
Citation: Song, M.; Hu, C.; Gong, W.;

Yan, X. Domain Knowledge-Based

Evolutionary Reinforcement

Learning for Sensor Placement.

Sensors 2022, 22, 3799. https://

doi.org/10.3390/s22103799

Academic Editors: Sergio Toral Marín

and Olga Korostynska

Received: 9 March 2022

Accepted: 5 May 2022

Published: 17 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Domain Knowledge-Based Evolutionary Reinforcement
Learning for Sensor Placement
Mingxuan Song 1,† , Chengyu Hu 1,*,†, Wenyin Gong 1,† and Xuesong Yan 1,†

School of Computer Science, China University of Geosciences, Wuhan 430074, China;
chuqinghan@cug.edu.cn (M.S.); wygong@cug.edu.cn (W.G.); yanxs@cug.edu.cn (X.Y.)
* Correspondence: huchengyu@cug.edu.cn
† These authors contributed equally to this work.

Abstract: Reducing pollutant detection time based on a reasonable sensor combination is desirable.
Clean drinking water is essential to life. However, the water supply network (WSN) is a vulnerable
target for accidental or intentional contamination due to its extensive geographic coverage, multiple
points of access, backflow, infrastructure aging, and designed sabotage. Contaminants entering
WSN are one of the most dangerous events that may cause sickness or even death among people.
Using sensors to monitor the water quality in real time is one of the most effective ways to minimize
negative consequences on public health. However, it is a challenge to deploy a limited number
of sensors in a large-scale WSN. In this study, the sensor placement problem (SPP) is modeled as
a sequential decision optimization problem, then an evolutionary reinforcement learning (ERL)
algorithm based on domain knowledge is proposed to solve SPP. Extensive experiments have been
conducted and the results show that our proposed algorithm outperforms meta-heuristic algorithms
and deep reinforcement learning (DRL).

Keywords: sensor placement; evolutionary reinforcement learning; domain knowledge; combinatorial
optimization

1. Introduction

The safety of drinking water is essential to life. If pollution events occur, they can
cause significant losses. For instance, compared to other cities in Michigan, lead-related
water contamination events in Flint reduced fertility by 12 percent [1]. Eight heavy metals
have been detected in the Xiangjiang River, an important drinking water source, which has
extremely high ecological risks and may cause serious drinking water pollution incidents
at any time [2]. To detect pollution incidents earlier, reducing pollutant detection time
remains an urgent and strategic task.

An important approach to improving the efficiency of pollution monitoring is to
build an early warning system (EWS) for drinking water resources. The EWS detects the
pollutants in the water body with water quality sensors. The water quality sensor can
sample the water body, analyze the pollution, and report the pollution incident in real-
time through the network. The widespread deployment of pollution EWSs can effectively
reduce the risk of pollution incidents. A key link in the design of an EWS in the water
supply network (WSN) is to arrange the sensors. The main components of WSNs are static
sensors, which can be used to detect various pollutants. Compared with dynamic sensors,
their price is mature, the cost is low, and they are easy to detect, maintain, and replace.
Water quality sensors are expensive (for instance, Hach Chlorine Analyzers cost RMB 3000
to 5000) and there are also costs for sensor placement and maintenance. With a limited
number of sensors, the ideal sensor placement solution minimizes the potential impact of
contamination events on public health. Thus, it is of great practical significance to study
the sensor placement problem (SPP).

Sensors 2022, 22, 3799. https://doi.org/10.3390/s22103799 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22103799
https://doi.org/10.3390/s22103799
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6319-4290
https://orcid.org/0000-0003-1610-6865
https://doi.org/10.3390/s22103799
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22103799?type=check_update&version=1

Sensors 2022, 22, 3799 2 of 17

Different environmental matrices have affects on the placement of the sensors. Sensors
are placed in the water for a long term, and it is easy to cause a short circuit to the sensors
due to moisture. Therefore, it is necessary to choose sensors with high air-tightness qualities.
The sealing method of the sensor determines its air-tightness. Among the various sealing
methods, welding sealing, thermal sleeve sealing, vacuum nitrogen filling, and glue sealing
are widely used. From the perspective of sealing effects, welding sealing is the best, and
glue sealing is the worst. For sensors that work in a clean and dry indoor environment, it is
suitable to use glue-sealed sensors. For most SPP, the working environment of the sensor is
relatively humid, and you should choose diaphragm heat sealing or diaphragm welding
sealing, for vacuum-charging nitrogen sensors. In addition, sensors in highly corrosive
environments may have short circuits or damage to their elastomer due to humidity and
acidity. The outer surface should be over-sprayed or a stainless steel cover, for corrosion
resistance and air-tightness.

As shown in Figure 1, a typical SPP is given in a small WSN. There are nine nodes
in the WSN, and the sensors are deployed at nodes 1 and 6. Specifically, if a pollution
event occurs at the location in the figure, the sensor at node 1 can raise the alarm as
soon as possible. Due to the large scale of WSNs, where to deploy the sensors is a great
challenge. In essence, SPP is a kind of combination optimization problem, which have been
proved to be NP-Complete [3]. Various sensor placement algorithms are proposed [4–9].
SPP can be formulated as a constrained optimization problem based on some model
that captures the effect of different sensor combinations to minimize detection time. For
instance, paper [4] solved SPP with a branch-and-bound algorithm and papers [5,6] use
integer programming. However, when the scale of the WSN becomes larger, the solution
time of the deterministic algorithm increases significantly or even cannot solve the problem.
SPP can also be solved by the sorting algorithm. The authorities only need to provide
accurate WSN information and the professional opinion of the SPP from relevant experts.
Although the computational overhead of this method is small, it can also lead to inaccuracy
due to human subjectivity [7–9].

Source

Tank

Sensor

Nodes

3

1

2

9

8

7

65

4

Pollution source

First Alarm

Figure 1. Layout of the water quality sensors in a small WSN (9 nodes, 2 sources, 1 tank, 13 pipes).

