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Abstract
The immune regulation function of ovotransferrin (OVT) explored using the 
RAW264.7 was induced by lipopolysaccharide (LPS) as vitro model in this study. 
The results showed that RAW264.7 cultured with OVT (200 μg/ml) alone not only 
enhanced the phagocytic activity and the production and expression of inflamma-
tory factors, but also expression of toll- like receptor 4 (TLR4) gene was significantly 
promoted by OVT. OVT (50 μg/ml) significantly inhibited the secretion and expres-
sion of inflammatory factors in LPS- stimulated RAW264.7, but CD14 and TLR4 genes 
expressions were no obvious effects. Inflammatory cytokines and NO secreted by 
OVT- induced macrophages pretreated with inhibitors of TLR4 were down- regulated. 
We further verified the effects of OVT on inflammatory signaling pathway- related 
proteins through immunofluorescence and western blotting, MyD88, TLR4 and the 
phosphorylation of IκBα and p65 were significantly promoted by OVT, but there was 
no significant effects on the phosphorylation of IRF3. OVT promoted the phospho-
rylation of ERK and p38 in RAW264.7 and inhibited the phosphorylated expression 
of MAPK in LPS- mediated inflammation. These results indicated that OVT had the 
bidirectional immunoregulatory function through TLR4- mediated NF- κB/MAPK 
signaling pathway, that is, anti- inflammatory effect of low concentration and immune- 
enhancing activity of high concentration were showed. That provides a theoretical 
utilization for the development and utilization of OVT.
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1  | INTRODUC TION

Many foods not only provide the body with essential nutrients 
and trace elements every day, but also play an important role in 
the health of the body, such as immune and metabolic regulation 

(Pang et al., 2006). Poultry eggs are the main food for human, pro-
viding many nutriment, such as protein, fat and vitamins. Egg white 
comprises 60% of the entire poultry egg content and contains 
ovalbumin, ovotransferrin, ovomucoid, ovomucin and lysozyme 
(Mine, 2002). Ovotransferrin (OVT) is one of the major functional 
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proteins, accounting for approximately 12%– 13% of total egg white 
content (Wu & Acero- Lopez, 2012). At the same time, it is the acidic 
soluble and good iron- binding glycoprotein consisting of 686 amino 
acid in the poultry transferrin family. In addition to its excellent im-
munoregulatory activity, OVT is also involved in antigen recognition 
and initiation of immune response. Furthermore, previous studies 
have shown that OVT currently plays an obvious role in antibacterial 
(Schade & Caroline, 1944), antiviral (Giansanti et al., 2002), antiox-
idant (Majumder et al., 2013) and immune- enhancing activity (Lee 
et al., 2018). There is still an increasing interest in the search for the 
immunity regulation of OVT.

Ovotransferrin is a component of natural immunity (Shang & 
Wu, 2018). Likewise, it participates in a series of immune regulation 
response. OVT, initially as an avian acute phase protein (Rath, 2005), 
is reported to modulate macrophage and heterophil function by 
stimulating the production of interleukin- 6 (IL- 6) and nitrite (Xie 
et al., 2002) and promote the proliferation of splenic lymphocytes 
(Xu, Lin, et al., 2012). In addition, oral administration of OVT reduces 
the secretion of inflammatory cytokines and slow the spread of the 
colitis induced by dextran sodium sulfate (Kobayashi et al., 2015) 
and enhances immune response in cyclophosphamide- induced im-
munosuppressed mice (Zhu et al., 2018). This suggests that OVT may 
have bidirectional immunomodulatory effects in vivo. Our previous 
research finds that OVT increases the secretion of TNF- α though 
MAPK signaling pathway (Liu et al., 2017) in DCs. More recently, 
OVT exerts in vitro immune activity by MAPK signaling pathway. 
These findings are based on inflammation models, but how OVT 
stimulates macrophages to exert immunomodulatory effects is cur-
rently less researched in noninflammatory models. In addition, there 
are few studies on whether OVT can play an anti- inflammatory role 
in LPS- induced inflammation by inhibiting the expression of signaling 
pathway- related proteins.

The immunomodulatory effect of protein may be mediated by 
the direct binding of food- derived proteins to immune cell surface 
receptors, thereby activating related signaling pathways mediated 
by cell surface receptors on the one hand (Yang et al., 2019). On 
the other hand, the binding of LPS and the plasma membrane CD14 
protein, a GPI- anchored membrane protein in bone marrow cells, 
consults macrophage activation. LPS is next transferred to TLR4 
triggering signal transduction (Prymas et al., 2020), which begins 
to recruit a single or specific receptor combination in the TIR do-
main containing the receptor protein. Then, NF- κB was activated 
by almost all known immune cell surface receptors (Oeckinghaus 
et al., 2011) and MAPK pathways including p38, JNK and ERK 
are stimulated. It is known that immunomodulatory activity of 
most food- derived protein is displayed by inhibiting the signal 
components of NF- κB or MAPK pathway (Han et al., 2009; Kim 
et al., 2016).

