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Quantum annealing with all-to-all connected
nonlinear oscillators
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Quantum annealing aims at solving combinatorial optimization problems mapped to Ising

interactions between quantum spins. Here, with the objective of developing a noise-resilient

annealer, we propose a paradigm for quantum annealing with a scalable network of

two-photon-driven Kerr-nonlinear resonators. Each resonator encodes an Ising spin in a

robust degenerate subspace formed by two coherent states of opposite phases. A fully

connected optimization problem is mapped to local fields driving the resonators, which are

connected with only local four-body interactions. We describe an adiabatic annealing protocol

in this system and analyse its performance in the presence of photon loss. Numerical

simulations indicate substantial resilience to this noise channel, leading to a high success

probability for quantum annealing. Finally, we propose a realistic circuit QED implementation

of this promising platform for implementing a large-scale quantum Ising machine.
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M
any hard combinatorial optimization problems arising
in diverse areas such as physics, chemistry, biology and
social science1–4 can be mapped onto finding the

ground state of an Ising Hamiltonian. This problem, referred to
as the Ising problem, is in general NP-hard5. Quantum annealing,
based on adiabatic quantum computing (AQC)6,7, aims to find
solutions to the Ising problem, with the hope of a significant
speedup over classical algorithms. In AQC, a system is evolved
slowly from the non-degenerate ground state of a trivial
initial Hamiltonian to that of a final Hamiltonian encoding
a computational problem. During the time-evolution, the energy
spectrum of the system changes and, for the adiabatic condition
to be satisfied, the evolution must be slow compared to the
inverse minimum energy gap between the instantaneous ground
state and the excited states. The scaling behaviour of the gap
with problem size, thus, determines the efficiency of the adiabatic
annealing algorithm.

In order to perform quantum annealing, the Ising spins are
mapped to two levels of a quantum system, that is, a qubit, and
the optimization problem is encoded in the interactions between
these qubits. Adiabatic optimization with a variety of physical
realizations such as nuclear magnetic spins8 and superconducting
qubits9,10 has been demonstrated. However, despite great efforts,
whether these systems are able to solve large problems in the
presence of noise remains an open question11. As a consequence,
it is imperative to search for implementations with improved
resilience to noise.

A general Ising problem is defined on a fully connected graph
of Ising spins. However, efficient embedding of large problems
with such long-range interactions is a challenge because physical
systems more naturally realize local connectivity. In one
approach, a fully connected graph of Ising spins is embedded
in a so-called Chimera graph12,13. Alternatively, a more recent
embedding scheme was proposed by Lechner, Hauke and Zoller
(LHZ)14 in which N logical Ising spins are encoded in
M¼N(N� 1)/2 physical spins with M�Nþ 1 constraints.
Each physical spin represents the relative configuration of
a pair of logical spins. An all-to-all connected Ising problem
in the logical spins is realized by mapping the logical couplings
onto local fields acting on the physical spins and a problem-
independent four-body coupling to enforce the constraints.
This simple design requires only precise control of local fields,
making it attractive for scaling to large problem sizes.

In the following, we present a physical platform for quantum
annealing that is both scalable and shows robustness to noise;
here we propose to encode the Ising problem in a network of
two-photon-driven Kerr-nonlinear resonators (KNR). In our
scheme, a single Ising spin is mapped to two coherent states
with opposite phases, which constitute a two-fold degenerate
eigenspace of the two-photon-driven KNR in the rotating frame
of the drive15. Here we propose to realize quantum adiabatic
algorithms by encoding a quantum spin in quasi-orthogonal
coherent states. The dominant source of error in this system is
single-photon loss from the resonators. However, since coherent
states are invariant under the action of the photon jump operator,
the encoded Ising spin is stabilized against bit flips. We describe a
circuit QED implementation of a quantum annealing platform,
where a fully connected graph of Ising spins is embedded using
the LHZ scheme, relying on effective local magnetic fields and
four-body coupling between KNRs. The adiabatic optimization is
carried out by initializing the resonators to vacuum, and varying
only single-site drives to adiabatically evolve the system to the
ground state of the embedded Ising problem. This realization
allows us to encode arbitrary Ising problems with no restriction
on connectivity, or on the signs and amplitudes of the spin–spin
couplings.

Encoding Ising spins in the phase of coherent states has
previously been explored in the context of classical Ising
machines16–21. The quantum case was considered in ref. 22.
However, this previous study focussed on idealized quantum
systems without noise analysis and did not consider practical
implementations of these ideas. In contrast, our analysis considers
the performance of quantum annealing in the presence of
single-photon loss, by far the dominant loss mechanism.
Crucially, we numerically demonstrate that the probability for
the system to jump from the instantaneous ground state to one of
its excited states due to photon loss during the adiabatic protocol
is greatly suppressed as compared to conventional qubit
implementations with equal noise strengths. This resilience to
the detrimental effects of photon loss leads to high success
probabilities in finding the optimal solution to optimization
problems mapped on two-photon-driven KNRs. This noise
resilience, in combination with simple initialization and final
state detection by homodyne measurement of the resonators’ field
amplitudes, opens the door to realizing a large-scale quantum
annealer with favourable noise resistance.

Results
Adiabatic protocol for quantum annealing. Quantum annealing
is executed with the time-dependent Hamiltonian

ĤðtÞ¼ 1� t
t

� �
Ĥiþ

t
t

� �
Ĥp; ð1Þ

where Ĥi is the initial trivial Hamiltonian whose ground
state is known, and Ĥp is the final Hamiltonian at t¼ t which
encodes an Ising spin problem: Ĥp¼

PN
i4j Ji;jŝz;iŝz;j. Here,

ŝz;i¼ 1j i 1h j � 0j i 0h j is the Pauli-z matrix for the ith spin and Ji,j is
the interaction strength between the ith and jth spin. Crucially,
the initial and final Hamiltonian do not commute. For simplicity,
we have assumed a linear time dependence, but more complex
annealing schedules can be used. The system, initialized to the
ground state of Ĥi, adiabatically evolves to the ground state of the
problem Hamiltonian, Ĥp, at time t¼t � 1=Dmin, where Dmin is
the minimum energy gap6.