Recently, deep reinforcement learning (DRL) has shown great ability in solving combi-
natorial optimization problems with an uncertain and dynamic environment. Combinato-
rial optimization, which is the optimal selection of decision variables in a discrete decision
space, has naturally similar characteristics to reinforcement learning’s (RL’s) “action se-
lection”. Furthermore, owing to the strong generalization ability of neural networks, it is
possible for DRL to solve large-scale combinatorial optimization problems [10–12]. Thus,
using DRL to solve combinatorial optimization problems is a good choice. In view of this, a
series of new approaches to solve combinatorial optimization problems using DRL methods

Sensors 2022, 22, 3799 3 of 17

have emerged in recent years. Combinatorial optimization problems such as capacitated
vehicle routing problems (CVRP) and graph coloring problems (GCP) have achieved good
results. Lu H. [13] use transformer attention combined with the RL method to improve
solution speed for CVRP. Emre Yolcu [14] used graph neural network (GNN) combined
with RL method in GCP to get optimal solutions with fewer search steps. Compared
with the traditional combinatorial optimization algorithm, the DRL-based combinatorial
optimization algorithm has a series of advantages such as fast solution speed and strong
generalization ability [15].

However, DRL algorithms typically suffer from three core difficulties: temporal credit
assignment with sparse rewards, lack of effective exploration, and brittle convergence
properties that are extremely sensitive to hyperparameters [16]. In order to further enhance
the performance of DRL, evolutionary computation (EC) has been integrated into the
framework of DRL, called evolutionary reinforcement learning (ERL) [17]. As a combination
of EC and DRL, ERL inherits the advantage of EC and DRL, and it has several many
attractive characteristics. First, it does not care about the distribution of rewards (sparse or
dense). Second, gradient information will accelerate ERL, and population mutation and
crossover operation can strengthen search ability. Section 5.2 presents our experiments on
the performance of different algorithms in SPP. By comparison, ERL outperforms DRL.

In this paper, we take SPP in WSN as a sequential decision optimization problem
and use ERL to solve it. The paper [18], uses the RL paradigm to solve SPP in distributed
parameter systems, exploiting the time-space separation property to minimize the modeling
error in the entire temporal and spatial domains. Differently from above, we focus on
the pollution detection time in WSN and introduce a deep neural network based on
the RL paradigm, combining EC and domain knowledge to solve SPP. If the traditional
optimization algorithm is used to solve SPP, experiments on Section 5.2 showed that
the effect was not good. By modeling SSP as a sequential decision problem, like greedy
search instead of optimization, the effect is improved. For the ERL algorithm to solve SPP,
the algorithm initializes a population where each individual contains a neural network.
SPP is mathematically formulated as a Markov decision process (MDP) with specified
elements. By splitting sensor placement actions, previously placed sensors are considered
when selecting each sensor location. Then, through the individual’s own exploration and
information sharing among individuals, the algorithm outputs the sensor combination
with excellent detection effects. In contrast, the DRL algorithm lacks information sharing
among individuals, and the individual exploration ability of the EC algorithm does not
originate from the neural network. In order to further enhance the performance of ERL,
domain knowledge is also integrated. The measurement of the average detection time on
each sensor node for a set of pollution events consumes a small amount of computation
but is closely related to performance. Therefore, we tested the detection time of each
sensor individually for the pollution event set and injected the average detection time
of each sensor location into the model as prior knowledge. Section 5.3.1 also has our
performance experiments on ERL with domain knowledge. By comparison, ERL with
domain knowledge outperforms DRL and meta-heuristic algorithms.

As mentioned above, the main contributions of this paper are as follows:

• SPP is modeled as a sequential decision optimization problem, a framework of ERL
has been proposed to solve it. As far as we know, this is the first work to apply ERL to
the SPP in WSN.

• To further enhance the performance of ERL, domain knowledge is employed to
improve the search ability. Extensive experiments have been conducted and the
results show that the proposed algorithm outperforms traditional heuristic algorithms
and DRL.

Sensors 2022, 22, 3799 4 of 17

The rest of this paper is structured as follows. Section 2 introduces the related work.
Section 3 formulates the SPP and gives an overview of the algorithm. Section 4 introduces
the framework of ERL algorithm based on domain knowledge and genetic algorithm.
Section 5 discusses the experiment results. Finally, Section 6 shows the results and discus-
sion of the paper.

2. Related Work
2.1. Sensor Placement Problem

SPP is currently one of the research hotspots for academia and industry. Due to the
complex geographical distribution and numerous entry nodes, the WSN is vulnerable to
accidental or man-made pollution injection attacks [19]. Thus, it is especially significant to
place drinking water quality sensors in WSNs, as they can monitor and report contaminants
in real time. Under ideal conditions, we can deploy sensors at each node of the WSN.
Actually, the pipe network has complex geometries and topologies due to the connectivity
of the network, the location of each single element (e.g., pipes, pumps, valves), and the
complex network geometry produced by traditional design criteria [20]. Additionally,
water quality sensors are expensive and there are also costs for sensor placement and
maintenance. Considering the limits of geographic location and economic conditions
mentioned above, only a limited number of sensors can be deployed in a WSN. Thus,
reasonable layout of sensors can not only effectively reduce the cost, but also improve the
efficiency of monitoring.

In general, academics divide SPP into two categories: the maximum coverage problem
and the set coverage problem. The maximum coverage problem of SPP mainly refers
to maximizing monitoring efficiency by a fixed number of sensors, and the set coverage
problem of SPP is studied to achieve full coverage of the monitoring area through the
minimum number of sensors. Because the size of WSN is greater than the number of
sensors, the maximum coverage problem is studied in our paper. In addition to the
classification of the problem, the size of the WSN will also have a great impact on the
performance of different algorithms. When the size of the WSN is small or medium,
deterministic algorithms, such as integer programming [21], branch and bound [22], and
heuristic algorithms (e.g., genetic algorithm), are often used to solve the SPP. For instance,
Jonathan Berry [5] presented a mixed-integer programming (MIP) formulation for sensor
placement optimization in municipal water distribution systems. Zhao Y. [4] proposed
a branch and bound sensor placement algorithm based on greedy heuristics and convex
relaxation. However, as the size of WSN increases, the computational complexity increases
exponentially, and neither deterministic algorithms nor heuristic algorithms can solve the
SPP quickly and accurately.