Therefore, the purpose of the present study was to investigate 
the receptor to which OVT binds directly and whether OVT mod-
ulates MyD88- dependent and MyD88- independent, namely TRIF 
signaling pathways. Here, we determined that TLR4 may be the 
membrane receptor protein of OVT on the expression level of TLR1, 

TLR2 and TLR4. In addition, our results found that OVT regulated 
inflammation by TLR4/MyD88/NF- κB/MAPK inflammatory signal-
ing using western blot. To our knowledge, it is reported for the first 
time that the TLR4 may be involved in the OVT binding on RAW 
264.7 cells to trigger immune- enhancing response. That provides 
theoretical basis for the development of OVT as immunomodulator 
and enhancer.

2  | MATERIAL S AND METHODS

2.1 | Materials and chemicals

Dulbecco's Modified Eagle's Medium (DMEM) and fetal bovine 
serum (FBS) were obtained from Biological Industries (Bioind). 
Penicillin– streptomycin was purchased from Gibco BRL Co. Ltd. 
Ovotransferrin from egg white, purity of which is over 98%, and LPS 
(from Escherichia coli, 0111:B4) were purchased from Sigma- Aldrich. 
Mouse Enzyme- Linked Immune- Sorbent Assay (ELISA) kits were 
purchased from Thermo Fisher Scientific. Hoechst 33258 fluores-
cent dye (DAPI) was purchased from Bioworld Biotechnology CO., 
Ltd. CCK assay kit was obtained from TransGen Biotech Company. 
TAK- 242 inhibitor was purchased from MedChem Express. All as-
sociated antibodies except TLR4 were purchased from Cell Signaling 
Technology. TLR4 antibody, secondary antibodies and chemilu-
minescence (ECL) detection kit were purchased from ProteinTech 
Group, Inc.

2.2 | Cell culture

RAW264.7 cells were purchased from Procell Life Science 
Technology Co, Ltd, which were cultured in DEME high glucose me-
dium containing 10% FBS and 1% penicillin and streptomycin and 
incubated in an incubator at 37°C in humidified 5% CO2 atmosphere. 
The logarithmic growth phase cells are selected for subsequent seed 
plate experiments.

2.3 | Cell viability assay

The CCK assay (Li, Sun, et al., 2019) was used for determining effect 
of OVT with various concentrations on the viability of cell. Two hun-
dred microliter of cell suspension with a density of 1 × 105 cells was 
added to the 96- well plate. The control group was added with com-
plete culture medium; the LPS model group was added with 100 ng/
ml LPS solution; the OVT treatment group was added with mixed 
solutions containing LPS (100 ng/ml) and OVT of different concen-
trations; and the OVT control group was added with OVT of dif-
ferent concentrations, and the cells were furfure cultured for 24 h. 
Subsequently, 10 µl CCK solution was added and incubated for 2 h. 
Absorbance value was estimated at 450 nm by a microplate reader. 
Cell viability was calculated by the following equation.
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A (treated): OD of wells including cells and OVT solution.
A (blank): OD of wells including complete culture solution only.
A (control): OD of wells including cells and complete culture 

solution.

2.4 | Phagocytosis of neutral red assay

Macrophages phagocytosis was detected using neutral red uptake 
assay from Beijing solarbio science & technology co., Ltd (Huang 
et al., 2019). The cells were grouped and cultured according to the 
previous experiment. After incubation for 24 h, cells were cultured 
with 200 µl complete medium and 20 µl neutral red solution for a 
further 3 h incubation. PBS was used to wash cells for twice times 
to remove medium containing neutral red, and then, 200 µl neutral 
red detection lysis solution was added. The cells were lysed on the 
shaker at room temperature for 10 min to promote cell lysis in sync. 
The absorbance values at 560 nm were acquired.

2.5 | Measurement of nitric oxide (NO)

The content of NO was assessed using Griess assay (Xiong 
et al., 2018) to indirectly reflect the degree of inflammation. The 
cells were grouped and cultured according to the previous experi-
ment. The concentration of NO was measured by using NO assay kit 
(Beyotime Biotechnology Co., Ltd). Culture supernatant (50 µl) and 
100 µl Griess solution (Griess A:Griess B = 1:1) were added to a 96- 
well plate. Take care to avoid light and measure the absorbance at 
540 nm using a microplate reader.

2.6 | Measurement of cytokine production

RAW 264.7 cells with a density of 1 × 106 cells/ml were seeded onto 
24- well plates and incubated for 6 h. The supernatant was discarded. 

The control group was added with complete culture medium; the 
LPS model group was added with LPS solution containing 100 ng/
ml LPS; the OVT treatment group was added with mixed solutions 
containing LPS (100 ng/ml) and OVT (50, 100 and 200 μg/ml); and 
the OVT control group was added with OVT at 50, 100 and 200 μg/
ml and the cells were cultured for 24 h. And the supernatant was 
collected and centrifugal. Levels of TNF- α, IL- 6 and IL- 10 in the su-
pernatant were measured using a microplate reader at 450 nm ac-
cording to the manufacturer's instructions.

2.7 | Real- time quantitative reverse transcription 
PCR (qRT- PCR)

Cells were seeded in a 6- well plate at 1 × 106 cells/ml, cultured for 
6 h and then adhered to the wall for group treatment. Total RNA 
was collected from the RAW264.7 cells using the RNA extraction kit 
from TransGen Biotech Company. To ensure that subsequent experi-
ments can be carried out, the BioDrop µLife+ (BioDrop) is needed 
to detect purity and integrity. Total RNA (2 µg) was revamped into 
cDNA by cDNA Synthesis SuperMix kit. The PCR amplification of 
cDNA was performed with specific primers for TNF- α, IL- 6, IL- 10, 
CD14, TLR1, TLR2, TLR4 and β- actin as the control. The forward and 
reverse primers sequences which are designed and synthesized are 
listed in Table 1. Amplification conditions were as follows: 94°C ini-
tial denaturation for 30 s followed by 42 cycle of 94°C for 5 s and 
62°C for 30 s. Relative expression levels of the target genes were 
calculated using 2−ΔΔCt.