Single spin in a two-photon-driven Kerr-nonlinear resonator.
The Hamiltonian of a two-photon driven KNR in a frame
rotating at the drive frequency is given by Ĥ0¼�Kây2â2þ
Ep ây2þ â2
� �

, where K is the Kerr-nonlinearity and Ep the
strength of the two-photon drive. In a KNR, the coherent states
� a0j i, which are eigenstates of the photon annihilation operator,

are stabilized by the two-photon drive with a0¼
ffiffiffiffiffiffiffiffiffiffiffi
Ep=K

p
(ref. 15).

This statement can be visualized more intuitively by considering
the metapotential obtained by replacing the operators â and ây

with the complex classical variables xþ iy and x� iy in the
expression for Ĥ0 (ref. 23). As shown in Fig. 1a, this metapo-
tential is an inverted double well with two peaks of equal height at
(±a0, 0), corresponding to two stable points (see Supplementary
Note 1). This is consistent with the quantum picture according to
which the coherent states � a0j i are two degenerate eigenstates of
Ĥ0 with eigenenergy E2

p=K (ref. 15) (see Methods). Taking
advantage of this well-defined two-state subspace, we choose to
encode an Ising spin �0j i; �1j if g in the stable states � a0j i; a0j if g.
Importantly, this mapping is robust against single-photon
loss from the resonator when the rate of single-photon loss is
small k � 8Ep, a condition than can readily be realized in
superconducting circuits15. Moreover, the photon jump operator
â leaves the coherent states invariant â �0=�1j i¼ � a0 �0=�1j i.
As a result, if the amplitude a0 is large such that
�0=�1h jâ �1=�0j i¼ � a0e� 2 a0j j2 � 0, a single-photon loss does not

lead to a spin-flip error.
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Having defined the spin subspace, we now discuss the
realization of a problem Hamiltonian in this system. As
an illustrative example, we first address the trivial problem of
finding the ground state of a single spin in a magnetic
field. Consider the Hamiltonian of a two-photon-driven KNR
with an additional weak single-photon drive of amplitude E0,
Ĥp¼�Kây2â2þEp ây2þ â2

� �
þE0 ây þ â

� �
. As illustrated in

Fig. 1b for small E0, under this drive, the two peaks located at
(±a0, 0) in the metapotential associated to Ĥp are now of
unequal height with the peak at (� a0, 0) lower than the one at
(a0, 0) if E040, and vice versa for E0o0. These two states remain
stable, but have different energies, indicating that the single-
photon drive induces an effective magnetic field on the Ising spins

�0j i; �1j if g. Indeed, a full quantum analysis shows that if
E0j j � 4K a0j j3, then � a0j i remain the eigenstates of Ĥp but

their degeneracy is lifted by 4E0a0 (ref. 15). In other words, in the
spin subspace, Ĥp can be expressed as Ĥp¼2E0a0 �̂szþ const:, with
�̂sz¼ �1j i �1h j � �0j i �0h j. This is the required problem Hamiltonian for
a single spin in a magnetic field. This simple observation will play
an essential role in the implementation of the LHZ scheme
discussed below. Note that for larger E0, the eigenstates can
deviate from coherent states (see Supplementary Note 2).
Choosing E0j j � 4K a0j j3, however, ensures that �0j i; �1j if g are
indeed coherent states to an excellent approximation, such that
�0=�1h jâ �1=�0j i � 0 and the encoded subspace remains well protected

from the photon loss channel.
Following equation (1), we require an initial Hamiltonian

which does not commute with the final problem Hamiltonian
and which has a simple non-degenerate ground state. This is
achieved by introducing a finite detuning d040 between
the drives and resonator frequency. In a frame rotating at
the frequency of the drives, the initial Hamiltonian is chosen
as Ĥi ¼ d0âyâ�Kây2â2 with d0oK. This choice of initial
Hamiltonian generates large phase fluctuations that helps
maximize quantum tunnelling to states with well-defined phase
at the final stages of the adiabatic evolution. In this frame,
the ground and first excited states are the vacuum 0j i and single-
photon Fock state n¼1j i, respectively, and which are separated by
an energy gap d0. If a photon is lost from the resonator, the
excited state n¼1j i decays to the ground state 0j i which, on the
other hand, is invariant under photon loss. Since it is simple to
prepare in the superconducting circuit implementation that we

consider below, the vacuum state is a natural choice for the initial
state.

The time-dependent Hamiltonian required for the adiabatic
computation can be realized by slowly varying the two- and single-
photon drive strengths and detuning so that Ĥ1ðtÞ¼ 1� t=tð ÞĤiþ
t=tð ÞĤp, realizing equation (1) for a single-spin. Note that the form

of Ĥ1ðtÞ conveniently ensures that the nonlinear Kerr term is
time-independent. The time-dependent detuning is achieved by
tuning the single- and two-photon drive frequencies (see Methods).
By adiabatically controlling the frequency and amplitude of the
drives it is possible to evolve the state of the KNR from the vacuum
0j i at t¼ 0, to the ground state of a single Ising spin in a magnetic

field at t¼ t. Figure 2a shows the change of the energy landscape
throughout this evolution found by numerically diagonalizing the
instantaneous Hamiltonian Ĥ1ðtÞ for Ep¼4K , a0¼ 2, E0¼0:2K
and d0¼ 0.2K. The minimum energy gap Dmin is indicated. As
illustrated by the Wigner functions in Fig. 2b, a resonator initialized
to the vacuum state at t¼ 0 evolves through highly non-classical
and non-Gaussian states towards the ground state �0j i at t¼ t, with
t� 30=Dmin in this example. If, on the other hand, the KNR is
initialized to the single-photon Fock state at t¼ 0, then it evolves to
the first excited state �1j i at t¼ t. The average probability to reach
the correct ground state is 99.9% for both E040 and E0o0. The
0.1% probability of erroneously ending in the excited state arises
from non-adiabatic errors and can be reduced by increasing the
evolution time. For example, for t¼ 60/Dmin we find a success
probability of 99.99%.

