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Introduction

As multicellular organisms, insects as a group seem to be most 
tolerant of foreign organisms and live together with many dif-
ferent microorganisms, both inside and outside their bodies, in 
a variety of ways,1 and symbiotic relationships range from mutu-
ally beneficial (mutualism) to neutral (commensalism) or para-
sitic (parasitism). The microorganisms inside insects include gut 
microbe, endoparasities, extracellular symbiosis, and intracellu-
lar symbiosis (also called endosymbionts). The endosymbionts is 
the most intimate association between two different organisms, 
and it is generally reasoned that the association is maintained 
through the host’s generations because the host and symbiont 
equally benefit from the association.

The endosymbiotic bacteria of insects are prevalent and cat-
egorized into two groups: primary symbionts (P-symbionts) 
and secondary symbionts (S-symbionts).1 The P-symbionts are 
obligatory and mutualistic to the host as they play prominent 
role in insect nutritional ecology by providing essential nutrients 
that are limited or lacking in the diet or aid in digestion and 
detoxification of food,1-3 such as Buchnera aphidicola in aphids, 
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The bacterial endosymbionts occur in a diverse array of insect 
species and are usually rely within the vertical transmission 
from mothers to offspring. In addition to primary symbionts, 
plant sap-sucking insects may also harbor several diverse 
secondary symbionts. Bacterial symbionts play a prominent 
role in insect nutritional ecology by aiding in digestion of 
food or supplementing nutrients that insect hosts can’t obtain 
sufficient amounts from a restricted diet of plant phloem. 
Currently, several other ecologically relevant traits mediated 
by endosymbionts are being investigated, including defense 
toward pathogens and parasites, adaption to environment, 
influences on insect-plant interactions, and impact of 
population dynamics. Here, we review recent theoretical 
predictions and experimental observations of these traits 
mediated by endosymbionts and suggest that clarifying the 
roles of symbiotic microbes may be important to offer insights 
for ameliorating pest invasiveness or impact.
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Portiera aleyrodidarum in whiteflies, Carsonella ruddii in psyllids, 
and Tremblaya princeps in mealybugs.1 The P-symbionts typi-
cally housed in specialized host organs termed bacteriocytes and 
relayed within transovarial transmission from mothers to off-
spring with perfect fidelity.1,4,5 In contrast to primary symbionts, 
S-symbionts may not be required for host survival and the asso-
ciation between host and symbiont is generally not very intimate 
and inhabit a variety tissues including primary bacteriocytes,6,7 
secondary bacteriocytes and sheath cells,8,9 salivary glands,10,11 
Malpighian tubules (Bution et al., 2008),12 and reproductive 
organs.11,13,14 The roles of more and more S-symbionts to their 
hosts have been unveiled in recent years, and these symbionts 
may exert diverse effects on their host, such as defense against 
natural enemies by enhancing host resistance,2,15,16 mediate ther-
mal tolerance of their hosts,17 to facilitate use of novel hosts18 and 
so on. Most of these S-secondary symbionts with the primary 
symbiont inside the bacteriocytes, however, some S-symbionts 
localize outside the bacteriocytes and suffer occasional horizon-
tal transmission, occur at low titers in hosts within and between 
species.10,13,19,20

The remarkable bacterial associations in insects were deemed 
intractable to study. In particular, all attempts to isolate the 
symbionts into axenic culture failed; consequently, the bacteria 
identification and the relationship could not be easily manipu-
lated. Our understanding of the connection between symbiotic 
bacteria and insects under natural contexts in a population ecol-
ogy condition has two different approaches over the last decade, 
largely through treated with antibiotics to eradicate the bacteria 
from insects or providing food lacking nutritional substances 
putatively provided by the endosymbionts21-24 and deduced from 
their complete genome sequence and subsequent gene expression 
studies.25-27

In this review, a wide range overview of the diverse roles of 
endosymbionts on insect host ecology and future aspects such 
as the potential role of endosymbionts in pesticide detoxification 
and effect of endosymbionts on host behavioral ecology has been 
discussed. Symbiosis function and insect traits are influenced 
by the total complement of insect-symbionts interrelationships. 
A firm understanding of these interactions will lead to a better 
appreciation of these astonishing symbioses and may provide 
insights for novel approaches to pest management.