2.8 | Immunofluorescence assay

Lipopolysaccharide is known to activate NF- κB, which regulates 
the inflammatory response by modulating multiple proinflamma-
tory cytokines in macrophages (Ren et al., 2020). To further inves-
tigate whether the anti- inflammatory effects of OVT are mediated 
by the NF- κB signaling pathway, p65 NF- κB expression in mac-
rophage nucleus was observed by the immunofluorescence in this 
study. Cells (2 × 105/ml) were set in 24- well plates and treated with 
200 µg/ml OVT, LPS and LPS+OVT for 24 h. After being fixed with 

Cell activity (%) =
A (treated) − A (blank)

A (control) − A (blank)
× 100

TA B L E  1   Primers used in this study

Gene Forward primer (5′−3′) Reverse primer (5′−3′)

β- actin CCACAGCTGAGAGGGAAATC TCTCCAGGGAGGAAGAGGAT

TNF- α CTGGGACAGTGACCTGGACT GCACCTCAGGGAAGAGTCTG

IL- 6 GACTGATGCTGGTGACAACC AGACAGGTCTGTTGGGAGTG

IL- 10 TAACTGCACCCACTTCCCAG AAGGCTTGGCAACCCAAGTA

CD14 TTCTGAGGGTCCTCGTCAAC CGTGTGGATCCTGAGGGTTA

TLR1 TCATTGTCCAAGCTGAGGGT GCAGGGCATCAAAGGCATTA

TLR2 TCTAAAGTCGATCCGCGACA ATCTACGGGCAGTGGTGAAA

TLR4 TAGCCATTGCTGCCAACATC CCTCAGCAGGGACTTCTCAA
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4% paraformaldehyde for 30 min at room temperature, penetrated 
with 0.5% Trixon- 100(prepared by PBS) and blocked with 2% of 
BSA, the cells were incubated with primary anti- NF- κB p65 anti-
body (1:500) overnight at 4°C, followed by the secondary antibody 
(labeled FITC) in dark for 2 h. And cells were stained with Hoechst 
33258 fluorescent dye (DAPI) for 20 min. The photos were collected 
by inverted fluorescence microscopy (OLYMPUS; 20×).

2.9 | Western blot analysis of protein expression

Cells were seeded in a 6- well plate at 1 × 106 cells/ml, cultured for 
6 h and then adhered to the wall for group treatment. Groups are 
divided into control, OVT (200 µg/ml), LPS and LPS+OVT (50 µg/
ml) and further cultured for 24 h. Radioimmunoprecipitation assay 
(RIPA) buffer (1% EDTA, protease and phosphatase inhibitor) was 
used to extract cellular protein for 15 min. The concentration of cel-
lular protein was determined with BCA protein assay kit from Beijing 
solarbio science & technology co., Ltd, and uniformly adjusted to 
2.5 mg/ml. Loading buffer was added into proteins (v:v = 1:5) to 
make it denatured by boiling at 100°C for 5 min. Denatured pro-
tein was separated by 10% SDS- polyacrylamide gel electrophoresis 
(SDS- PAGE) and transferred to a 0.45 µm PVDF (Millipore) at a trans-
ferred membrane condition of 200 mA and 80 min. PVDF membrane 
is trimmed according to molecular weight. After sealing with 5% BSA 
for 1.5 h, the membranes were overnight incubated with the follow-
ing antibodies (1:1000 dilution): TLR4, MyD88, IRF3, p38, p- p38, 
ERK, p- ERK, JNK, p- JNK, IκBα, p- IκBα, p65, p- p65 at 4°C. They were 
incubated with secondary antibodies for 1 h at room temperature. 
The antibody- specific protein was viewed by enhanced chemilumi-
nescent detection system with ECL kit.

2.10 | TLR4 inhibition assay in OVT- stimulated 
RAW264.7

RAW 264.7 cells with a density of 1 × 106 cells/ml were seeded onto 
24- well plates and incubated for 6 h. The supernatant was discarded. 
The control group was added with complete culture medium, the 
OVT group was added with 200 μg/ml OVT, and theTAK- 242 group 
was added with 50 nM TAK- 242. And the cells were pretreated with 
TAK- 242(50 nM) for 8 h prior to the addition of 200 μg/ml OVT for 
24 h. And the supernatant was collected and centrifugal. Levels of 
NO and TNF- α in the supernatant were measured using a microplate 
reader at 450 nm according to the manufacturer's instructions.

2.11 | Statistical analysis

Data are showed as means ± standard error of the mean (SEM) and 
statistical significant analysis is determined by Duncan's test with 
a p < .05 taken as value of significance. All the figures were drawn 
using the GraphPad Prism 7.0 software.