Effect of single-photon loss. An appealing feature of this
implementation is that, at the start of the adiabatic protocol, the
ground (vacuum) state is invariant under single-photon loss.
Similarly, at the end of the adiabatic protocol at t¼ t, irrespective
of the problem Hamiltonian (that is, E040 or E0o0) the ground
state (coherent states �0j i or �1j i) is also invariant under single-
photon loss. It follows that towards the beginning and end of the
protocol, photon loss will not induce errors. Moreover, we find
that, even at intermediate times 0otot, the ground state of
Ĥ1ðtÞ remains largely unaffected by photon loss. This can be
understood intuitively from the distortion of the metapotential, as
shown in Fig. 2c at t¼ 0.2t for the same parameters as Fig. 2a.
While the metapotential still shows two peaks, the region around
the lower peak (corresponding to the ground state) is a circle
whereas that around the higher peak (corresponding to the
excited state) is deformed. This suggests that the ground state is
closer to a coherent state and, therefore, more robust to photon
loss than the excited state (see also Supplementary Note 3).
Quantitatively, the effect of single-photon loss is seen by
numerically evaluating24,25 the transition matrix elements
hcgðtÞjâ ceðtÞj i, ceðtÞh jâjcgðtÞi for the duration of the protocol,
where jcgðtÞi and ceðtÞj i are the ground and excited state of
Ĥ1ðtÞ respectively. As shown in Fig. 2d, the transition from the
ground to excited state is greatly suppressed throughout the
whole adiabatic evolution. This asymmetry in the transition rates
distinguishes AQC with two-photon-driven KNRs from
implementations with qubits26, something that will be made
even clearer below with examples.

Two coupled spins with driven KNRs. Before going to
larger lattices, consider the problem of two interacting
spins embedded in a system of two linearly coupled KNRs,
each driven by a two-photon drive and given by the Hamiltonian
Ĥp¼

P2
k¼1 ½ �Kây2k â2

kþEpðây2k þ â2
kÞ� þ J1;2ðây1â2þ ây2â1Þ. Here,

J1,2 is the amplitude of the single-photon exchange coupling and,
for simplicity, the two resonators are assumed to have identical
parameters. For small J1,2, this Hamiltonian can be expressed in

–1

1

0y
y

x

–1

1

0

–2 0 2

–30K

10K(–�0, 0) (�0, 0)

(–�0, 0) (�0, 0)

0 = 0

0 = K

a

b

Figure 1 | Contour plot of the metapotential. Metapotential corresponding

to Ĥp¼� Kây2â2þEp ây2 þ â2
� �

þE0 ây þ â
� �

, where K is the

Kerr-nonlinearity, Ep and E0 are the strengths of the two-photon and single-

photon drive respectively, with Ep¼4K and (a) E0¼0, (b) E0¼K. The

metapotentials, shown in the units of the Kerr-nonlinearity K, are

characterized by (a) two peaks of equal heights corresponding to the

degenerate states �0
�� � and �1j i, and (b) two peaks of different heights,

indicating lifting of degeneracy between the encoded spin states �0
�� � and �1j i.
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the �0j i; �1j if g basis as the problem Hamiltonian15

Ĥp¼4J1;2 a0j j2 �̂sz;1 �̂sz;2þ const: The nature of the interaction is
encoded in the phase of the coupling with J1,2o0 (J1,240)
corresponding to the ferromagnetic (anti-ferromagnetic) case. For
the initial Hamiltonian, we take Ĥi¼

P
k

d0âykâk�Kây2k â2
k

� �
þ

J1;2 ây1â2þ ây2â1

� �
and, following equation (1), the full time-

dependent Hamiltonian for the two-spin problem is
Ĥ2ðtÞ¼ 1� t=tð ÞĤiþ t=tð ÞĤp. Although it is possible to tune
these parameters in time, with the above form of Ĥ2ðtÞ, both the
linear coupling and the Kerr-nonlinearity are fixed throughout
the adiabatic evolution.

The ground state of Ĥ2ð0Þ is the vacuum state if the initial
detuning is greater than the single-photon exchange rate, d04J1,2.
On the other hand, at t¼ t, the two degenerate ground states for
anti-ferromagnetic (ferromagnetic) coupling are �0; �1j i; �1; �0j if g

�0; �0j i; �1; �1j if gð Þ. Accordingly, numerical simulations with both
resonators initialized to vacuum show the coupled system to
reach the entangled state N �0; �1j i þ �1; �0j ið Þ and N �0; �0j i þ �1; �1j ið Þ,
under anti-ferromagnetic and ferromagnetic coupling, respec-

tively. In these expressions, N¼1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ e� 4 a0j j2
� �q

is a normal-

ization constant. With the realistic parameters t¼ 50/Dmin,
d0¼K/4, J1,2¼K/10 and E0

p¼2K , corresponding to a0¼
ffiffiffi
2
p

, the
state fidelity is 99.9%. Moreover, the probability that the system is
in any one of the states 0=�1; �0=�1j i is 99.99%, showing that the
evolution is to a very good approximation restricted to this
computational subspace.

While the states used in this encoding are tolerant to photon
loss, coherence between a superposition of those states is reduced.
However the success probability (see Methods) in solving the
Ising problem remains high as it depends only on the diagonal
elements of the density matrix (for example, �0; �1h jr̂ðtÞ �0; �1j i). As
an illustration, with the large loss rate k¼ 50/t, while the fidelity
of the final state to the desired superposition N �0; �0j i þ �1; �1j ið Þ or
N �0; �1j i þ �1; �0j ið Þ decreases to 37.6%, the average success
probability of the algorithm is 75.2%.

