estrogen-depletion 
therapies to prevent or delay development of BM in 
younger women, especially letrozole and other aro-
matase inhibitors with good BBB permeability.17

In addition to astrocytes, microglia, being resident 
macrophages of the brain, normally exhibit tumor-
defensive function by phagocytosis and release of 
cytotoxic factors. However, the tumor-interacting 
microglia can be polarized into immunosuppres-
sive and tumor-supportive roles by tumor-derived 
soluble factors, thereby promoting tumor progres-
sion.35 Xing et al., identified a specific long non-
coding RNA, X-inactive–specific transcript 
(XIST) significantly down-regulated in brain met-
astatic tumors from breast cancer patients and 
several BCBM cell lines. The researchers con-
cluded that the loss of the XIST promotes 
BCBM.18 BCBM tumor cells with reduced 
expression of XIST showed elevated exosomal 
miRNA-503, which triggered M1–M2 polariza-
tion of microglia and augmented release of 
immune suppressive cytokines in microglia that 
suppressed T-cell proliferation. The Prestwick 
FDA-approved drug library was screened on the 
XISTlow breast tumor cells and fludarabine was 
identified as a synthetic lethal drug in inhibiting 
BM. Fludarabine is an FDA-approved chemo-
therapeutic drug for treatment of chronic lympho-
cytic leukemia. However, the IC50 for fludarabine 
on XISTlow BCBM cells was 10-fold lower than 
the effective dose for leukemic cells. A low-dosing 
treatment (i.p., once every 2 days, 10 mg/kg) was 
used in BCBM mouse models, and fludarabine 
not only significantly delayed onset of BM, but 
also suppressed growth of tumor cells in the brain 
without notable toxicity on neuronal cells.18

Research into the modulation of other mecha-
nisms of BM is also emerging. For example, a 
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recent study by Benbenishty et al. showed that 
prophylactic administration of CpG-C, a Toll-
like receptor 9 (TLR9) agonist, significantly 
reduced development of BM in mouse models 
from lung cancer and melanoma.19,36 Systemically 
administered CpG-C can be taken up by brain 
endothelial cells, astrocytes, and microglia in 
mice. The CpG-C-activated microglia displayed 
elevated mRNA expression of apoptosis-inducing 
and phagocytosis-related genes and phagocytized 
tumor cells when microglia and tumor cells were 
physically contacted at early tumor invasion into 
the brain. Although no breast cancer model was 
explored in the study, the similar anti-tumor 
microglia mechanism among breast cancer, lung 
cancer, and melanoma BM should warrant inves-
tigation into the use of CpG-C in BCBM. Other 

experimental therapeutic strategies, including tar-
geting various steps in metastatic cell colonization 
and early tumor growth, such as integrin, matrix 
metallopeptidase (MMP), and VEGF functions, 
have been reviewed by Achrol et al.,37 and prom-
ising anti-BM effects were seen in animal models. 
In addition, intriguing new mechanistic pathways 
in BCBM are continuously being explored. For 
example, tumor exosomal CEMIP protein was 
taken up by brain endothelial and microglial cells, 
and induced endothelial cell branching and 
inflammation in promoting BCBM.38 Astrocytic 
sphingosine-1 phosphate receptor 3 (S1P3) up-
regulated the permeability of blood–tumor barrier 
(BTB) through secretion of IL-6 and CCL2 and 
reduced endothelial cell adhesion, thus facilitat-
ing extravasation and colonization of brain 

Figure 1. Summary of recent translational therapeutic strategies in repositioning known drugs to target 
BCBM tumorigenic signaling especially the microenvironmental factors. Silibinin, a commercially available 
nutraceutical reduced BCBM in animal models and a cohort of 18 patients through suppressing STAT3 
activation in the STAT3+ pro-metastatic As subpopulation.14 Meclofenamate, a FDA-approved anti-
inflammatory drug inhibited BCBM tumor growth by blocking PCDH7-Cx43 gap junction between Tu and 
astrocytes.15 Edlfosine, a phase II clinical trial drug in treating leukemia with bone marrow transplants 
inhibited BCBM by suppressing the PCDH7-PLCβ signaling that mediates the crosstalk between astrocytes 
and brain-tropism CSC.16 Letrozole, a clinical aromatase inhibitor for ER+ breast cancer treatment, 
decreased the large BCBM by suppressing ER+ pro-metastatic astrocytes.17 Fludarabine, a FDA-approved 
chemotherapeutic drug for treatment of chronic lymphocytic leukemia, inhibited the tumorigenic property of 
XIST-low and the tumor suppressive M2 microglia that not only delayed onset, but also suppressed growth 
of BCBM.18 CpG-C, a clinical trial TLR9 agonist, prevented BM by activating M1 microglial cells to kill and 
phagocytose the tumor cells during the early stages of invasion into the brain.19