3  | RESULTS

3.1 | No inhibitory effect of OVT on the cell viability 
of RAW264.7

CCK assay is used to detect whether OVT with various concen-
trations has damage to cell viability (Li, Sun, et al., 2019). CCK is a 
reagent for cell proliferation and cytotoxicity detection based on 
water- soluble tetrazolium salt. In the presence of electron coupling 
reagent 1- methoxy PMS, it can be reduced to soluble orange- yellow 
formazan by dehydrogenase in mitochondria, and the shade of color 
can directly reflect whether the protein is toxic to cells. As shown in 
Figure 1a, within a given concentration range, cellular activity was 
slightly increased in the OVT- stimulated RAW264.7. At the condi-
tion of OVT concentration of 200 µg/ml, the cell activity reached 
the maximum of 112 ± 8%. The cellular activity was found no effect 
in LPS- stimulated RAW264.7 treated OVT (Figure 1b). These results 

F I G U R E  1   The viability of RAW264.7 macrophages cultured for 
24 h under the conditions of OVT. Data are shown as means ± SEM 
(n = 6). (a) Compared with the control group: *p < .05, **p < .01; (b) 
compared with the LPS group: #p < .05, ##p < .01
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indicated that OVT had no toxicity to macrophages and the concen-
tration conditions could be used in subsequent experiments.

3.2 | OVT promoted phagocytosis activity of 
RAW264.7 cells and inhibited phagocytosis activity of 
LPS- stimulated RAW264.7

When pathological changes occur in tissues and organs, mac-
rophages can eliminate antigens by phagocytosis (Xiong et al., 2018). 
Neutral red phagocytosis experiment is commonly applied to evalu-
ate the phagocytic activities of RAW264.7 cells treated with various 
concentrations of OVT (Wang et al., 2010). Cell phagocytosis was 
promoted slightly by OVT compared with the normal control group 
(p > .05) and increasing effect of 200 µg/ml OVT treatment group 
was significant (p < .05; Figure 2a). In the LPS- stimulated RAW264.7, 
the phagocytic rate of cells was significantly inhibited of OVT in 
Figure 2b (p < .05). As the concentration increases, the stimulating 

effect of OVT on the phagocytic ability of RAW264.7 cells was also 
continuously decreasing.

3.3 | OVT promoted production of NO in 
RAW264.7 cells and inhibited production of NO in 
LPS- stimulated RAW264.7

NO, an important transmembrane molecular signal, positively re-
flects the severity of inflammation in the inflammatory process, and 
it is also a basic condition for macrophages to play phagocytic func-
tion (Huang et al., 2014; Ye et al., 2020). To confirm the extent of the 
inflammatory response to OVT, the amount of NO produced was 
analyzed. As shown in Figure 3a, as expected, a minimum amount 
of NO was produced in control group; while LPS- stimulated mac-
rophages released NO at a level of 6.68 ± 0.15 μM. NO production is 
promoted in a dose- dependent manner in OVT- induced RAW264.7. 
Among them, the production of NO treated with OVT at 200 µg/
ml was higher than those in other groups, but it was lower than LPS 
group (p < .01). As shown in Figure 3b, compared with the LPS group, 
the treatment of OVT (50 µg/ml) significantly reduced the levels of 
NO in LPS- induced macrophages (p < .01). In addition, the produc-
tion of NO in the RAW264.7 cocultured with LPS and OVT was 
higher than that of OVT- induced RAW264.7 macrophages only, indi-
cating that OVT and LPS had a synergistic effect on NO production.

3.4 | OVT promoted release of TNF- α, IL- 6 and IL- 
10 in RAW264.7 cells and inhibited release of these 
cytokines in LPS- stimulated RAW264.7

Macrophages meditate immune response through secreting the 
inflammatory cytokines (tumor necrosis factor- α [TNF- α], IL- 6) and 
anti- inflammatory cytokines (interleukin- 10 [IL- 10]; Lai et al., 2020; 
Liu et al., 2017; Shapouri- Moghaddam et al., 2018). In consequence, 
to examine the strength of the immunoregulatory activity of OVT, 
the amounts of OVT on the IL- 6, TNF- α and IL- 10 secretion in 
RAW264.7 and LPS- induced RAW264.7 by ELISA are represented in 
Figure 4. Figure 4a shows the effect of OVT on the cytokines (TNF- 
α, IL- 6 and IL- 10) production in normal RAW 264.7 macrophages. 
After LPS treatment (100 ng/ml), the expression of TNF- α, IL- 6 
and IL- 10 was dramatically increased (p < .01) compared with con-
trol group. The effect of OVT on cytokine secretion in RAW264.7 
cells was correlated with the concentration. The secretion of TNF- 
α, IL- 6 and IL- 10 had significantly raised, respectively (p < .01) by 
271%, 21%, 46% in OVT (200 μg/ml) stimulation group (Figure 4a). 
As shown in Figure 4b, OVT (50 and 100 µg/ml) had a significant 
inhibitory effect in LPS- stimulated RAW264.7 cells (p < .05). OVT 
inhibited, respectively, TNF- α, IL- 6 and IL- 10 production by 16%, 
19% and 25% at concentration of 50 µg/ml, while the 200 µg/ml 
OVT resulted in no inhibition of cytokines production. The release 
of TNF- α, IL- 6 and IL- 10 in the RAW264.7 cocultured with LPS and 
OVT was higher than that of OVT- induced RAW264.7 macrophages 

F I G U R E  2   (a) Promoting effect of OVT on phagocytosis activity 
of RAW264.7 cells and (b) inhibitory effect of LPS- stimulated 
RAW264.7 treated with OVT for 24 h using neutral red assay. Data 
are shown as means ± SEM (n = 4). Compared with the control 
group: *p < .05, **p < .01; compared with the LPS group: #p < .05, 
##p < .01
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only. In the meanwhile, the results showed that OVT and LPS had a 
collegial effect on the release of TNF- α, IL- 6 and IL- 10.