In order to deal with large-scale SPPs, there are two methods. The first one is the
expert opinion method, which allows experts in related fields to select the location of the
sensor based on their experience. In the early days, this method was mainly adopted due
to technical limitations. The drawback of the expert opinion method is that it relies too
much on expert subjectivity, making the results inaccurate. The second one is the sorting
method. The sorting method is a rule-based method, and the algorithm sorts the sensor
placement positions by defining some rules. Thus, most of the sorting methods do not need
to obtain models for hydraulic simulation and water quality simulation in the water supply
network, and only need to calculate the priority of each node according to the rules. Thus,
the sorting method can be used in the sensor arrangement of large-scale networks without
a hydraulic model. Morais [7] developed a multi-criteria model for group decision-making
to optimize WSN. Although this method has small computation overhead, it will also be
inaccurate because of human subjectivity, and one rule does not apply to different WSN
models (rings, tree structures).

Sensors 2022, 22, 3799 5 of 17

Additionally, parallel computing is also effective for solving large-scale SPP problems.
Parallel computing accelerates computing by using large-scale hardware resources, which
can solve large-scale SPPs to some extent. For instance, Hu C. [23] used Map-Reduce to
solve contaminant source identification problems in WSN. The simulation time can be
greatly shortened through parallel computing. However, the SPP is essentially a combina-
tion optimization problem in a high-dimensional space. As the size of WSN increases, the
decision space increases exponentially, and parallel computing will fail to solve SPP.

As the uncertainties are also key factors that have an impact on the monitoring effec-
tiveness of sensors, the above methods do not consider the uncertainty of water demand
and the randomness of pollution events [24]. The basic process of reinforcement learning
is a Markov decision process, through the strategy of reinforcement learning, switching
between different sensor placement states to tackle the SPP in a dynamic uncertain environ-
ment. Thus, we model SPP as a sequence decision optimization problem, and apply ERL to
solve it.

2.2. Evolutionary Reinforcement Learning

With the proposal of AlphaGo [25], artificial intelligence-related algorithms have
attracted widespread attention from the academic and industrial communities. The core of
AlphaGo is DRL, which has been widely applied in the field of intelligent traffic control,
computer games, robot control, and natural language processing. Furthermore, with the
advent of pointer network architecture [26], DRL can deal with large-scale combinatorial
optimization problems. For instance, the pointer network is applied to solve TSP and
vehicle problems [27,28]. Chen X. [29] achieved better results on expression simplification,
online job scheduling, and vehicle routing problems using a method named NeuRewriter
with a pointer network.

There are also cases of DRL applications in WSN-related problems. For instance,
Gergely Hajgató [30] used DRL to solve real-time control of pumps in WSN. DRL can also
be used to solve the SPP. DRL has the ability in solving sequential decision optimization
problems by using an agent interacting with the environment, and SPP can also be viewed
as a sequential decision optimization problem. The layout of sensors is a series of actions
to deploy the sensor one-by-one in a WSN. Before deploying each sensor, it is necessary to
observe the environment state and decide to deploy the next sensor in a WSN. As the deci-
sion space of SPP is relatively complicated, it is appropriate to use a deep neural network
for the output strategy, to select the optimal node to deploy the water quality sensor.

From the above analysis, it can be seen that DRL has achieved great success in a series
of challenging combinatorial optimization tasks. However, DRL also has some drawbacks:
temporal credit assignment with sparse rewards, lack of effective exploration, and brittle
convergence properties that are extremely sensitive to hyperparameters [16]. Due to these
three shortcomings, DRL cannot be widely applied to more practical problems. As shown
in Section 5.2, it can be seen that there is still a certain gap between the effect of DRL and
the meta-heuristic algorithm on SPP.

As a competitive optimization algorithm, EC can deal with many complex optimiza-
tion problems without gradient information. EC consists of three main operators: new
solution generation, solution change, and selection. These operations are applied to a
population of candidate solutions to continuously produce new solutions while preserving
promising probabilities. The selection operation is usually probabilistic, in which a solution
with a higher fitness value has a higher probability of being selected. If a higher fitness
value represents a good solution quality, the overall quality of the solution will improve
with each generation. Mambretti [31] uses a method based on Genetic Algorithms to
optimize the pumps functioning in water distribution networks.

By combining EC with RL, ERL inherits the advantage of EC and RL, and has the
ability to deal with complex practical problems. In paper [32], Khadka used the population
of the EC to provide diverse data to train the agent, and periodically reinsert the agent into
the population. By sharing the gradient and hereditary information, ERL can allocate time

Sensors 2022, 22, 3799 6 of 17

credits through fitness measures, and effectively explore a set of different strategies. In
our work, deep neural networks are used to replace individuals. By directly encoding the
neural network layers as the chromosome, we evolve multiple chromosomes by crossover,
mutation operations. At the same time, gradient information is also used to update the
parameters of neural networks, acting as the selection operator.

Additionally, in many domains, the application of domain knowledge also provides
better potential for model algorithms. Zhang K. [33] used domain knowledge to revise
the results from the RL model so that their model achieved state-of-the-art results on
most specific sentiment categories. Zheng Y. [34] used domain knowledge to improve the
robustness of deep neural network models, reducing the model’s standard deviation by
37%. Many DRL algorithms contain inductive bias, which includes domain knowledge [34].
In general, there is a trade-off between generality and performance when algorithms use
this bias. Stronger biases can lead to faster learning, but weaker biases can lead to more
general algorithms. This may require a lot of effort to gain relevant domain knowledge
or tune hyperparameters efficiently. In this paper, we carefully select the appropriate
domain knowledge to incorporate it into the algorithm with almost no additional workload,
achieving remarkable results on the SPP.

3. Problem Modeling and Approach Overview

This paper aims at developing an ERL-based node selection mechanism combined
with domain knowledge to find optimal sensor combinations in WSN. This section states
the problem and presents the overview of the proposed approach.

3.1. Problem Modeling

The urban WSN is modeled as a directed graph G = (V, E), which consists of nodes
and edges, V means the set of nodes, and the sensors can be deployed at any node. E
means the pipes in WSN. When a pollution event occurs, the pollutants will flow with the
drinking water along the pipeline in the WSN. When the concentration of contaminant
exceeds the detection threshold of the sensor, the sensor will raise an alarm in time.