Defense Toward Pathogens and Parasites

Most insects suffer attacks from various natural enemies, 
including pathogens, parasites, predators, and parasitoid wasps. 
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is usually considered to mediate reproduction of the hosts either 
enhance the proportion of infected female hosts or kill male off-
spring.36,37 Wolbachia are found in a variety of tissues and cell 
types within the model insect Drosophila melanogaster, provid-
ing an opportunity for it to interact with infectious intracellular 
pathogens.13 If Wolbachia provides protection from infectious 
pathogens, this would provide the host with a fitness advantage 
and serve as a mechanism to drive Wolbachia invasion in D. mela-
nogaster populations. Recently, Wolbachia has been manifested to 
confer enhanced resistance toward various insect RNA viruses in 
dipterans,38,39 such as Culex quinquefasciatus or Aedes aegypti.40,41 
The enhanced resistance mediated by Wolbachia might be regu-
lated by resistance to virus accumulation, tolerance of virus infec-
tion or a combination of both mechanisms and from the host’s 
innate immune system being primed by both Wolbachia and a 
virus.40

Symbiont-mediated protection could provide Wolbachia with 
an additional mechanism by which to invade insect populations. 
Natural Australian populations of D. melanogaster maintain 
a stable strain of Wolbachia infection; the tropical and sub-
tropical northern populations are heavily infected (greater than 
95%), but the cooler temperate southern populations are poorly 
infected (~15%).42 How this cline is maintained is unclear, but it 
is independent of local climatic conditions.43,44 It is tempting to 
speculate that virus infection rates could be higher in northern 
populations and, hence, promote the persistence of Wolbachia in 
these populations.

Symbiont-mediated protection against fungal pathogens 
has also been observed in the attine ants45 and a beetle that 
feeds on pine trees.46 Attine ants have long been a fascination 
for symbiosis researchers because of their unique ability to 
“farm” Lepiotaceae fungi as a food source. The delicate bal-
ance between ant and fungi can be disrupted when other fungi, 
which are not used as a food source. Remarkably, a Streptomyces 
sp bacterial symbiont found on the exterior of ants produces an 
antifungal agent that kills non-Lepiotaceae fungi.45 By killing 
off these invading fungi, the Streptomyces symbiont protects the 
fungal symbiont and, in turn, ensures the long-term survival of 
its ant host. A different Streptomyces symbiont isolated from the 
Southern pine beetle, Dendroctonus frontalis, was also observed 
to protect an important fungal symbiont from competing fungi. 
An antifungal molecule derived from the Streptomyces symbi-
ont was identified and shown to only interfere with the antag-
onistic fungi.46 There is also evidence that wasp larvae might 
be protected from microbial-induced mortality by a related 
Streptomyces symbiont.47

Influence on Insect-Plant Interaction

Insects have evolved many strategies to feed on plants including 
associations with mutualistic symbionts, which can be important 
mediators of direct and indirect interactions between herbivo-
rous insects and their host plants.48 The most striking ecologi-
cal character conferred to insects by endosymbionts is their role 
in supplying essential nutrients to their hosts. As several reviews 
have speculated that the role of primary endosymbionts in insect 

Variation in resistance toward parasites and pathogens has been 
shown to be regulated by the secondary symbionts in a number 
of insects and an understanding of such mechanism is steadily 
increasing. In support of the theoretical predictions, several natu-
ral examples of symbiont-mediated protection have been reported 
recently in insects, and these are discussed below.