3.5 | OVT promoted expression of TNF- α, IL- 
6 and IL- 10 gene in RAW264.7 and inhibited 
expression of these gene in LPS- stimulated 
RAW264.7

To further determine whether OVT controls changes in inflamma-
tory factors by regulating gene expression, we examined TNF- α, IL- 6 
and IL- 10 gene expressions in OVT- stimulated RAW264.7 cells and 
LPS- stimulated RAW264.7 treated with OVT. As shown in Figure 5a, 
increased gene expressions of TNF- α, IL- 6 and IL- 10 were ob-
served by OVT treatment in a concentration- dependent manner in 

RAW264.7 cells. OVT (50 and 100 µg/ml) significantly inhibited the 
expression of TNF- α. IL- 6 and IL- 10 of LPS- stimulated RAW264.7 
(p < .05; Figure 5b), which was consistent with the secretion of TNF- 
α, IL- 6 and IL- 10. Collectively, these data further corroborated that 
production of TNF- α, IL- 6 and IL- 10 was promoted by OVT in the 
RAW264.7 cells by up- regulating their gene expression.

3.6 | OVT improved TLR4 expression in 
RAW264.7 and slightly enhanced expression of these 
gene in LPS- stimulated RAW264.7

CD14 shares the binding site of LPS, effectively transfers LPS to 
TLR4 and mediates the production of proinflammatory factors and 
nitric oxide (Yu et al., 2014). TLR2 is the molecule with the most ex-
tensive expression range among members of the TLRs family, par-
ticipating in inflammatory signal transduction and mediates natural 
antiinfection immunity. The TLR1/TLR2 combination can recognize 
bacterial lipoproteins (Kawasaki & Kawai, 2014). In order to examine 
the change of CD14 and the membrane receptor of OVT, expression 
level of CD14, TLR1, TLR2 and TLR4 based on RT- PCR was meas-
ured. Figure 6a reflects that the expression levels of CD14 and TLR4 
receptors in the LPS group were dramatically increased (p < .01). 
Expression of TLR4 is in a concentration- dependent manner at the 
transcriptional level (Figure 6a; p < .05 at 50 and 100 μg/ml; p < .01 
at 200 μg/ml) in OVT- stimulated RAW264.7 cells, with no effect on 
the CD14, TLR1 and TLR2 receptors (p > .05) in normal RAW264.7 
cells. OVT enhanced the expression levels of CD14 and TLR4 recep-
tors in LPS- induced macrophages (p > .05; Figure 6b). Therefore, 
OVT may enter macrophages through TLR4 receptors in vitro to ac-
tivate immunomodulatory effects, not by inhibiting receptor gene 
expression to exert anti- inflammatory effects.

3.7 | Effect of OVT on transfer of p65 NF- κB 
proteins into nucleus

Activation of NF- κB was confirmed by immunofluorescence staining 
to determine whether p65, the major subunit of NF- κB, was trans-
ported to the nucleus. In the resting state, NF- κB dimer combined 
with the inhibitory subunit IκB to form the p65- p50- IκB trimer com-
plex. When cells are stimulated by activation factors such as inflam-
matory factors, IκB is phosphorylated, degraded and dissociated from 
the complex, exposing the nuclear signaling region, and transferring 
from the cytoplasm into the nucleus to bind to the IκB site on the tar-
get motif to initiate transcription. Fluorescence staining results are 
shown in Figure 7. NF- κB p65 in the blank control group was mainly 
located in the cytoplasm. After 200 μg/ml OVT treatment, part of p65 
migrated to the nucleus, and the cytoplasm and nucleus of the LPS 
group showed bright green light, indicating that the p65 protein in the 
nucleus was significantly increased, and low concentrations of OVT in-
hibited the migration of p65. The results showed that OVT could regu-
late the expression of NF- κB through nuclear translocation of p65.

F I G U R E  3   (a) Nitric oxide (NO) production promotion in OVT- 
induced RAW264.7 and (b) NO production inhibition of OVT in 
LPS- stimulated RAW264.7. Macrophages were incubated with 
various concentrations of OVT in the presence or absence of LPS 
(100 ng/ml) for 24 h. NO level in culture media was displayed using 
Griess assay. Data are shown as means ± SEM (n = 6). Compared 
with the control group: *p < .05, **p < .01; compared with the LPS 
group: #p < .05, ##p < .01
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3.8 | OVT promoted protein expression of TLR4, 
MyD88, NF- κB and MAPK in RAW264.7 cells and 
inhibited expression of these proteins in LPS- 
stimulated RAW264.7