There is a possibility that the sensors cannot detect pollution events. In this circum-
stance, the average minimum detection time is equal to the total simulation period T. It
is assumed that the pollutants are conservative and do not react with water. Each pollu-
tion event involves a single injection location, that is, each pollution event occurs only
at one node at any time with equal probability. In addition, we assume that the sensor
can immediately detect any non-zero concentration of pollutants, and immediately raise
an alarm.

We give definitions of states and actions to explain how to obtain a set of sensor nodes.
First, the SPP’s system state x is as follows:

x = [x1, x2, . . . , xi, . . . , xN] (1)

where i is an integer between 1 and N, and xi is equal to 0 or 1, representing whether the
i-th node has placed a sensor. N is the number of positions where the sensor can be placed.
The system state x is an N-dimension zero vector at the beginning, and continues to change
from 0 to 1 with each node choose action, until the number of 1 reaches the number of
sensor placements. In the final state, the dimension with a value of 1 is the node where the
sensor needs to be placed, and the dimension with a value of 0 does not need to be placed.

Second, the node choose action is as follows:

a = [a1, a2, . . . , ai, . . . , aN] (2)

where ai is equal to 0 or 1, and there is only one value equal to 1, representing the node
position selected this time.

Sensors 2022, 22, 3799 7 of 17

In this paper, we abstract each pollution event W as a set of N times, denoted as
W = {t1, t2, . . . ti, . . . , tN}. Here, ti is the detection time of the sensor on the j-th node. For
each pollution event W in the pollution event set, the detection time of the sensor combina-
tion is the time elapsed from the occurrence of the pollution event to the first determination
of a non-zero pollution concentration by the sensor. For sensor node combinations, the
minimum detection time is equal to the time when a pollution event is first detected across
the chosen sensors. The minimum detection time for a specific pollution event is defined
as follows:

tn = min {ti} (3)

where tn represents the minimum detection time among all n sensors placed in WSN, ti is
the detection time of the sensor on the i-th node, and {ti} represents the set of times from
the nodes placed in WSN. The objective function J in Equation (5) to be minimized is the
expected minimum detection for multiple pollution events.

Thus, given a set of nodes, expressed as S = {si}n
i=1, where n is the number of sensors

placed in WSN, the average minimum detection time for m pollution events in the pollution
event set is defined as follows:

t =
1
m

m

∑
i=1

min {tij, j = 1 to n} (4)

where tij represents the minimum detection time of the sensor on the j-th node for the i-th
pollution event.

By defining states and actions, following the standard formulation of RL, the allocation
action a is chosen to achieve the function J defined in the Equation (5). This process is
repeated until the target number of sensors is reached, and is described in more detail
in Section 4. With the support of domain knowledge and evolutionary algorithms, this
process can be better assisted. Finally, the selected sensor nodes are more accurate, and a
group of sensor nodes with better results is finally obtained.

3.2. Approach Overview

First, we take domain knowledge as the input to the neural network. Then, the neural
network of the model aims to learn the parameters of a stochastic policy to assign high
probabilities to short detection times and low probabilities to long detection times. Then,
our final objective J is defined as:

J(θ | V) = min Ep(S|V) tj (5)

where E denotes the mathematical expectation, and θ presents the parameters of the
neural network in the model. In the Equation (5), p(S|V) is the chain rule to factorize
the probability of a node combination, and more details are described in Equation (5) in
Section 3.2.

In the current state x, the model selects the corresponding action, so that the system
enters another state. The number of sensors selected in the current state is one more than
the previous state. The size of the state-action space is 2n × N, where n is the number
of sensors placed in WSN, and N is the total number of nodes that can be placed. As N
and n are often large in WSN, it is infeasible to precompute the action for every possible
state to minimize the function J mentioned in Equation (5). However, SPPs have relatively
simple reward mechanisms that could even be used at test time. Thus, using a model-free
policy-based RL to optimize the parameters of a pointer network, and the specific update
process are described in Section 4.

Finally, through the above process, the network can be updated after selecting a set of
sensor combinations. The above only discusses the case of a single agent individual. When
multiple agents form a population, the situation is more complicated. In the multi-agent
case, we use DRL combined with EC to train the population. Each individual updates the
individual through the above algorithm of implicit parallelism. Then, the population will

Sensors 2022, 22, 3799 8 of 17

evolve through crossover and mutation operators. The crossover operator exchanges the
network layer parameters of some individuals with a certain probability, and the mutation
operator resets the network layer parameters of some layers with a certain probability.
After the above process, the individual has completed a round of evolution. The above
process is iterated until the specified generation is reached. Section 4 shows some details of
evolutionary algorithms, and our experimental results are shown in Section 5.

4. Domain Knowledge-Based Evolutionary Reinforcement Learning

The overall framework of the algorithm is shown in Figure 2 and is described in
detail in Algorithm 1. The details of each part of the algorithm are shown in the rest of
this chapter.

Figure 2. The framework of the domain knowledge-based ERL algorithm. Please note that the same
serial number represents the same operation.

4.1. Model Input with Domain Knowledge

It is worth noting that we consider using the Monte Carlo method to search extensively
when generating the initial sequence, so that the model can learn from a better initial
solution. However, experiments in Section 5.3.2 have shown that this approach is also not
very effective. We try to use domain knowledge to overcome the problem. Because the
detection time of a single sensor for all pollution events indicates, to a certain extent, the
sensor’s monitoring ability, it will provide a certain contribution to the detection ability
of the sensor combination. Thus, the input vector I to our neural network is defined
as follows:

Mj = min{tij, i ∈ 1 to m} (6)

Ij = 1−
Mj −Mmin

Mmax −Mmin
(7)

where Ij represents the j-dimension of the input vector I. Experiments in Section 5.3.1 show
that this method can significantly improve search performance.