To characterize the effect of noise, a useful figure of merit is the
ratio Dmin/k of the minimum energy gap to the loss rate. The

dependence of the average success probability on this ratio is
presented in Fig. 3 for the algorithm implemented using KNRs
(green squares) with single-photon loss k or qubits (red squares)
with pure dephasing gf. In practice, the average success
probability is computed by varying the loss rates at fixed Dmin

and t¼ 20/Dmin, and is averaged over all instances of the problem
of two coupled spins (that is, ferromagnetic and anti-ferromag-
netic). In the presence of pure dephasing, the success probability
with qubits saturates to 50% for large gf. This is a consequence of
the fact that the steady state of the qubits is an equal weight
classical mixture of all possible computational states. On the other
hand, for KNRs with a finite k, the rate at which the
instantaneous ground state jumps to the excited state
(/ ceðtÞh jâjcgðtÞi) is small compared to the rate at which the
instantaneous excited state jumps to the ground state
(/ hcgðtÞjâ ceðtÞj i). As a result, even with large single-photon
loss rate, for example Dmin=k� 1, the success probability is
B75%. Consequently, in the presence of equivalent strength
noise, a two-photon-driven KNR implementation of AQC
has superior performance compared to a qubit implementation
(see Methods for details).

All-to-all connected Ising problem with the LHZ scheme. The
above scheme can be scaled up with pairwise linear couplings in a
network of KNRs, while still requiring only single-site drives.
However, unlike the above one- and two-spin examples, most
optimization problems of interest require controllable long-range
interactions between a large number of Ising spins. Realizing such
highly non-local Hamiltonian is a challenging hardware problem,
but it may be solved by embeddings such as the LHZ scheme14

that map the Ising problem on a graph with local interactions
only. In this approach, the relative configuration of pairs of
N logical spins is mapped to M¼N(N� 1)/2 physical spins.
A pair of logical spins, in which both spins are aligned |0, 0i or
|1, 1i (or anti-aligned |0, 1i or |1, 0i), is mapped on the two levels
of the physical spin. The coupling between the logical pairs Ji,j

(i¼ 1, ..N) is encoded in local magnetic fields on the physical
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Figure 2 | Adiabatic protocol with single spin. (a) Change of the energy of the ground and first excited state as a function of time in a single resonator for

Ep¼4K, E0¼0:2K and d0¼0.2K. The minimum energy gap is also shown with Dmin¼0.16K. (b) The Wigner function of the KNR state at three different

times when initialized to either the excited n¼1j i or (vacuum) ground state 0j i, respectively. (c) Metapotential corresponding to Ĥ1ðt¼0:2tÞ with E0¼0:2K

and E0¼�0:2K showing two peaks of unequal height. The lower peak (corresponding to the ground state) is circular, whereas the higher one

(corresponding to the excited state) is deformed as highlighted by black circles. (d) Transition matrix elements between the ground cgðtÞ
�� �

and excited

states ceðtÞj i in the event of a photon jump during the adiabatic protocol.
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spins Jk (k¼ 1, y, M). For a consistent mapping, M�Nþ 1
energy penalties in the form of four-body coupling are introduced
to enforce an even number of spin-flips around any closed loop in
the logical spins. It was shown in ref. 14 that a fully connected
graph can then be encoded in a planar architecture with only
local connectivity. The problem Hamiltonian in the physical spin
basis becomes ĤLHZ;N

p ¼
PM

k¼1 Jkŝz;k�
P

i;j;k;lh i Cŝz;iŝz;jŝz;kŝz;l ,
where i; j; k; lh i denotes the nearest-neighbour spins enforcing
the constraint.

We now describe a circuit QED platform implementing the
LHZ scheme by embedding the physical spins in the eigenbasis

�0j i; �1j if g of two-photon-driven KNRs. In practice, KNRs can be
realized as a superconducting microwave resonator terminated by
a flux-pumped SQUID. The non-linear inductance of the
SQUIDs induces a Kerr-nonlinearity, and a two-photon drive is
introduced by flux-pumping at twice the resonator frequency.
This is the exact same setup that is used to realize Josephson
parametric amplifiers (JPAs), and we will therefore refer to this
implementation of a KNR as a JPA in the following15,27–29. We
envision a quantum annealing platform to be built with groups of
four JPAs of frequencies or,i (i¼ 1, 2, 3, 4) interacting via a single
Josephson junction (JJ) as illustrated in Fig. 4a. In the figure, the
four different frequencies of the resonators are indicated by four
different colours. To realize a time-dependent two-photon drive,
the SQUID loop of each JPA is driven by a flux pump with
tunable amplitude and frequency. The pump frequency is varied
close to twice the resonator frequency, op;kðtÞ ’ 2or;i (see
Methods). Additional single-photon drives, whose amplitude and
frequency can be varied in time, are also applied to each of the
JPAs and play the role of effective local magnetic fields. Local
four-body couplings are realized through the nonlinear
inductance of the central JJ (see Supplementary Note 5).
Choosing op,k(t)þop,l(t)¼op,m(t)þop,n(t) and taking the
resonators to be detuned from each other, the central JJ induces
a coupling of the form �Cðâykâyl âmânþ h:c:Þ in the instantaneous
rotating frame of the two-photon drives. This four-body
interaction is an always-on coupling and its strength
C is determined by the JJ nonlinearity. Such a group of four
JPAs, which we will refer to as a plaquette, is the central building
block of our architecture and can be scaled in the form of the
triangular lattice required to implement the LHZ scheme14. Note
that while JPAs within a plaquette have different frequencies, only
four distinct JPA frequencies are required for the entire lattice as
illustrated in Fig. 4c. Lastly, the LHZ scheme also requires
additional N� 2 physical spins at the boundary that are fixed to

the up state and which are implemented in our scheme as JPAs
stabilized in the eigenstate �1j i by two-photon drives. As an
illustration, Fig. 4b depicts all the possible interactions in an Ising
problem with N¼ 5 logical spins and Fig. 4c shows the
corresponding triangular network of coupled JPAs. To
implement the adiabatic protocol for a general N-spin Ising
problem with the triangular network of M JPAs, the time-
dependent Hamiltonian in a frame where each of the JPAs rotate
at the instantaneous drive frequency can be written as