In order to confirm whether MyD88, IRF3, NF- κB and MAPK are 
involved in the immunity activity of OVT in RAW264.7, western 
blotting must be employed. It was clear (shown in Figure 8a,b) that 
expression of MyD88 protein, TLR4, phosphorylation of IκBα and 
p65 were increased by OVT (200 µg/ml) in RAW264.7 cells (p < .05). 
In addition, OVT significantly reduced expression of MyD88, 
TLR4, phosphorylation of IκBα and p65 in LPS- stimulated RAW 
264.7(p < .01). As shown in Figure 8a, compared with the control 
group, the level of IRF3 protein in the LPS- stimulated group was 
decreased. However, following treatment with OVT, the expression 
levels of the phosphorylated proteins found no effect compared 
with the LPS-only group. No apparently differences in the expres-
sion of IRF3 in RAW264.7 cells were found between control group 
and OVT group (p > .05). As expected in Figure 8c, the phospho-
rylation of JNK, p38 and ERK1/2 was significantly increased in LPS- 
stimulated RAW264.7 cells (p < .01). Phosphorylation of p38 and 
ERK of RAW264.7 cells treated with OVT was increased (p < .05), 
but OVT did not affect phosphorylation of JNK. Phosphorylation 
of ERK, JNK and p38 was significantly decreased by OVT in LPS- 
stimulated RAW264.7 (p < .05).

3.9 | Effect of TLR4 receptor inhibitor on NO and 
cytokine secretion in RAW264.7 cells

To determine whether OVT can induce the release of related cy-
tokines through activation of TLR4 receptors, RAW264.7 mac-
rophages were pretreated with a TLR4 inhibitor (Wen et al., 2019). 
Figure 9a shows the effect of different concentrations of TLR4 on cell 
viability at the concentration of blocker. We found that the 50 nM 
TAK- 242 blocker had no effect on cell viability, which could be used 
for subsequent experiments. The results showed in Figure 9b,c that 
200 μg/ml OVT significantly increased the secretion of NO and TNF- 
α, which were 3.8 µM and 1800 pg/ml, respectively. The levels of NO 
and TNF- α in RAW264.7 macrophages treated with TLR4 inhibitor 
were significantly reduced than that of OVT group alone (p < .05).

4  | DISCUSSION

Macrophages, as a group of mononuclear phagocytes, are widely 
found in the body and are critical in host defense due to coordina-
tion innate immunity and inflammatory responses. Inflammation 
is the immune defense response of the body for the purpose of 
self- protection (Mosher et al., 2001). It is a common pathologi-
cal process of the human body. It is closely related to atheroscle-
rosis, asthma, rheumatoid arthritis, diabetes and other diseases. 

F I G U R E  4   (a) Promoting effect of OVT on release of TNF- α, IL- 6 and IL- 10 in RAW264.7 cells and (b) inhibitory effect of OVT on LPS- 
stimulated release of TNF- α, IL- 6 and IL- 10. Macrophages were incubated with various concentrations of OVT in the presence or absence of 
LPS (100 ng/ml) for 24 h. The TNF- α, IL- 6 and IL- 10 levels in the cell culture media were measured by ELISA. Data are shown as means ± SEM 
(n = 3). (a) Compared with the control group: *p < .05, **p < .01; (b) compared with the LPS group: #p < .05, ##p < .01
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Inflammatory immune response at the damaged part of the body is 
conducive to pathogen removal, tissue cell regeneration and func-
tional repair. RAW264.7 macrophage is the most- used model about 

immune regulation of protein in vitro (Elisia et al., 2018; Saisavoey 
et al., 2020). When body receives external stimulation, macrophages 
firstly devour and clear foreign pathogens. Macrophages can 

F I G U R E  5   (a) Promoting effect of OVT on mRNA expression of TNF- α, IL- 6 and IL- 10 in RAW264.7 cells and (b) inhibitory effect of 
OVT on LPS- stimulated mRNA expression of TNF- α, IL- 6 and IL- 10. Macrophages were incubated with various concentrations of OVT in 
the presence or absence of LPS (100 ng/ml) for 24 h. Expression of these genes of cell lysates was assessed by RT- PCR. Data are shown as 
means ± SEM (n = 3). (a) Compared with the control group: *p < .05, **p < .01; (b) compared with the LPS group: #p < .05, ##p < .01

F I G U R E  6   (a) Promoting effect of 
OVT on mRNA expression of TLR4 in 
RAW264.7 cells and no effect on mRNA 
expression of CD14, TLR1 and TLR2 and 
(b) no effect of OVT on LPS- stimulated 
mRNA expression of CD14 and TLR4. 
Macrophages were incubated with various 
concentrations of OVT in the presence 
or absence of LPS (100 ng/ml) for 24 h. 
Expression of these genes of cell lysates 
was assessed by RT- PCR. Data are shown 
as means ± SEM (n = 3). (a) Compared with 
the control group: *p < .05, **p < .01; (b) 
compared with the LPS group: #p < .05, 
##p < .01
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swallow tumor cells and damaged cells, reflecting the immune func-
tion of proteins. In this study, macrophage phagocytosis by OVT sig-
nificantly was enhanced, possibly because of the activation of TLR4 
on the macrophage surface.