Sensors 2022, 22, 3799 9 of 17

Algorithm 1 Domain knowledge-based ERL

Input: input nodes set V, initial parameters θ, the number of pollution incidents m,

choose nodes number n, baseline shift coefficient α, population size k, iteration l, iteration

l, crossover probability pc, mutation probability pm

Initial Domain Knowledge

S ← NodeChooseAction()

tS ← t(S | V)

b ← tS

for it = episode ∈ [1, l] do

for j = episode ∈ [1, k] do

Sj ← NodeChooseAction() for i ∈ {1, . . . , n};
j← Argmin(p(x1|V) . . . p(xn|V));

tj ← t(Sj|V)

if tj < tS then

S← Sj

tS ← tj

end if

gθ ← 1
m ∑m

i=1(tj − b)∇θ log pθ(S | V)

θ ← SGD(θ, gθ)

b← α× b + (1− α)× (1
n ∑n

i=1 bi)

end for

for k = episode ∈ [1, b k
2c] do

γ1 = random[0, 1]

if γ1 < pc then

Crossover

end if

end for

for j = episode ∈ [1, k] do

γ2 = random[0, 1]

if γ2 < pm then

Mutation

end if

end for

end for

Return S

4.2. Node Choose Action for Reinforcement Learning

Our pointer network consists of one layer of 128-unit fully connected linear network
modules and two recurrent neural network (RNN) modules, which called the encoder and
the decoder. Both RNN modules composed of 128 long short-term memory (LSTM) units.
The input vector I in Equation (7) is linearly transformed by the feedforward network
layer, and then transformed into a potential memory state sequence {enci} by the encoder.
At time step i, the decoder network maintains its latent memory state {deci}, and uses a
pointing mechanism to generate the next sensor node to be selected in the combination.

Sensors 2022, 22, 3799 10 of 17

The computations of the pointing mechanism are parameterized by two attention matrices
Wre f , Wq ∈ Rd×d and an attention vector v ∈ Rd as follows:

ui =

{
vT · tanh(Wre f · ri + Wq · q), i f i 6= π (j) f or all j < i

−∞, otherwise
(8)

A(re f , q; Wre f , Wq, v)
de f
=== so f tmax(u) (9)

Our pointer network, at decoder step j, then assigns the probability of visiting the next
point π(j) of the combination as follows:

p(π(j)|π(< j), s)
de f
=== A(enc1:n, decj) (10)

When generating sensor nodes, the pointer maintains a mask array to ensure that
previously output nodes are not output. The output of the pointing mechanism is the
probability of different nodes being selected in the current state, so there are multiple node
choose strategies.

Aiming to learn the parameters of a stochastic policy p(x | V). With the learned policy,
given an input set of nodes V, the model assigns high probabilities to short detection time
and low probabilities to long detection time. Our neural network architecture uses the
chain rule to factorize the probability of a node combination as:

p(x | V) =
n

∏
i=1

p(x(i) | x(< i), V) (11)

where x(< i) presents the previous state of x(i) and n is the number of sensors placed in
WSN, then uses individual softmax modules to represent each term on the source value on
the right side of Equation (11).

However, due to the computational cost of computing with the reward being small,
we improved the node selection strategy and used probabilistic selection, so that the results
of the model are not unique for the same network, and the model can be used in reasoning
to simulate the search process by considering multiple candidate solutions and selecting the
best solution. The solver searches for a large set of feasible solutions each time to implement
the inference process. Experimental results show that this approach significantly improves
search results. Once the next sensor node is selected, it is passed as input to the next
decoder step. The input to the first decoder step is a d-dimensional vector, which is treated
as a trainable parameter for our neural network. Finally, the model outputs a set of nodes,
expressed as S = {si}n

i=1, where n is the number of sensors placed in WSN.

4.3. Reward for Model Update for Reinforcement Learning

Vinyals [26] uses a supervised loss function containing conditional log-likelihood
to train the pointer network. This function takes the cross-entropy target between the
output probability of the network and the target provided by the solver into consideration.
However, learning from examples in this way is not advisable for all NP-hard problems,
especially SPP. SPP is untagged, and people are more concerned about finding a competitive
solution without tags. Thus, when training the pointer network, instead of using the
supervised loss function, we still considered the conditional log likelihood as an influencing
factor of the gradient update.

To achieve our final objective described in Equation (5), the algorithm resorts to policy
gradient methods and stochastic gradient descent to optimize the parameters. For the
purpose of self-attention, we choose the exponential moving average as the gradient. The
gradient of J(θ | V) is formulated as follows:

∇θ J(θ | V) = Ep(S|V)

[
(tj − b)∇θ log pθ(S | V)

]
(12)

Sensors 2022, 22, 3799 11 of 17

where tj is shown in Equation (4). The b is an exponential moving average value of the
rewards obtained by the network over time, accounting for the fact that the policy improves
with training, and updates as follows:

b′j = bj ∗ α + tj ∗ (1− α) (13)

The model needs to minimize the detection time, so we take the difference between
the detection time and b as a part of the reward. When the time of this iteration is small,
the (tj − b) term is negative to achieve a local minimum search. The model loss value
is the logarithmic result of multiplying the above expression by the gradient. Using a
gradient descent method with the loss value, the model actively updates its parameters
while searching for candidate solutions on a single test instance.

4.4. Evolutionary Strategy

The evolutionary strategy is a heuristic search process inspired by natural evolution:
populations are perturbed at each generation, and their fitness value is evaluated accord-
ingly. The parameter vectors with the highest scores are then recombined to form the next
generation population. This process iterates until the goal is fully optimized. The difference
between types of evolutionary algorithms is how they represent populations and how they
perform mutation and recombination.

We first combine evolutionary algorithms and DRL individuals, set the population
number as n, and realize it by searching multiple individuals in parallel. There is no
communication between individuals in the population. However, the experiments in
Section 5.3.3 show that this only slightly improves the detection time of the combination of
nodes. Therefore, we adopt measures similar to genetic algorithms to update and reproduce
the population to obtain the next generation of individuals.

The evolution operator in the model includes two parts: crossover operator and
mutation operator. The crossover operator of the model directly changes the hidden layers
of neural network, and due to the close correlation between the different network layers of
the neural network, we randomly exchange all the parameters held by the first n layers
of the network layer, so that both the performance of the deep neural network, and the
evolutionary performance of the evolutionary algorithm. The mutation operator of the
model randomly resets all the parameters of a layer of the neural network. After performing
population evolution, the parameters of the neural network are changed. The model re-
outputs sensor node combinations based on the set of pollution events and evaluates the
effect of the new solution quality.