ĤLHZ;NðtÞ¼ 1� t
t

� �
Ĥiþ

t
t

� �
ĤLHZ

p þ Ĥfixed; ð2Þ

where

Ĥi ¼
XM

k¼1

d0âykâk�Kây2k â2
k

� �
�C

X
k; l;m; nh i
2 plaquette

âykâyl âmânþ h:c:
� �

;

ĤLHZ
p ¼

XM

k¼1

�Kây2k â2
kþEp ây2k þ â2

k

� �
þ Jk âykþ âk

� �n o

�C
X

k; l;m; nh i2 plaquette
âykâyl âmânþ h:c:
� �

;

Ĥfixed ¼
XMþN � 2

k¼Mþ 1

�Kây2k â2
kþEp ây2k þ â2

k

� �
:

ð3Þ
As mentioned above, M¼N(N� 1)/2 while Jk is the single-
photon drive which induces the local effective magnetic field on
the kth resonator and C is the local four-body coupling between
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Figure 4 | Physical realization of the LHZ scheme. (a) Illustration of the

plaquette consisting of four JPAs coupled by a Josephson junction (JJ). The

four JPAs have different frequencies (indicated by colours) and are driven

by two-photon drives such that op,kþop,l¼op,mþop,n. The nonlinearity of

the JJ induces a four-body coupling between the KNRs. (b) Illustration of a

fully connected Ising problem with N¼ 5 logical spins. (c) The same problem

embedded on M¼ 10 physical spins and 3 fixed spins on the boundary.
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Figure 3 | Success probability for the two coupled spins problem.

Loss-rate dependence of the success probability for the two-spin adiabatic

algorithm in a system of two-photon-driven KNRs with single-photon loss k
(green squares) and qubits with pure dephasing at rate gf (red squares).

The quality factor Q¼or/k is indicated on the top axis for a KNR of

frequency or/2p¼ 5 GHz.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15785 ARTICLE

NATURE COMMUNICATIONS | 8:15785 | DOI: 10.1038/ncomms15785 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


the resonators. A final necessary component for a quantum
annealing architecture is readout of the state of the physical spin.
Here, this is realized by standard homodyne detection which can
resolve the two coherent states � a0j i allowing the determination
of the ground state configuration of the spins.

In order to demonstrate the adiabatic algorithm for a
non-trivial case, we embed on a plaquette a simple three-spin
frustrated Ising problem, in which the spins are anti-ferromagne-
tically coupled to each other, Ĥp¼J

P
k;j¼1;2;3 ŝz;kŝz;j with J40.

This Hamiltonian has six degenerate ground states in the logical
spin basis. Following the LHZ approach, a mapping of N¼ 3 logical
spins requires M¼ 3 physical spins (in our case three JPAs) and
one physical spin fixed to up state (in our case a JPA initialized to
the stable eigenstate �1j i). Since the physical spins �0j i; �1j if g
encoded in the JPAs constitute the relative alignment of the logical
spins, there are three possible solutions in this basis: �1; �0; �0j i,
�0; �1; �0j i and �0; �0; �1j i. The time-dependent Hamiltonian for the

adiabatic protocol then follows from equation (2) with M¼ 3. The
anti-ferromagnetic coupling between the logical spins is represented
by the single-photon drives on each JPA with amplitude Jk¼ J40.
At t¼ 0, the ground state of this Hamiltonian is the vacuum
0; 0; 0j i. For appropriate magnitude of the four-body coupling (see

Supplementary Note 4), the problem Hamiltonian can be expressed
as Ĥp¼Jð4a0E2

p=KÞ
P3

k¼1 �̂sz;i� 2C a0j j4 �̂sz;1 �̂sz;2 �̂sz;3 �̂sz;4þ const:
with a0¼

ffiffiffiffiffiffiffiffiffiffiffi
Ep=K

p
. This realizes the required problem Hamiltonian

in the LHZ scheme ĤLHZ;N¼3
p .

To illustrate the performance of this protocol, we numerically
simulate the evolution subjected to the Hamiltonian of
equation (2) with the three resonators initialized to vacuum
and the fourth initialized to the state �1j i. With Ep¼2K , a0¼

ffiffiffi
2
p

,
J¼ 0.095K, C¼ 0.05K, t¼ 40/Dmin and k¼ 0, we find that the
success probability to reach the ground state to be 99.3%. The
reduction in fidelity arises from the non-adiabatic errors. The
probability for the system to be in one of the states
�0=�1; �0=�1; �0=�1; �0=�1j i is 99.98% indicating that, with high accuracy,

the final state is restricted to this subspace. Figure 5a shows the
dependence of the success probability on single-photon loss rate
(green). It also presents the success probability when the
algorithm is implemented with qubits (red) subjected to
dephasing noise (see Methods). Again, we find that, in the
presence of equal strength noise, the adiabatic protocol with JPAs
(or two-photon-driven KNRs) has superior performance with
respect to qubits. Figure 5b also shows the success probability for
the same problem but without using the LHZ embedding, that is,
when the three KNRs (green) or qubits (red) are directly
coupled to each other via a two-body interaction of the
form Ĥp¼J

P
k;j¼1;2;3 ŝz;kŝz;j with J40 (see Methods). As with

embedding, the success probability with KNRs is higher than with
qubits for equal strength noise. For the particular example
considered here, the degeneracy of the ground state is higher in
the un-embedded problem (six) than for the embedded problem
(three). As a result, the likelihood to remain in one of the ground
states increases and, in the presence of noise, the un-embedded
problem performs slightly better than the embedded problem.
These examples of simple frustrated three-spin problems
demonstrate the performance of a single plaquette. Embedding
of large Ising problems requires more plaquettes connected
together as shown in Fig. 4. Even in such a larger lattice, each JPA
is connected to only four other JPAs, making it likely that the
final state remains restricted to the encoded subspace spanned by
the states �0j i, �1j i.