If proinflammatory cytokines are released in large quantities and 
inflammatory response is too strong, it will lead to increased tissue 
damage and induce serious immune damage of the body. Therefore, 
moderate inflammatory immune response is conducive to the body 
to remove pathogens and achieve self- repair; once the inflamma-
tory immune response exceeds a certain range, it will cause immune 
damage and harm to the body health (Laskin & Pendino, 1995). 
Cytokines and inflammatory mediators were also secreted by acti-
vated macrophage in the host defense of the immune system. It has 
been reported in the literature that yupingfeng fermentation poly-
saccharide promotes the expression of inflammatory cytokines in 
noninflammatory models on the one hand, and inhibits the expres-
sion of inflammatory cytokines in inflammatory models on the other 
hand (Sun et al., 2017). A growing body of support suggests that 
activated RAW264.7 macrophages can secrete some inflammation 
cytokines. Among them, TNF- α and IL- 6 are representative major 
factors which often used to measure the severity of inflammation 
(Wang et al., 2014). When the inflammatory response reaches a cer-
tain level, IL- 10 is secreted to suppress inflammation. In our present 
study, OVT showed immunoregulatory activity, with NO produc-
tion of LPS- induced RAW264.7 treated with low concentration of 
OVT being inhibited, and increased secretion of the NO in a dose- 
dependent manner in OVT- induced RAW264.7 cells. These observa-
tions are in accordance with the previous finding that food- derived 
protein anti- inflammatory extracts markedly inhibit the release of 
NO in LPS- stimulated RAW264.7 macrophages (Kim et al., 2020; 
Tagashira et al., 2018). Kim et al. (2020) found that the production 

of NO is inhibited by ovalbumin hydrolysate through reducing the 
phosphorylation of JNK and ERK in LPS- stimulated RAW264.7. It is 
speculated that the possible reason is that OVT can control the NO 
release process by MAPK signaling pathway. Furthermore, the re-
sult of the study also showed that secretion and mRNA expression 
of IL- 6, TNF- α and IL- 10 in RAW264.7 were promoted, which were 
part consistent with the previous reporting that OVT stimulated the 
release of IL- 6 from HD11 macrophages (Xie et al., 2002). And secre-
tion and expression of the IL- 6, TNF- α and IL- 10 were inhibited by 
OVT in LPS- induced RAW264.7 cells. TNF- α, as main upstream cy-
tokines, induces the activation of the NF- κB pathway and stimulates 
production and expression of pro- inflammatory factors like IL- 6 (Li, 
Chang, et al., 2019). Fifty microgram per milliliter OVT suppressed 
level of IL- 10 in LPS- stimulated RAW264.7 macrophages. This ef-
fect might be due to the significant reduction of TNF- α and IL- 6 in 
LPS- stimulated RAW264.7 cultured with 50 µg/ml OVT (Meram & 
Wu, 2017). Anti- inflammatory activity of phosphopeptides (PPPs) 
from hen egg yolk phosvitin is reflected in inhibitory release of cy-
tokine expression (Xu, Yang, et al., 2012). In summary, these results 
indicate that OVT has the ability to activate macrophages to secrete 
inflammatory cytokines and inflammatory mediators, and it is partic-
ularly important to study its mechanism of action.

The immune- related receptors (PRR) on the cell surface are ac-
tivated by foreign pathogen stimulation and initiate a series of tight 
signal cascades in the cells. The toll- like receptor family (TLRs) is the 
most widely studied PRR. Over the past few years, it has been bound 
to a variety of ligands including sugars (Chen et al., 2019), proteins 
(Ren et al., 2010), and lipids (Diao et al., 2019). TLR4 is associated 
with LPS- induced inflammation and is widely distributed in a variety 
of cells such as macrophages, monocytes, neutrophils and dendritic 
cells. Recently, a large number of studies have found that the protein 

F I G U R E  7   Effect of OVT on 
immunofluorescence subcellular 
localization of p65 protein in LPS- 
stimulated RAW264.7 cells. RAW264.7 
cells were treated with OVT (200 µg/ml) 
and cotreated with LPS and OVT (50 µg/
ml) for 24 h, p65 protein localization 
was immunochemically detected using 
anti- p65 antibody. The same fields were 
stained with Hoechst 33258 for the 
location of nuclear
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may regulate the activity of immune cells by binding to receptors 
on cells. More importantly, CD14 is essential for TLR4/LPS recog-
nition and TLR4 signaling triggering in cells stimulated with LPS. 
Thence, we attempt to determine whether an increase or decrease 
in the expression of CD14 and TLR4 in macrophages. In fact, in the 
current study, significant aggrandizement of TLR4 gene and protein 
expression was unexpectedly initiated in OVT- treated RAW264.7 
cells. From this point of view, it is of interest that TLR4 and CD14 
mRNA expression were not significantly up- regulated by OVT in 
LPS- induced inflammatory models (Prymas et al., 2020), and Guo 
et al. clarified that κ- Carrageenan hexamer worked to inhibit CD14 
in LPS- stimulated RAW264.7 and have anti- inflammatory effect 
(Guo et al., 2019). Similar with study of Ganoderma protein receptor 
(Li, Chang, et al., 2019), the data showed that OVT may combine with 
TLR4 to exert immune enhancement functions, but it did not exert 
anti- inflammatory function by inhibiting the expression of these 
two genes according the current observations (Lee et al., 2019). 
This also explains why OVT can significantly enhance the phagocy-
tosis of macrophages to effectively eliminate potential pathogens. 
Lactoferrin suppresses LPS- induced expression of NF- кB pathway 
in RAW264.7 cells through TLR4 (Nemati et al., 2020), similar with 
which, inflammatory cytokines secreted by macrophages induced by 
OVT were down- regulated, when cells were pretreated with inhibi-
tors of TLR4. It indicated that OVT activated macrophages through 
TLR4 receptors to initiate downstream signaling pathways. Whey 
proteolytes treated with high pressure inhibited the secretion of 

TNF- α and IL- 8 in LPS- induced respiratory epithelial cells, but had 
no effect on the secretion of IL- 8 in TNF- α and IL- 1- induced cells, 
suggesting that whey proteolytes may reduce the expression of pro- 
inflammatory factors through toll- like receptor pathways. On the 
other hand, the hydrolysates did not down- regulate TLR4 receptor 
expression, suggesting that whey protein may play a role in regulat-
ing inflammation by inhibiting LPS binding to toll- like receptors and 
inhibiting NF- κB signaling pathway activation, thereby regulating cy-
tokine secretion (Iskandar et al., 2013).