A, astrocyte; BCBM, breast cancer brain metastasis; CSC, cancer stem cells; ER+, estrogen receptor-positive; FDA, United 
States Food and Drug Administration; TLR9, Toll-like receptor 9; Tu, tumor cells; XIST-low, XISTlow tumor cells
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metastatic tumor cells.39 Genetically, depletion of 
these molecules not only showed suppression of 
tumor growth but also had BCBM prevention 
effects. Despite the lack of available therapeutic 
agents, these novel scientific findings will drive 
continued discovery and development of poten-
tial therapeutic opportunities to target these 
mechanisms.

In addition, targeted carrier or drug delivery sys-
tems that selectively increase drug penetration 
through BBB or BTB have been actively pursued 
for years. This strategy addresses the low and het-
erogeneous permeability of therapeutic agents to 
brain disorders including BCBM. Progress in this 
field has been nicely reviewed by several groups 
recently.40–42

Targeted therapy and immunotherapy in 
BCBM
In the past, BCBM patients were excluded from 
the clinical testing of targeted treatments because 
their limited life span confounded assessment of 
drug efficacy on overall survival. However, recent 
clinical trials have started to elucidate the poten-
tial utility of targeted agents, mostly on HER2-
positive BCBM patients. In the newly published 
HER2CLIMB trial,43 tucatinib, an investigational 
oral tyrosine kinase inhibitor that is highly selec-
tive for HER2 with minimal inhibition of EGFR, 
was combined with trastuzumab and capecitabine 
in patients with previously treated HER2-positive 
BCBM patients from 155 sites across 15 coun-
tries. Impressively, the estimated progression-free 
survival at 1 year was 24.9% in the tucatinib-com-
bination group and 0% in the placebo-combina-
tion group, and the risk of disease progression or 
death was 52% lower in the tucatinib-combina-
tion group than in the placebo-combination 
group. This is the first demonstration of a drug 
that can prevent or delay disease progression in 
patients with pretreated HER2-positive breast 
cancer and brain metastases. The HER2CLIMB 
trial is important because it allowed patients with 
active brain metastases to enroll, which indicates 
that more trials need to be designed to include 
this patient group.

Recently, neratinib, another HER2 targeted 
tyrosine kinase inhibitor combined with capecit-
abine was shown highly active in treating HER2-
positive BCBM.21,44 Nearly 50% of patients 
experienced an objective response, which exceeds 
the point for either neratinib monotherapy (8%) 

or capecitabine and temozolomide (18%).9 The 
neratinib and capecitabine combination was 
active for those with prior lapatinib exposure. 
Lapatinib, a small molecule inhibitor of EGFR 
and HER2, has good penetration across the 
BBB,45 but, with limited activity as a single agent 
for HER2-positive BCBM, it therefore has been 
used in combination with capecitabine.37 A meta-
analysis of 12 trials with 799 patients revealed the 
disease control rate of 65.1% for the lapatinib 
and capecitabine treatment in HER2-positive 
BCBM.46 Lapatinib and capecitabine, however, 
have overlapping gastrointestinal toxicities, limit-
ing clinical dose intensification and efficacy. In a 
recent phase I study, a new administration regi-
men was explored, and escalated high-dose lapat-
inib was well tolerated when given intermittently 
and sequentially with flat-dose capecitabine, and 
antitumor activity of such treatment regimen was 
noted in both CNS and non-CNS sites of dis-
ease.47 In addition, a retrospective study evalu-
ated the addition of concurrent lapatinib to 
stereotactic radiosurgery (SRS), and concluded 
with improved complete response rates among 
patients with HER2-positive BCBM.48 The anti-
body drug conjugate trastuzumab-emtansine 
(T-DM1) is an approved second line treatment 
for metastatic HER2-positive tumors after trastu-
zumab. Patients with BMs treated in the phase III 
EMILIA trial had improved survival with T-DM1 
compared with lapatinib plus capecitabine.49,50 
Intracranial trastuzumab levels can be dramati-
cally increased after radiation therapy,51 and con-
comitant T-DM1 with whole brain radiation 
therapy (WBRT) induced a complete response in 
a patient with HER2-positive brain and leptome-
ningeal metastasis.52