Discussion
We have introduced an adiabatic protocol performing quantum
annealing with all-to-all connected Ising spins in a network of

non-linear resonators with only local interactions. We have
analysed the performances of this annealer in the presence of
single-photon loss and shown that the success probability is
considerably higher compared to qubits with same amount
of loss. Although the implementation of the LHZ scheme
has been explored here, other embeddings schemes such
as minor embedding could be realized by taking advantage of
single-photon exchange and the corresponding two-body
couplings that it results in. A distinguishing feature of our
scheme is that the spins are encoded in continuous-variable states
of resonator fields. The restriction to two approximately
orthogonal coherent states only happens in the late stage of
the adiabatic evolution, and in general each site must be treated
as a continuous variable system displaying rich physics,
exemplified by non-Gaussian states, with negative-valued Wigner
functions. Because the negativity of the Wigner function is
directly related to classical non-simulability30–32, how this
behaviour persists in the presence of photon loss with
increasing problem sizes is an interesting question.

Another promising avenue to explore is how the continuous
variable nature of our system influences the annealer’s
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Figure 5 | Success probability for the frustrated three-spin problem.

(a) With LHZ encoding: Probability of successfully finding the ground state

of a frustrated three-spin Ising problem by implementing the adiabatic

algorithm on a plaquette of four KNRs with single-photon loss (green

squares) for E0
p¼2K, d0¼0.45K, C¼0.05K, J¼0.095K. The success

probability for an implementation with qubits with pure dephasing rate

gf is also shown (red squares). The two cases are designed to have

identical Dmin and computation time t¼40/Dmin. The quality factor

Q¼or/k is indicated on the top axis for a KNR of frequency or/2p¼ 5 GHz.

(b) Without encoding: Probability of successfully finding the ground state of

a frustrated three-spin Ising problem by implementing the adiabatic

algorithm on three directly coupled KNRs with single-photon loss

(green squares) for E0
p¼2K, d0¼0.45K, Jk,j¼0.095K for k,i¼ 1, 2, 3. Note

that the local drive J in the embedded problem is same as the coupling Jk,j in

the un-embedded one and the minimum energy gap in the un-embedded

problem is twice that of the embedded problem. The success probability for

an implementation with qubits without encoding and with pure dephasing is

also shown (red squares).
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computational capabilities as compared to more conventional
approaches based on two-level systems evolving under a
transverse field Ising Hamiltonian, that is, where equation (1) is
built from Hi¼

P
i ŝx;i and Hp¼

P
ij Ji;jŝz;iŝz;j (refs 9,33). For

instance, we showed how the nature of the quantum fluctuations
around the instantaneous ground and excited states leads to
increased stability of the ground state. As the size of the system
increases, these continuous variable states might alter the nature
of phase transitions during the adiabatic evolution, something
which may lead to changes in computational power34,35. It is also
worth pointing out that our circuit QED implementation easily
allows for adding correlated phase fluctuations given by
interaction terms like âyi âiâ

y
j âj (see Supplementary Note 6).

These terms do not affect the energy spectrum of the encoded
problem Hamiltonian, but may modify the scaling of the minimal
gap during the annealing protocol.

Yet another appealing feature that motivates further study
is that the time-dependent Hamiltonian of KNRs is generically
non-stoquastic in the number basis. A stoquastic Hamiltonian by
definition only has real, non-positive off-diagonal entries36, and
the Hamiltonians in this class are directly amenable to quantum
Monte Carlo simulations (stoquastic Hamiltonians do not have
the so-called ‘sign problem’). As an example, the transverse field
Ising Hamiltonian, which is the focus of much current
experimental efforts9,33, is stoquastic. In contrast, the
Hamiltonian of our system has off-diagonal termsP

k Jkðâykþ âkÞ in the LHZ embedding (or
P

ij Ji;jâiâ
y
j þ h:c: if

this embedding is not used) with problem-dependent signs (note
that simply mapping âk ! � âk does not solve the problem due
to the presence of the quartic terms equation (2)). The same is
true if one considers matrix elements in the over-complete basis
of coherent states. Non-stoquasticity has been linked to
exponential speedups in quantum annealing37, and is widely
believed to be necessary to gain more than constant speedup over
classical devices38.

Ultimately, further investigation into the performance of our
adiabatic protocol on larger problem sizes is warranted.
Currently, the large Hilbert space size prevents numerically exact
simulations with more than a few resonators. Nonetheless,
the results here strongly suggest that the adiabatic protocol with
two-photon-driven KNRs has excellent resistance to photon loss
and thermal noise. Together with the highly non-classical physics
displayed during the adiabatic evolution, this motivates the
realization of a robust, scalable quantum Ising machine based on
this architecture. After completing this work, we became aware of
an alternative approach to quantum annealing with Kerr
parametric oscillator39.

Methods
Eigen-subspace of a two-photon-driven KNR. Following ref. 15, the
Hamiltonian of the two-photon-driven KNR can be expressed as

Ĥ0¼�Kây2â2 þEp ây2 þ â2
� �

¼�K ây2 � Ep

K

	 

â2 � Ep

K

	 

þ
E2

p

K
: ð4Þ

This form makes it clear that the two coherent states �
ffiffiffiffiffiffiffiffiffiffiffi
Ep=K

p�� �
, which are the

eigenstates of the annihilation operator â, are also degenerate eigenstates of
equation (4) with energy E2

p=K .

Time-dependent Hamiltonian in the instantaneous rotating frame. We
describe the required time-dependence of the amplitude and frequency of the
drives to obtain the time-dependent Hamiltonians needed for the adiabatic
protocol. As an illustration, consider the example of a two-photon-driven KNR
with additional single-photon drive whose Hamiltonian is written in the laboratory
frame as

Ĥ1;LabðtÞ¼orâyâ�Kây2â2 þEpðtÞ e� iopðtÞt ây2 þ eiopðtÞt â2
h i

þE0ðtÞ e� iopðtÞt=2ây þ eiopðtÞt=2â
h i

:
ð5Þ

Here, or is the fixed KNR frequency and op(t) is the time-dependent two-photon
drive frequency. The frequency of the single-photon drive, of amplitude E0ðtÞ, is
chosen to be op(t)/2 such that it is on resonance with the two-photon drive. In a
rotating frame defined by the unitary transformation Û¼ exp iopðtÞtâyâ=2