MyD88 independent pathway, one of TLR4- mediated signal-
ing pathways, activates NF- κB and MAPK. Interferon regulator 3 
(IRF3) which has been demonstrated to regulate cells proliferation, 
apoptosis, inflammation, innate immune responses and insulin re-
sistance was activated by TIR- domain- containing adaptor inducing 
interferon- β (TRIF; Tong et al., 2020) in responses to LPS challenge. 
These cascade transcriptional responses induce stable expression 
of thousands of genes and ultimately regulate the release of in-
flammatory cytokines and anti- inflammatory factors. It was found 
that the expression of MyD88 protein was up- regulated in OVT- 
induced cells and was effectively down- regulated in LPS- induced 
RAW264.7 cells. Additionally, we found that there were no sig-
nificant changes in the phosphorylation levels of IRF3 protein 
in LPS- stimulated macrophages treated with OVT, as compared 
with LPS- stimulated cells. Comparison of control and OVT groups 
presented similar results. We proposed that OVT might play an 
immunomodulatory role through the MyD88 signaling pathway 

F I G U R E  8   MyD88/NF- κB /MAPK were involved in the immunity activity of OVT in RAW264.7 cells and LPS- stimulated RAW264.7. 
Macrophages were incubated with various concentrations of OVT in the presence or absence of LPS (100 ng/ml) for 24 h. Cell lysates were 
immunoblotted for these protein with GAPDH used as control. (a) Expression of MyD88, IRF3, TLR4 and phosphorylation of IRF3. (b) IκBα, 
p65, phosphorylation of IκBα and p65. (c) MAPK phosphorylation. Results are shown as means ± SEM (n = 3). (a) Compared with the control 
group: *p < .05, **p < .01; (b) compared with the LPS group: #p < .05, ##p < .01

F I G U R E  9   Effects of OVT on theTLR4 
receptor. RAW264.7 cells were pretreated 
with or without the TLR4 inhibitor TAK- 
242 for 8 h (a, b, c) After incubation with 
200 μg/ml of OVT for 24 h, cell viability 
was determined by CCK, NO production 
was detected by Griess reagent, and TNF- 
αproduction was detected by ELISA assay. 
*p < .05, **p < .01 compared with OVT
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mediated by TLR4. Our results were similar to previous research 
results of wheat germ globulin (Wu et al., 2017) and soyasaponins 
(Chen et al., 2020).

As we all know, in the presence of external stimuli such as LPS, 
NF- κB as a nuclear factor is responsible for regulating immune re-
sponses through regulating gene transcription in RAW264.7 cells (Li, 
Ye, et al., 2019). IκBα is degraded by phosphorylation and dissoci-
ated from the trimer, exposing the p65/p50 dimer. The dimer enters 
the nucleus from the cytoplasm through the translocation signal on 
the p65 subunit, thereby exerting a transcriptional regulatory role 
(Ren et al., 2020). In this study, the OVT group promoted the phos-
phorylation of IκB and p65 in macrophages and LPS- induced cells 
were inhibited the phosphorylation of IκB and p65. MAPKs including 
the p38, ERK1/2 and JNK subgroups can regulate cell functions such 
as cell growth and gene expression as well as also plays a key role in 
the transcriptional activation of NF- κB (Wang et al., 2018). Recently, 
OVT activates RAW264.7 macrophages through the MAPK pathway, 
promoting NO secretion, cytokine expression and phagocytic activ-
ity, and has immune enhancing activity (Lee et al., 2018). However, 
OVT is shown to significantly increase the phosphorylation of p38 
and ERK, except that of JNK in our research. The one possibility is 
that the concentration of OVT may be relatively low, leading to an 
insignificant change in JNK. When OVT was added to LPS- induced 
macrophages, the phosphorylation levels of JNK, ERK and p38 were 
significantly inhibited. These findings suggest that NF- κB and MAPK 
signaling cascades both contribute to OVT related the process of 
immune regulation.

In conclusion, our study demonstrated immunomodulatory 
activities of OVT in RAW264.7 in vitro. The study indicates that 
high concentration of OVT promotes the accumulation of inflam-
matory mediator in RAW264.7. TLR4 was demonstrated to be a 
membrane receptor by which OVT may act on RAW264.7 cells, 
and the MAPK and NF- κB signaling pathways were involved in 
OVT- induced macrophage immunoregulation. Besides, low con-
centration of OVT suppressed LPS- induced NO, TNF- α and IL- 6 
production by inhibiting NF- κB and MAPK associated protein 
expression. Following our experimental results, OVT could be re-
searched and developed as one of the potentially functional foods 
for immunological reagents.
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