There are several other targeted therapies for 
BCBM under clinical evaluation, including GDC-
0084 in combination with trastuzumab for 
HER2-positive BCBM [ClinicalTrials.gov identi-
fier: NCT03765983] in which GDC-0084 is a 
PI3K/Akt/mTOR-pathway inhibitor; everolimus 
in combination with trastuzumab and vinorelbine 
for HER2-positive BCBM in which everolimusis 
a brain-permeable mTOR inhibitor53; and keto-
conazole in treating patients with recurrent gli-
oma or BCBM in which ketoconazole is an 
antifungal drug in blocking the function of pro-
tein tGLI1 [ClinicalTrials.gov identifier: NCT 
03796273]. In addition, derivates of traditional 
chemotherapy agents could have better CNS 
penetration and intracranial activity. ANG 1005, 
which is a modified form of paclitaxel, is one such 
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molecule showing promising activity in early clin-
ical trials.54 Viral vector delivery of agents like 
trastuzumab is another novel strategy that has 
promising preclinical data in BCBM prevention 
and treatment.55

Immunotherapy has activity for BMs from lung 
cancer and melanoma,56–58 but BCBMs have a 
lower immune content compared with primary 
tumors, yet improved outcomes are associated 
with higher TIL content in the BCBM.59,60 Thus, 
strategies were proposed to alter the complex 
brain immune microenvironment, including con-
current SRS, bi-specific antibody armed activated 
T cells,61 and HER2-chimeric antigen receptor 
(CAR) T cells in BCBM treatment.62 It was 
hypothesized that SRS treatment would damage 
BCBM cancer cells and make them more visible 
to the immune system, and SRS plus atezoli-
zumab (Tecentriq, a PD-L1 antibody), is currently 
under clinical evaluation in patients with TNBC 
BM [ClinicalTrials.gov identifier: NCT03483012]. 
The use of bi-specific antibody activated T cells 
or HER2-CARTs for BCBM treatment is still 
under experimental examination. Saul et al. 
showed that HER2-CARs containing the 4-1BB 
costimulatory domain conferred an improved 
tumor targeting effect and reduced T-cell exhaus-
tion phenotype. Local intracranial delivery of 
these HER2-CARs showed potent in vivo antitu-
mor activity against multifocal brain and lep-
tomeningeal metastases in orthotopic xenograft 
models.62

Minimally invasive neurosurgery for BCBM
Surgery is typically reserved for BM patients 
with solitary and accessible lesions, or sympto-
matic lesions, good neurologic function, and/or 
those with good systemic control of the primary 
tumors. Modern advances in minimally invasive 
neurosurgical techniques, intraoperative imag-
ing-guided neuronavigation, and brain mapping 
have allowed for safer resection of BCBM, even 
within deep or eloquent brain regions. 
Stereotactic laser ablation or laser interstitial 
thermal therapy, which involves inserting a small 
laser catheter through a burr hole, have shown 
promise for treating inaccessible lesions or those 
that have undergone radiation necrosis.63–67 
Similarly, convection-enhanced delivery is a 
minimally invasive approach using image-guided 
catheter placement that circumvents the limita-
tions of BBB to potentially enhance drug deliv-
ery to BCBMs.68 In addition, intraoperative 

fluorescence-guided surgery has been applied to 
visualize and resect aggressive microscopic 
tumor margin in BCBM.69 The role of neurosur-
gery in the management of BCBM is evolving 
rapidly, and is expected to become an increas-
ingly important part of the global management 
of BCBM patients, whether to alleviate the 
effects of symptomatic mass lesions, deliver 
therapy, or mitigate treatment-related toxicity. 
Another role for surgery stems from the observa-
tions that molecular and immunologic profiles of 
BM are distinct from those of the primary or 
non-CNS metastatic tumor sites, whereas multi-
regional BMs in the same patient are similar.70 
Therefore, resection or biopsy may have an 
expanded indication to guide tailored therapy 
unique to each patient’s BCBM.

Clinical radiotherapy
Whereas surgery and systemic therapies are treat-
ment options for selected BCBM patients, radio-
therapy remains the cornerstone of treatment in 
most patients. Because the side effects of WBRT 
in cognitive deterioration and quality of life are 
better understood,71 a big shift toward stereotac-
tic radiosurgery (SRS) has occurred over the past 
decade. The SRS technique relies on multiple 
radiation beams intersecting at a target localized 
with three-dimensional image guidance naviga-
tion. This results in precise deliver of a high radia-
tion dose with rapid dose fall-off to optimize 
treatment effects and minimize damage to any 
adjacent tissue. This is most commonly delivered 
as a single session (SRS) but can be delivered in 
up to five fractions (stereotactic radiotherapy to 
mitigate side effects in larger lesions.