It is worth noting that there are not operations for the selection operator because
when the agent of the deep neural network outputs actions, the selectivity of the model is
improved by considering multiple candidate solutions based on the probability selection
and batch in parallel. Therefore, the model already includes the effect of the selection
operator. Experiments in Section 5.3.3 show that after adding the EC part, the experimental
results outperform traditional meta-heuristic algorithms.

5. Experiments
5.1. Experimental Setup

A typical WSN shown in Figure 3 is employed in our experiments. The WSN consists
of 126 nodes, 1 source, 2 tanks, 168 pipes, 2 pumps, and 8 valves. The time step in the
simulation is 5 min and the whole simulation period is 96 h.

In order to evaluate the performance of our proposed algorithm, we compared the
modified ERL to the DRL and genetic algorithm (GA). The hyperparameters of all algo-
rithms are set as follows:

In GA, the length of the chromosome gene is the number of sensors, and the value of
each gene is the number of the node in which the sensor is deployed. In the reproducing
operation, the first half of the parents with the higher fitness values are selected as the
next generation, and the multiple point crossover operator and single point mutation

Sensors 2022, 22, 3799 12 of 17

operator are used to generate the offspring. The probability of crossover is set as 0.6, and
the probability of mutation is set as 0.1. When the population evolves 500 generations, the
algorithm stops.

In DRL, a mini-batch size is defined of 512, and the search step length is set to 500 steps,
which is consistent with the GA. A larger learning rate of 1 × 10−2 is set to ensure model
convergence. Stochastic gradient descent (SGD) optimizer is used to update the parameters
of network. Parameters are initialized uniformly and randomly in the range of (−0.8,0.8),
and the L2 norm of the gradient is clipped to 1.0. The baseline attenuation is set to α = 0.99.

In ERL, each of our individuals is an agent, which is based on the network described
in the DRL. The details of each individual are exactly the same as in DRL, and the crossover
and mutation probabilities are also set as 0.6 and 0.1, respectively. For the ERL algorithm,
we performed a sensitivity analysis to explore the effect of each part of the algorithm. It
is worth noting that for neural network layers such as the LSTM layer, there are multiple
layers of parameters, but in order to enhance the generalizability of the model, we still
use each layer of parameters as a single gene of the chromosome to participate in the
crossover and mutation process; that is, some hidden layer may correspond to multiple
chromosomal genes.

Figure 3. The network researched in the experiment.

5.2. Performance Comparison among Three Algorithms

After 500 iterations, GA, DRL, and ERL obtain the optimal layout of sensors, the curves
of the detection time of the layout of sensors by three algorithms is shown in Figure 4. As
can be seen, the optimal layout of sensors by ERL has the shortest detection time compared
to GA and DRL. From the perspective of the speed of the search process, GA has the highest
rate of convergence, and DRL converges slowly.

Table 1 lists the average detection time by different layouts of sensors by three al-
gorithms. As can be seen, the average detection time of deployed sensors by GA and
ERL are 5975 (1195 × 5) min and 5960 (1192 × 5) min. Thus, it follows that GA and ERL
outperform DRL.

Table 1. Algorithm comparison.

Algorithm GA DRL ERL

Average detection time/5 min 1195.606 1278.162 1192.254

Sensors 2022, 22, 3799 13 of 17

0 50 100 150 200 250

Step
300 350 400 450 500

1200

1300

1400

1500

1600

1700

1800

Ti
m

e

Algorithm Comparison

GA

DRL

ERL

Figure 4. Comparison of the best results of different algorithms.

5.3. Sensitivity Analysis
5.3.1. Domain Knowledge with ERL

Experimental configurations in this and subsequent sections are shown in Table 2.
In contrast, we extract multiple sets of solutions from our stochastic policy P(S | V) and
choose the shortest one for the task without selecting nodes with probability. This method
is called greedy selection.

Table 2. Different learning configurations.

Task Index Domain Knowledge Select with Probability Multi-Threaded Search EC Operator

B No Yes Yes Yes

C1 Yes No Yes Yes

C2 Yes Yes No Yes

D Yes Yes Yes No

For Comparison Yes Yes Yes Yes

In this part of the experimental comparison, we compare the ERL algorithm with and
without domain knowledge, and the results are shown in Table 3. Except for whether the
domain knowledge is added or not, two selection strategies and population evolution are
included. The experimental results are shown in Figure 5. It can be seen that after adding
domain knowledge, the search effect of the algorithm is obvious. The improvement not
only greatly improves the results of the algorithm, but also requires fewer steps to reach the
optimal results of the algorithm. It can be seen that after removing the domain knowledge,
since only the index of the sensor is obtained, there is no understanding of the specific
characteristics of each sensor. In this case, the search potential of the model at the later
stage of the iteration becomes worse, and a good effect cannot be obtained.

Sensors 2022, 22, 3799 14 of 17

0 50 100 150 200 250 300 350 400 450 500

step

1150

1200

1250

1300

1350

1400

1450

1500

1550

1600

1650

1700

tim
e

Domain knowledge comparison

Without domain knowledge
Domain knowledge

Figure 5. Domain knowledge comparison-based ERL.

Table 3. Algorithm comparison.

Task Index Average Detection Time/5 min Optimal Algebra

B 1237.8 174

C1 1353.23 268

C2 1255.95 416

D 1217.55 146

For Comparison 1192.25 137

5.3.2. Nodes Selection Strategy with ERL

The experimental results are shown in Figure 6. Selection strategy 1 uses multi-
threaded search to explore multiple sets of feasible solutions to train the model at the same
time, and uses greedy decoding for node selection, and only selects the node with the
highest probability of being selected in each round of selection. Selection strategy 2 is
the opposite of selection strategy 1. It uses probabilistic decoding, and randomly selects
nodes according to the probability that the nodes selected in each round are selected, but
only uses a single-threaded search. Strategy 3 is chosen to use both probabilistic decoding
and multithreaded search. Greedy decoding is not a good choice for problems with high
dimensional and nonlinear solution space. The first selection strategy has the worst effect,
and the missing multi-threaded search in the second selection strategy is also critical. After
adding the two selection strategies at the same time, the third selection strategy has a
great improvement.