To data, one obligate endosymbiont, Buchnera and several dif-
ferent facultative endosymbionts, namely Hamiltonella defensa, 
Regiella insecticola, and Serratia symbiotica as well as Rickettsia, 
Rickettsiella, Spiroplasma, and Arsenophonus have been reported 
from aphid species.2,28 The variable susceptibility of pea aphids to 
Aphidius ervi predation is linked to the presence or absence of the 
aphid’s facultative endosymbionts. Oliver et al. (2003) showed 
that both H. defensa and S. symbiotica could increase aphid host 
resistance against A. ervi, a parasitoid wasp that commonly preys 
on aphids. These symbionts do not prevent A. ervi oviposition in 
the aphid but developmental success of wasps following parasit-
ism were reduced by causing high mortality in developing para-
sitoid larvae in aphid hosts.15,29 R. insecticola, another common 
bacterium, provides strong protection against parasitic wasps, 
suggesting that the ability to protect their host against natural 
enemies may evolve readily in multiple species of endosymbiotic 
bacteria.30 Recent studies strongly suggested that several phage-
borne toxin genes and several toxins, which provided defense 
to the aphid host, identified depended on the genome of the H. 
defensa.8,31,32 The potential for phage to encode additional toxin 
genes provides a mechanism by which normally genetically stable 
and isolated bacterial endosymbionts could rapidly acquire novel 
toxins. This increases the endosymbionts’ potential to protect 
their insect host and provides an opportunity for additional pro-
tective genes to be introduced into these symbionts. Phage ecol-
ogy is an underexplored facet of symbiosis, in relation to what is 
known about bacterial symbionts, and future investigations into 
phage and the way that they deliver their toxins to the parasitoid 
wasp without harming the aphid host will solve many remaining 
questions about this system. Consequently, it is thought that the 
phage-borne toxin genes that target and kill the parasitoid wasps. 
Further experimentation, however, is required to confirm that 
these putative toxins are the active compounds that facilitate H. 
defensa protection. Similarly, the molecular basis of H. defensa-
mediated resistance is yet to be resolved.

The bacterial symbiont R. insecticola protects pea aphids from 
the entomophthorales fungus Pandora (Erynia) neoaphidis,33 
and recently, Lukasik et al. (2012)34 reports that four distantly 
related symbionts (in the genera Regiella, Rickettsia, Rickettsiella 
and Spiroplasma), can reduce mortality and also decrease fun-
gal sporulation on dead aphids which may help protect nearby 
genetically identical insects. Thus, R. insecticola not only protects 
individual insects but also protects the host population. The 
mechanisms involved in R. insecticola-mediated protection have 
not yet been determined but could involve the synthesis of anti-
fungal molecules, as has been observed in other insect-symbiont 
systems.35

Wolbachia are maternally inherited bacterial endosymbi-
onts that infect at least 20% of all insect species, making them 
extremely common in nature.36 In many insect hosts, Wolbachia 
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host plant physiology for their own benefit.58 For example, the 
potential to modulate plant defense in chewing insects are the 
symbiotic gut flora found in saliva and regurgitant, which is 
to synthesize N-acylamino acids.63,64 Another possible example 
is found in the apple leaf-mining moth, whose endosymbiont 
Wolbachia is involved in the production of cytokinins, which 
inhibit senescence, maintain chlorophyll, and control nutrient 
mobilization.65,66 The presence of Wolbachia in the larvae of the 
leaf-miner is positively correlated with high levels of cytokinins, 
which induced the “green-island” formation on leaves, increased 
compensatory larval feeding and higher insect mortality.66 
Currently the mechanism of how Wolbachia manipulates plant 
physiology during the plant-herbivore interaction is not known.

Insect symbionts may benefit their hosts by facilitating the 
transmission of plant pathogens. As we all known, almost 80% of 
the virus inflicted to plants is due to insect vector transmission.67 
Virus particles can cause circular infections in the aphids and 
whiteflies by binding to the GroEL chaperone proteins produced 
by symbiotic bacteria,68,69 which seems to protect begomoviruses 
in insect hemolymph and thereby affects the ability of insects to 
transmit virus.