Currently, SRS is an established treatment for 
patients with <4 BMs.72 For patients with 
⩾4 BMs, several clinical trials are ongoing, includ-
ing the Netherlands randomized phase III trial 
[ClinicalTrials.gov identifier: NCT02353000] in 
comparing the standard treatment WBRT with 
SRS is patients with 4–10 BMs, to evaluate the 
primary endpoint of quality of life at 3 months 
after radiotherapy22; another randomized phase 
III trial [ClinicalTrials.gov identifier: NCT0159 
2968] at the MD Anderson Cancer Center for 
patients with 4–15 BMs compares SRS alone ver-
sus WBRT alone. The primary endpoints are cog-
nitive function and local tumor control at 
4 months. In addition, a recently registered rand-
omized phase III trial [ClinicalTrials.gov identi-
fier: NCT03550391] compares effects of receiving 
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SRS versus hippocampal-avoidant WBRT for 
patients with 5–15 BMs to establish whether this 
approach can mitigate the cognitive morbidity 
associated with WBRT.

Other promising strategies include SRS com-
bined with systemic therapy and novel applica-
tions of SRS. For example, lapatinib, which has 
shown improved complete response rates among 
patients with HER2-positive BCBM,48 or 
immunotherapy pembrolizumab (Keytruda) 
[ClinicalTrials.gov identifier: NCT03449238] 
and atezolizumab in patients with TNBC BM 
[ClinicalTrials.gov identifier: NCT03483012]. 
Individualized isotoxic dose prescription (IDP) 
has been advocated to mitigate the risk of 

radionecrosis and further enhance local control 
probability of SRS.73–75 For large lesions not ame-
nable to single-session treatment, staged SRS has 
shown promise,76 whereas preliminary studies of 
re-treated lesions report promising rates of tumor 
control and side effects.77–79 Finally, new 
approaches that use metabolic and functional 
imaging for treatment planning may provide more 
precise and safe targeting for recurrent treated 
tumors and those near functional structures such 
as the corticospinal tracts.80

Conclusion
Treatment options for BCBM continue to increase 
with exploitation of the molecular characterization 

Table 1. New clinical trials for BCBM patients.

Treatment 
category

Trial description (n) Trial duration ClinicalTrials.gov 
identifier:

Systemic therapy GDC-0084 plus 
Trastuzumab

HER2+ BCBM, single-arm, phase II (47) 12/2018– NCT03765983

Ketoconazole BCBM, two arms: Ketoconazole before 
standard surgery versus standard 
surgery, phase I (16)

1/2019– NCT03796273

Lapatinib plus
capecitabine

HER2+ BCBM, two arms: Lapatinib plus
capecitabine versus Trastuzumab plus 
capecitabine, randomized phase III (540)

04/2009–03/2018 NCT0082022220

Neratinib HER2+ BCBM, single-arm, phase II (40) 12/2011–11/2019 NCT014946629

Neratinib plus
capecitabine

HER2+ BCBM, single-arm, phase II (39) 12/2011–11/2019 NCT0149466221

Neratinib plus
capecitabine

HER2+ BCBM, two arms: Neratinib plus
capecitabine versus Lapatinib plus
capecitabine, randomized phase III 621)

03/2013–12/2019 NCT01808573

Radiotherapy WBRT versus SRS 
for 4–10 BM

BM including BCBM, two arms: WBRT 
versus SRS, randomized (31)

2/2015– NCT0235300022

WBRT versus SRS 
for 4–15 BM

Non-melanoma BM, two arms: WBRT 
versus SRS, randomized phase III (100)

08/2012– NCT01592968

HA-WBRT plus 
Memantine

BM including BCBM, two arms: HA-
WBRT plus Memantine versus SRS, 
randomized phase III (206)

06/2018– NCT03550391

Combination 
therapy

Pembrolizumab 
plus SRS

BCBM, single arm, phase I–II (41) 02/2018– NCT03449238

Atezolizumab plus 
SRS

TNBC BCBM, single arm, phase II (45) 03/2018– NCT03483012

BCBM, breast cancer brain metastasis; HA-WBRT, hippocampal-avoidant whole brain radiotherapy; SRS, stereotactic radiosurgery; TNBD, triple-
negative breast cancer; WBRT, whole brain radiotherapy.
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of BCBM tumors and their interactions with the 
brain microenvironment. The identified reposi-
tioned drugs target BCBM tumorigenic signals 
can be tested in clinical settings in a fast-track 
way. Advances in minimally invasive neurosur-
gery and stereotactic radiotherapy also improve 
the localization of the BM treatment, improving 
the long-term survival and quality of life of the 
BCBM patients. In contrast to a one-size-fits-all 
approach in cancer treatment, with more and 
more clinical options and different therapeutics 
strategies becoming available, a multi-disciplinary 
approach for treatment decision-making is needed 
in order to best meet individual patient’s needs. 
Eventually, as prevention of BM has been seen in 
certain experimental therapeutic strategies in ani-
mal studies, preventive clinical studies in high-
risk BCBM patients are on the horizon.
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