� �
, this

Hamiltonian reads

Ĥ1ðtÞ¼ÛðtÞyĤLabðtÞÛðtÞ� i _̂UðtÞyÛðtÞ;

¼ or �
opðtÞ

2
� _opðtÞ

t
2

	 

âyâ�Kây2â2

þEpðtÞ ây2 þ â2
� �

þE0ðtÞ ây þ â
� �

:

ð6Þ

Choosing the time dependence of the drive frequency as op(t)¼ 2or� 2d0

(1� t/2t), and the drive strengths as EpðtÞ¼Ept=t and E0ðtÞ¼E0t=t, the above
Hamiltonian simplifies to

Ĥ1ðtÞ¼d0 1� t
t

� �
ây â�Kây2â2 þ t

t

� �
Ep ây2 þ â2
� �

þ t
t

� �
E0 ây þ â
� �

¼ 1� t
t

� �
d0âyâ�Kây2â2
� �

þ t
t

� �
�Kây2â2 þEp ây2 þ â2

� �
þE0 ây þ â

� �� �
:

ð7Þ

This has the standard form of a linear interpolation between an initial Hamiltonian
and a problem Hamiltonian that is required to implement the adiabatic protocol.

As a second illustration, the time-dependent Hamiltonian for finding the
ground state of a frustrated three-spin problem embedded on a plaquette is

ĤLHZ
Lab ðtÞ¼

X4

k¼1

or;kâykâk �Kây2k â2
k

� �
�C ây1ây2â3â4 þ h:c:

� �

þ
X3

k¼1

JðtÞ e� iop;kðtÞt=2ây þ eiop;kðtÞt=2â
h i

þ
X3

k¼1

EpðtÞ e� iop;kðtÞt ây2 þ eiop;kðtÞt â2
h i

þEp e� iop;4 t ây2 þ eiop;4 t â2
� �

;

ð8Þ
where or,k are the fixed resonator frequencies and op,k(t) the time-dependent
two-photon drive frequencies. The resonators labelled k¼ 1, 2 and 3 are driven by
time-dependent two-photon and single-photon drives of strengths EpðtÞ, J(t) and
frequency op,k(t), op,k(t)/2, respectively. On the other hand, the frequency and
strength of the two-photon drive on the k¼ 4 resonator is fixed. Applying
the unitary Û¼ exp½i

P3
k¼1 op;kðtÞtâykâk=2� leads to the transformed Hamiltonian

ĤLHZðtÞ¼
X3

k¼1

or;k �
op;kðtÞ

2
� _op;kðtÞ

t
2

	 

âykâk�Kây2k â2

k þ JðtÞ âykþ âk

� �
þEpðtÞ ây2k þ â2

k

� �
 �

�C ây1ây2â3â4ei op;1ðtÞþop;2ðtÞ �op;3ðtÞ�op;4ð Þt=2 þ h:c:
� �

þ or;4 �
op;4

2

� �
ây4â4 �Kây24 â2

4 þEp ây24 þ â2
4

� �
:

ð9Þ
To realize equation (2) implementing the adiabatic algorithm on this plaquette, we
choose the drive frequencies such that op,k(t)¼ 2or,k� 2d0(1� t/2t) and
op,4¼ 2or,4, with their sum respecting op,1(t)þop,2(t)¼op,3(t)þop,4. Moreover,
we take the time-dependent amplitudes EpðtÞ¼Ept=t and J(t)¼ Jt/t.

Estimation of success probability:. To estimate the success probability of the
adiabatic algorithm with KNRs, as shown by the green squares in Fig. 3,
we numerically simulate24,25 the master equation _̂r¼� Ĥ2ðtÞ; r̂

� �
þ kD â1½ � þ

kD â2½ �, where photon loss is accounted for by the Lindbladian
D âi½ �¼âir̂âyi �ðâ

y
i âir̂þ r̂âyi âiÞ=2. It is important to keep in mind that even though

the energy gap is small in the rotating frame, the KNRs laboratory frame
frequencies or,k are by far the largest energy scale. As a result, the above standard
quantum optics master equation correctly describes damping in this system40.
Moreover, because we are working with KNR frequencies in the GHz range, as is
typical with superconducting circuits, thermal fluctuations are negligible. From this
master equation, the success probability can be evaluated as the probability of
occupation of the correct ground state at the final time t¼ t, that is,
�0; �1h jr̂ðtÞ �0; �1j i þ �1; �0h jr̂ðtÞ �1; �0j i and �0; �0h jr̂ðtÞ �0; �0j i þ �1; �1h jr̂ðtÞ �1; �1j i for E040

and E0o0, respectively.
On the other hand, the master equation used to simulate the adiabatic

algorithm with qubits is _̂r¼� Ĥqubits
2 ðtÞ; r̂

h i
þ gfD ŝz;1

� �
þ gfD ŝz;2

� �
where

Ĥqubits
2 ðtÞ¼ 1� t

t

� �
Ĥqubits

i þ t
t

� �
Ĥqubits

p ; ð10Þ

Ĥqubits
i ¼U

X
i¼1;2

ŝx;i; Ĥqubits
p ¼Jŝz;1ŝz;2; D ŝz;i

� �
¼gf ŝz;ir̂ŝz;i� r̂

� �
: ð11Þ

Here, ŝz;i and ŝx;i are Pauli operators in the computational basis formed by the
ground gj i and excited state ej i of the ith qubit. In these simulations, the qubits are
initialized to the ground state of the initial transverse field, and the success
probability (red squares in Fig. 3) is computed as the probability of occupation of
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the correct ground state at t¼ t, that is, g; eh jr̂ðtÞ g; ej i þ e; gh jr̂ðtÞ e; gj i and
g; gh jr̂ðtÞ g; gj i þ e; eh jr̂ðtÞ e; ej i for J40 and Jo0, respectively.