Sensors 2022, 22, 3799 15 of 17

0 50 100 150 200 250 300 350 400 450 500

step

1150

1200

1250

1300

1350

1400

1450

1500

1550

1600

1650

1700

tim
e

Algorithm Comparison

Selection strategy 1
Selection strategy 2
Selection strategy 3

Figure 6. Selection strategy comparison based ERL.

5.3.3. Population Evolution with ERL

The experimental results are shown in Figure 7. The cross-mutation operator will
re-disrupt the model part in the convergence process. In this case, there may be no obvious
difference in the initial stage, or even a slight decrease in efficiency. This can be seen from
the comparison that the search ability of the later model will be greatly improved. It is
precisely because of the addition of the cross mutation operator that the model has the
ability to descend better [step100–step150].

0 100 200 300 400 500

step

1200

1300

1400

1500

1600

1700

tim
e

Algorithm Comparison

ERL without population evolution
ERL with polutaion evolution

Figure 7. Population evolution comparison-based ERL.

Sensors 2022, 22, 3799 16 of 17

6. Results and Discussion

To sum up, the ERL algorithm based on domain knowledge is feasible and efficient
for SPP. Through the pointer network and attention mechanism, it is possible for the ERL
algorithm to solve SPP. We conducted a comprehensive investigation of existing solutions
to this problem and noticed that RL is a promising tool for solving this problem. However,
none of the existing studies discusses this issue in WSN. Therefore, we are motivated to
propose a customized ERL algorithm to solve this problem. We first use RL paradigm
and pointer network individuals to build a framework for DRL to solve the problem of
the optimal placement of sensors, and add evolutionary algorithms to the framework,
and finally add domain knowledge to improve the search efficiency of the model. The
improved algorithm surpasses the heuristic algorithm under the same conditions. As the
first experiment, our work proved the feasibility and efficiency of applying ERL to sensor
optimization problems.

Author Contributions: Conceptualization, C.H.; methodology, M.S.; software, M.S.; validation, X.Y.;
formal analysis, M.S.; investigation, M.S.; resources, C.H.; data curation, M.S.; writing—original draft
preparation, M.S.; writing—review and editing, C.H. and W.G.; visualization, M.S.; supervision, X.Y.;
project administration, C.H.; funding acquisition, C.H. and W.G. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was supported in part by the NSF of China (Grant Nos. 62073300, U1911205,
62076225). This paper has been subjected to Hubei Key Laboratory of Intelligent Geo-Information
Processing, China University of Geosciences, Wuhan 430074, China.

Data Availability Statement: We use the open source software EPANET for simulating the effect of a
contamination event distributed through WSN. The EPANET is a computer program performing an
extended period simulation of hydraulic and water quality behavior. The download URL of EPANET
is as follows: https://www.epa.gov/water-research/epanet (accessed on 8 March 2022). The net-
work’s EPANET input files can be downloaded from the Exeter Centre for Water Systems(ECWS).
The download URL of ECWS is as follows: http://emps.exeter.ac.uk/engineering/research/cws/
(accessed on 8 March 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Grossman, D.S.; Slusky, D.J. The impact of the Flint water crisis on fertility. Demography 2019, 56, 2005–2031. [CrossRef] [PubMed]
2. Huang, Z.; Liu, C.; Zhao, X.; Dong, J.; Zheng, B. Risk assessment of heavy metals in the surface sediment at the drinking water

source of the Xiangjiang River in South China. Environ. Sci. Eur. 2020, 32, 23. [CrossRef]
3. Hu, C.; Dai, L.; Yan, X.; Gong, W.; Liu, X.; Wang, L. Modified NSGA-III for sensor placement in water distribution system. Inf. Sci.

2020, 509, 488–500. [CrossRef]
4. Zhao, Y.; Schwartz, R.; Salomons, E.; Ostfeld, A.; Poor, H.V. New formulation and optimization methods for water sensor

placement. Environ. Model. Softw. 2016, 76, 128–136. [CrossRef]
5. Berry, J.; Hart, W.E.; Phillips, C.A.; Uber, J.G.; Watson, J.P. Sensor placement in municipal water networks with temporal integer

programming models. J. Water Resour. Plan. Manag. 2006, 132, 218–224. [CrossRef]
6. Propato, M. Contamination warning in water networks: General mixed-integer linear models for sensor location design. J. Water

Resour. Plan. Manag. 2006, 132, 225–233. [CrossRef]
7. Morais, D.C.; de Almeida, A.T.; Figueira, J.R. A sorting model for group decision making: A case study of water losses in Brazil.

Group Decis. Negot. 2014, 23, 937–960. [CrossRef]
8. Haghighi, A.; Asl, A.Z. Uncertainty analysis of water supply networks using the fuzzy set theory and NSGA-II. Eng. Appl. Artif.

Intell. 2014, 32, 270–282. [CrossRef]
9. Li, M.; Liu, S.; Zhang, L.; Wang, H.; Meng, F.; Bai, L. Non-dominated sorting genetic algorithms-iibased on multi-objective

optimization model in the water distribution system. Procedia Eng. 2012, 37, 309–313. [CrossRef]
10. Packer, C.; Gao, K.; Kos, J.; Krähenbühl, P.; Koltun, V.; Song, D. Assessing generalization in deep reinforcement learning. arXiv

2018, arXiv:1810.12282.
11. Lee, K.; Lee, K.; Shin, J.; Lee, H. Network randomization: A simple technique for generalization in deep reinforcement learning.

arXiv 2019, arXiv:1910.05396.
12. Ouyang, W.; Wang, Y.; Han, S.; Jin, Z.; Weng, P. Improving Generalization of Deep Reinforcement Learning-based TSP Solvers. In

Proceedings of the 2021 IEEE Symposium Series on Computational Intelligence (SSCI), Orlando, FL, USA, 5–7 December 2021;
pp. 1–8.

https://www.epa.gov/water-research/epanet
http://emps.exeter.ac.uk/engineering/research/cws/
http://doi.org/10.1007/s13524-019-00831-0
http://www.ncbi.nlm.nih.gov/pubmed/31808102
http://dx.doi.org/10.1186/s12302-020-00305-w
http://dx.doi.org/10.1016/j.ins.2018.06.055
http://dx.doi.org/10.1016/j.envsoft.2015.10.030
http://dx.doi.org/10.1061/(ASCE)0733-9496(2006)132:4(218)
http://dx.doi.org/10.1061/(ASCE)0733-9496(2006)132:4(225)
http://dx.doi.org/10.1007/s10726-012-9321-7
http://dx.doi.org/10.1016/j.engappai.2014.02.010
http://dx.doi.org/10.1016/j.proeng.2012.04.245

Sensors 2022, 22, 3799 17 of 17

13. Lu, H.; Zhang, X.; Yang, S. A learning-based iterative method for solving vehicle routing problems. In Proceedings of the
International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

14. Yolcu, E.; Póczos, B. Learning local search heuristics for boolean satisfiability. In Proceedings of the 33rd Conference on Neural
Information Processing Systems (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019; Volume 32.