Adaptation to Environment

So far, there is more and more attention to the abiotic factors 
to the effect of endosymbionts on temperature tolerance of their 
insect hosts. The range and variability of temperatures that an 
organism can tolerate is an important factor in determining its 
geographic range. Although the aphid host itself may not be 
adapted to higher temperatures,2 again the number of bacte-
riocytes of the primary endosymbionts Buchnera that supplies 
essential nutrients to the host, has been shown to decrease dra-
matically at higher temperatures or heat shock (Montllor et al., 
2002),70 however, the secondary endosymbiont S. symbiotica and 
H. defensa, which can confer tolerance and a trend toward higher 
fitness when subjected to high temperatures,70-72 presumably 
by enhancing retention of secondary bacteriocytes, as negative 
effects on the primary bacteriocytes under heat stress. A plau-
sible explanation is suggested by recent findings that S. symbi-
otica can partially rescure A. pisum fitness in the absence of the 
obligatory Buchnera.22 Thus, the heat tolerance of aphid hosts 
could originate from complementation of Buchnera function. 
Another explanation is the bacterial chaperone groEL, which is 
constitutively overexpressed in primary and secondary endosym-
bionts,73,74 may also protect host proteins from heat degradation 
when circulating in the hemolymph. An additional evidence for 
improved heat tolerance has been previously documented for A. 
pisum infected with S. symbiotica, which increased host fecundity 
under constant rearing at 25°C.75 For whitefly Bemisia tabaci, the 
secondary endosymbiont Rickettsia may confer heat tolerance to 
the host. In this example, Rickettsia in B. tabaci under normal 
conditions induces the expression of genes required for tempera-
ture tolerance that under high temperatures, indirectly lead to 
this tolerance.76 Variation in the genome of Buchnera itself adds 
to variation in heat tolerance of the pea aphid. A single-base regu-
latory mutation of a heat-shock gene in Buchnera of aphids that 

nutritional ecology,1,49,50 recent research in the role of secondary 
endosymbionts in mediating plant-insect interactions will be 
discussed.

Several recent studies suggested that food plant use of herbivo-
rous insects can be directly enhanced by facultative endosym-
bionts. One paper recently published by Tsuchida et al. (2011) 
showed injection of a secondary symbiont R. insecticola from 
a clover-adapted pea aphid to vetch aphid Megoura crassicauda 
allowed the latter that normally could not feed on clover to use 
this host plant. Transfection experiments in pea aphids indicated 
that R. insecticola enhances reproduction on clover.51,52 However, 
antibiotic manipulation was used to experimentally remove R. 
insecticola from naturally infected lineages showed that R. insecti-
cola was not responsible for generating the tradeoff on vetch and 
clover (Leonardo, 2004).21 Moreover, artificial infection with R. 
insecticola reduced acceptance of aphids for both two plants.52 
Thus, although R. insecticola affect host performance as well as 
host acceptance behavior in aphids, the impact of the symbiont is 
not necessarily positive and seems to be context dependent.

The stinkbugs, wherein the host-symbiont associations 
can be easily manipulated, provide a novel system that enables 
experimental approaches to previously untouched aspects of the 
insect-microbe mutualism.53 As in aphids, the endosymbionts of 
Megacopta stinkbugs are correlated with food plant use. A pest 
stinkbug species, Megacopta punctatissima, performed well on 
crop legumes, while a closely related non-pest species, Megacopta 
cribraria, suffered low egg hatch rate on the plants. When their 
obligate gut symbiotic bacteria were experimentally exchanged 
between the species, their performance on the crop legumes 
was, strikingly, completely reversed: the pest species suffered 
low egg hatch rate, whereas the non-pest species restored normal 
egg hatch rate and showed good performance.54 It is not clear 
though how the symbiont facilitates usage of the crop legumes. 
The symbiont of the pest species M. punctatissima may either per-
form better on the crop plants, e.g., by aiding in detoxification of 
a plant secondary compound, or may provide nutrients lacking 
on potentially suboptimal crop plants.54 Endosymbionts can also 
be important mediators of indirect interactions that limit use of 
food plants. For instance, the hosts that provide defect amino 
acids in the phloem have improved levels of secondary symbionts 
of aphids. However, as the secondary symbionts do not devote to 
amino acid nutrition for the aphids, negative effects of low qual-
ity phloem on aphid performance are aggravated.55,56