Finally, to obtain the data for the resonators in Fig. 5 (green squares), the
simulated master equation is _̂r¼� ½ĤLHZðtÞ; r̂� þ

P
i¼1;2;3 kD½âi� while,

for qubits, it is _̂r¼� ½ĤLHZ;qubitsðtÞ; r̂� þ
P

i¼1;2;3
gfD½ŝz;i�. In these expressions,

ĤLHZ;qubits
2 ðtÞ¼ 1� t

t

� �
Ĥqubits

i þ t
t

� �
ĤLHZ;qubits

p ; ð12Þ

Ĥqubits
i ¼U

X
i¼1;2;3

ŝx;i; ĤLHZ;qubits
p ¼ J

X
ŝz;i þCŝz;1ŝz;2ŝz;3ŝz;4: ð13Þ

The success probability is computed as the probability of occupation of the
correct ground state at t¼ t, that is, �0; �1; �0h jr̂ðtÞ �0; �1; �0j i þ �1; �0; �0h jr̂ðtÞ �1; �0; �0j i þ
�0; �0; �1h jr̂ðtÞ �0; �0; �1j i (green squares in Fig. 5) and g; e; gh jr̂ðtÞ g; e; gj i þ
e; g; gh jr̂ðtÞ e; g; gj i þ g; g; eh jr̂ðtÞ g; g; ej i (red squares in Fig. 5).

Two paradigms of quantum annealing. The KNR-based quantum annealer
proposed in this paper is based on an adiabatic non-equilibrium evolution, where
the system is subject to driven and dissipative processes. This is in stark contrast to
the conventional approach to quantum annealing, where a quantum system is at all
times in thermal equilibrium at very low temperature such that it stays close to the
ground state, as Hamiltonian parameters are adiabatically varied1. It is crucial to
understand the very different roles played by the bath, modelling the environment
of the annealer, in these two different approaches. In the conventional approach, as
long as the temperature is sufficiently low compared to the energy gap, the thermal
population of the first excited state is negligible and the system is effectively in its
ground state. In fact, for large gaps, the coupling to the environment typically helps
the annealer by constantly cooling the system towards its ground state. On the
other hand, the bath becomes detrimental and will typically lead to large errors as
soon as D� kBT . Since the gap decreases exponentially with problem size for hard
problems, this is a major roadblock for conventional quantum annealing. Even for
easier problems when the gap closes polynomially, it quickly becomes extremely
challenging to go to large system sizes.

The type of non-equilibrium quantum annealer considered in the present paper
overcomes this roadblock, but trades the difficulty for a related but different
challenge. The crucial point is that although the gap is small in the rotating frame
where the annealing schedule is realized, the system still probes the environment at
a very high frequency. All coupling and interaction terms in the Hamiltonian are
effectively small perturbations of the resonator’s bare Hamiltonian Ĥ0 ¼ orâyâ,
such that the energy cost of adding a thermal photon is to a very good
approximation ‘or, giving a negligible thermal population, Nth¼ exp(�‘or/
kBT), for typical frequencies in the 5–15 GHz range and temperatures TB10 mK.
This is also the justification for the master equations used when computing the
success probabilities Figs 3 and 5.

Although thermal noise is no longer a bottleneck for this type of
non-equilibrium quantum annealing, another challenge now arises. Since the
system is not in equilibrium, the eigenstates of the rotating frame Hamiltonian are
not global eigenstates of the total system, including the bath, and the interaction
with the bath therefore does not generically drive the system towards the
rotating-frame ground state, even at zero temperature (see Supplementary Note 3).
This leads to local dephasing noise for the KNR implementation due to resonator
photon loss. We emphasize that when comparing to a qubit implementation in
Figs 3 and 5, we are comparing to an analogous implementation where the qubits
are also only subjected to local dephasing noise, as opposed to thermal noise due to
a small gap. This allows a fair comparison of two different physical systems used to
realize the Ising spins under equal noise strength, and applies for example to
realizations of the type proposed in ref. 26. How non-equilibrium quantum
annealing compares to conventional equilibrium quantum annealing more
generally is to the best of our knowledge an open problem, and an interesting and
important avenue for future research.

Realization of four-body coupling. The physical realization of the four-body
coupling is described here and more details can be found in Supplementary
Notes 6 and 8. The photon annihilation operators of the four KNRs each of which
are driven with a two-photon drive are denoted by âi , with i¼ 1, 2, 3, 4. These
resonators are capacitively coupled to a central JJ described by the annihilation
operator âc and of energy � EJ cos fc=f0ð Þ âyc þ âc

� �� �
. In this expression, EJ is the

Josephson energy, f0¼ ‘ /2e is the reduced flux quantum and fc is the standard
deviation of the zero-point flux fluctuation for the junction mode. The coupling
strength gi between the resonators and the junction is smaller than the detuning
between them Di, gi � Di. In this dispersive, limit the mode of the junction
becomes dressed with the resonator modes âc ! âc � g1=D1ð Þâ1 � g2=D2ð Þâ2 þ
g3=D3ð Þâ3 þ g4=D4ð Þâ4 and the Josephson energy becomes

� EJ cos
fc

f0
âc �

g1

D1
â1 �

g2

D2
â2 þ

g3

D3
â3 þ

g4

D4
â4 þ h:c

	 
� �
: ð14Þ

The fourth-order expansion of the cosine leads to a coupling �Cây1ây2â3â4 þ h:c,
where C ¼ EJ f4

c=f
4
0

� �
g1g2g3g4=D1D2D3D4. In the rotating frame of the drive,

this coupling becomes resonant when the frequencies are chosen such that
op,1(t)þop,2(t)¼op,3(t)þop,4(t). In addition to the above four-body

coupling, cross-Kerr terms of the form âyi âi â
y
j âj are also resonant. As shown in

Supplementary Note 7, these terms do not affect the success probability of the
algorithm. The strength of the coupling can be estimated with typical parameters
EJ/2p¼ 600 GHz, fc¼ 0.12f0, gi=Di � 0:12, resulting in C/2p¼ 63 KHz. For a
typical strength of Kerr-nonlinearity K/2p¼ 600 KHz, this leads to C=K � 0:1.

Data availability. The data that support the findings of this study are available
from the corresponding author on reasonable request.
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