15. James, J.; Yu, W.; Gu, J. Online vehicle routing with neural combinatorial optimization and deep reinforcement learning. IEEE
Trans. Intell. Transp. Syst. 2019, 20, 3806–3817.

16. Khadka, S.; Tumer, K. Evolutionary reinforcement learning. arXiv 2018, arXiv:1805.07917.
17. Drugan, M.M. Reinforcement learning versus evolutionary computation: A survey on hybrid algorithms. Swarm Evol. Comput.

2019, 44, 228–246. [CrossRef]
18. Wang, Z.; Li, H.X.; Chen, C. Reinforcement learning-based optimal sensor placement for spatiotemporal modeling. IEEE Trans.

Cybernet. 2019, 50, 2861–2871. [CrossRef] [PubMed]
19. Maschler, T.; Savic, D.A. Simplification of water supply network models through linearisation. Cent. Water Syst. Rep. 1999, 1, 119.
20. Di Nardo, A.; Di Natale, M.; Giudicianni, C.; Greco, R.; Santonastaso, G.F. Complex network and fractal theory for the assessment

of water distribution network resilience to pipe failures. Water Sci. Technol. Water Supply 2018, 18, 767–777. [CrossRef]
21. Wolsey, L.A. Integer Programming; John Wiley & Sons: Hoboken, NJ, USA, 2020.
22. Brusco, M.J.; Stahl, S. Branch-and-Bound Applications in Combinatorial Data Analysis; Springer: New York, NY, USA, 2005; Volume 2.
23. Hu, C.; Ren, G.; Liu, C.; Li, M.; Jie, W. A Spark-based genetic algorithm for sensor placement in large scale drinking water

distribution systems. Clust. Comput. 2017, 20, 1089–1099. [CrossRef]
24. Hu, C.; Li, M.; Zeng, D.; Guo, S. A survey on sensor placement for contamination detection in water distribution systems. Wirel.

Netw. 2018, 24, 647–661. [CrossRef]
25. Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al.

Mastering the game of go without human knowledge. Nature 2017, 550, 354–359. [CrossRef]
26. Vinyals, O.; Fortunato, M.; Jaitly, N. Pointer networks. arXiv 2015, arXiv:1506.03134.
27. Bello, I.; Pham, H.; Le, Q.V.; Norouzi, M.; Bengio, S. Neural combinatorial optimization with reinforcement learning. arXiv 2016,

arXiv:1611.09940.
28. Nazari, M.; Oroojlooy, A.; Snyder, L.V.; Takáč, M. Reinforcement learning for solving the vehicle routing problem. arXiv 2018,

arXiv:1802.04240.
29. Chen, X.; Tian, Y. Learning to perform local rewriting for combinatorial optimization. In Proceedings of the 33rd Conference on

Neural Information Processing Systems (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019; Volume 32.
30. Hajgató, G.; Paál, G.; Gyires-Tóth, B. Deep Reinforcement Learning for Real-Time Optimization of Pumps in Water Distribution

Systems. J. Water Resour. Plan. Manag. 2020, 146, 04020079. [CrossRef]
31. Mambretti, S.; Orsi, E. Optimization of Pumping Stations in Complex Water Supply Networks through Evolutionary Computation

Methods. J. Am. Water Works Assoc. 2016, E119–E125. [CrossRef]
32. Khadka, S.; Majumdar, S.; Nassar, T.; Dwiel, Z.; Tumer, E.; Miret, S.; Liu, Y.; Tumer, K. Collaborative evolutionary reinforcement

learning. In Proceedings of the International Conference on Machine Learning (PMLR), Long Beach, CA, USA, 9–15 June 2019;
pp. 3341–3350.

33. Zhang, K.; Li, Y.; Wang, J.; Cambria, E.; Li, X. Real-time video emotion recognition based on reinforcement learning and domain
knowledge. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 1034–1047. [CrossRef]

34. Zheng, Y.; Chen, H.; Duan, Q.; Lin, L.; Shao, Y.; Wang, W.; Wang, X.; Xu, Y. Leveraging Domain Knowledge for Robust
Deep Reinforcement Learning in Networking. In Proceedings of the IEEE INFOCOM 2021—IEEE Conference on Computer
Communications, Vancouver, BC, Canada, 10–13 May 2021; pp. 1–10.

http://dx.doi.org/10.1016/j.swevo.2018.03.011
http://dx.doi.org/10.1109/TCYB.2019.2901897
http://www.ncbi.nlm.nih.gov/pubmed/30892267
http://dx.doi.org/10.2166/ws.2017.124
http://dx.doi.org/10.1007/s10586-017-0838-z
http://dx.doi.org/10.1007/s11276-016-1358-0
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0001287
http://dx.doi.org/10.5942/jawwa.2016.108.0025
http://dx.doi.org/10.1109/TCSVT.2021.3072412

	Introduction
	Related Work
	Sensor Placement Problem
	Evolutionary Reinforcement Learning

	Problem Modeling and Approach Overview
	Problem Modeling
	Approach Overview

	Domain Knowledge-Based Evolutionary Reinforcement Learning
	Model Input with Domain Knowledge
	Node Choose Action for Reinforcement Learning
	Reward for Model Update for Reinforcement Learning
	Evolutionary Strategy

	Experiments
	Experimental Setup
	Performance Comparison among Three Algorithms
	Sensitivity Analysis
	Domain Knowledge with ERL
	Nodes Selection Strategy with ERL
	Population Evolution with ERL

	Results and Discussion
	References