Insect symbionts have been reported to benefit their hosts, 
which took the form of physiological changes in the plant, 
mediated by a complex signal-transduction response to insect 
attack.57-59 Perhaps the best known example is ambrosia beetles 
and their mutualistic fungi of bark, which make wood digest-
ible for their hosts’ larvae and assist the beetles in overcoming 
tree resistance mechanisms.60 A microarray experiment revealed 
that the regulation of defense-related genes in the plant was influ-
enced by the symbiont Wolbachia in corn root borer.61 Similarly, 
the expression of plant defensive pathways in tomato was associ-
ated with the high concentrations of the symbiont Candidatus 
Liberibacter psyllaurous in tomato psyllid, bactericerca cocker-
elli.62 Insect herbivores have been reported to manipulate directly 
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killing in the ladybird beetle, Adalia bipunctata,89 or the bacte-
ria Spiroplasma and H. defensa induces male killing in ladybird, 
Cheilomenes sexmaculata.90,91 The spread of these bacteriums can 
result in rapidly decline of population genetic diversity and drive 
small populations to extinction.83

As a few hosts harboring facultative endosymbionts have 
shown negative effects under some circumstances,71 while most 
studies have indicated that secondary symbionts provided fit-
ness benefit, and these symbionts can spread rapidly within host 
population.92,93 The endosymbionts relevant to dispersal may 
also influence population dynamics of insect hosts. Pea aphids 
containing R. insecticola produced only fewer numbers of winged 
offspring in response to crowding than those lacking this endo-
symbionts, and for two out of three aphid lineages, the timing 
of sexual reproduction in response to crowding conditions was 
changed by the presence of this symbiont.94

Pesticide Detoxification

Chemical insecticides are widely used for controlling agricultural 
pest insects and other organisms worldwide. Meanwhile insecticide 
abuse has often gave rise to the development of insecticide resis-
tance in various pest insects, whose mechanisms have referred to 
evolutionary changes in pest genomes such as alteration of pesticide 
target locus, upregulation of degrading esterases, and improvement 
of pesticide secretion.95 Here, we report a mechanism of insecticide 
resistance previously unknown via an insecticide-degrading bacte-
rial symbiont establishes in pest insects. Kikuchi et al. (2012)96 
reported an extension of this repertoire of effects-bacteria in the 
genus Burkholderia imparts protection against organophosphorous 
pesticides in stinkbugs. Previous study suggested that biological 
insecticides, such as Bacillus thuringiensis, depended on the interac-
tion with symbiotic bacteria can be involved in insect resistance.97 
Given the general detoxification ability of microbes and their abil-
ity to evolve quickly, they could provide a potent means for rapid 
acquisition of pesticide resistance in hosts. As lateral gene transfers 
(LGTs) between symbionts and hosts are now known to be com-
mon.98 Therefore, it would not be surprising that this transmission 
manner would more readily link beneficial pesticide-degrading 
bacteria to their hosts, enhancing increase of both partners and 
therefore spread of the resistance phenotype.

Behavioral Manipulation

In mutualistic associations, the evolutionary interest of the sym-
biont modifies host behavior, which is adaptive to the parasites 
or predators and such phenomena called “manipulation by par-
asite.”99,100 However, symbiont-mediated alteration of the host 
behavior that enhances their probability of transmission has been, 
to our knowledge, scarcely attention. However, alterations in 
behavior characteristic by such mutualistic endosymbionts may 
be common as the examples on superparasitism behavior and 
reproductive behavior of parasitoid wasp,101,102 dispersal behavior 
of money spider103 or enhanced wandering behavior of stinkbug 
nymphs.104 Thus, symbiont-induced alteration of host behav-
ior might be well-known among mutualistic associations than 

eliminates expression of the heat-shock gene under thermal stress 
and lowers the ability of hosts to endure heat stress and produce 
hardly any offspring after a short exposure to heat stress.17

Besides the direct effects on the insect hosts, temperature cause 
indirect effects via changing the amounts of symbionts within 
the host or their efficiency of transmission to the offspring. For 
example, Wolbachia-induced effects of cytoplasmic incompatibil-
ity and parthenogenesis are weakened by exposing insects to heat, 
presumably due to the negative effect of high temperatures on 
symbiont survival.77 In A. pisum, the survival of Buchnera symbi-
onts reduced stemmed from a heat shock treatment.78 Similarly, 
high temperature or heat stress dramatically reduced the num-
ber of bacteriocytes (in which the obligate symbiont, Buchnera, 
resides) in aphids; however, the presence of S. symbiotica gave 
birth to retain their bacteriocyte.70

Body color is an important ecologically trait of visual cues for 
the pea aphid affects their susceptibility to parasites and preda-
tors. The aphid exhibits a color polymorphism, which improve 
their ability of resistance to natural enemies. Ecological studies 
showed that red aphids were more likely to be preyed on by pred-
ators ladybird beetles on green plants,79 while green aphids suffer 
higher rates of parasitoid wasps attack.80 The pea aphid carried 
the secondary endosymbiont Rickettsiella infection increased the 
amounts of blue-green polycyclic quinines changes the body 
color of host from red to green.28 Thus, the effect of the endo-
symbiont on body color is expected to influence prey-predator 
interactions.

Impact of Population Dynamics

Endosymbionts can sharply influence population dynamics via 
various ways, such as cytoplasmic incompatibility (CI), par-
thenogenesis induction (PI), feminization, and male-killing. 
The endosymbiotic bacteria such as Wolbachia, Arsenophonus, 
Spiroplasma, and Cardinium manipulated host reproduction 
are widespread among arthropods by vertical transmission.81,82 
Cytoplasmic incompatibility, in which uninfected female mated 
with infected males result in sterile crosses produce few or no off-
spring,82 and can be either unidirectional or bidirectional, thus 
gene flow between these strains is decreased due to a reduction in 
efficient migration rates. Feminization and Male-killing distort 
sex-ratio within a population and reduce the uninfected part of 
population size in which few male will be left to mate a large 
number of females.83 Parthenogenesis induction, in which hap-
loid host eggs are converted into viable diploid female offspring, 
may result in rapidly decline of genetic diversity.83

Among these symbionts, Wolbachia dominate current research 
in part because of the widespread and importance of this sym-
biont. Wolbachia can induce cytoplasmic incompatibility in the 
butterfly, Eurema hecabe and parasitoid wasp, Encarsia pergandi-
ella.84,85 Recently, other novel lineage of bacteria has been shown 
to be related to several reproductive manipulations, including 
“Candidatus Cardinium hertigii” in parthenogenesis induction 
in parasitoid wasps, Encarsia hispida86 and feminization in the 
mite, Brevipalpus phoenicis,87 Rickettsia related with parthenogen-
esis induction in leafminer, Liriomyza trifolii in Japan88 and male 
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infection, the short and long-term evolutionary tracks they 
mediate, the ecological differentiation and adaptation to host, 
the responses to environmental alteration, and species extinc-
tion risk.105 The potential invasion of new pests has often been 
facilitated by their mutualists and some novel interactions have 
resulted in new and more virulent insect pests.106,107 Manipulating 
symbionts may be exploited to improve pest control and finding 
out more about insects and their microbial associates will be both 
fascinating and useful.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

This research was supported by the National Science Fund for 
Distinguished Young Scholars (31025020), the 973 Program 
(2012CB017359) and Beijing Key Laboratory for Pest Control 
and Sustainable Cultivation of Vegetables. Special thanks go to 
John J. Obrycki (University of Kentucky) and two anonymous 
reviewers for their comments and constructive criticisms.

previously envisioned, particularly with symbiont transmission 
demands behavioral elements. As the symbionts and the hosts 
both benefit from the behavior, the behavior might have been 
evolutionarily favored by host immune system acting on both the 
partners, whose influence may produce important insights into 
host physiology.

Conclusions

The increasing awareness of the significant functions that endo-
symbionts play in host has brought to a rapid increase in the 
identification of important characteristic attributed to endosym-
bionts. The revolution in our understanding of the roles of sym-
bionts has been made possible by the many advances in molecular 
biology and functional genome research. Due to these advanced 
techniques it is now becoming viable to unravelling the mecha-
nistic basis of the molecular and biochemical mechanisms that 
underpinning insect-symbionts interaction, and host ecology 
influenced by these symbionts. Understanding these factors may 
give us insights into ecological significances of endosymbiont 
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