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Abstract

Introduction: Freehand three-dimensional (3D) ultrasound has the advantages of
flexibility for allowing clinicians to manipulate the ultrasound probe over the examined
body surface with less constraint in comparison with other scanning protocols. Thus it
is widely used in clinical diagnose and image-guided surgery. However, as the data
scanning of freehand–style is subjective, the collected B-scan images are usually
irregular and highly sparse. One of the key procedures in freehand ultrasound imaging
system is the volume reconstruction, which plays an important role in improving the
reconstructed image quality.

System and methods: A novel freehand 3D ultrasound volume reconstruction
method based on kernel regression model is proposed in this paper. Our method
consists of two steps: bin-filling and regression. Firstly, the bin-filling step is used to
map each pixel in the sampled B-scan images to its corresponding voxel in the
reconstructed volume data. Secondly, the regression step is used to make the
nonparametric estimation for the whole volume data from the previous sampled
sparse data. The kernel penalizes distance away from the current approximation center
within a local neighborhood.

Experiments and results: To evaluate the quality and performance of our proposed
kernel regression algorithm for freehand 3D ultrasound reconstruction, a phantom and
an in-vivo liver organ of human subject are scanned with our freehand 3D ultrasound
imaging system. Root mean square error (RMSE) is used for the quantitative evaluation.
Both of the qualitative and quantitative experimental results demonstrate that our
method can reconstruct image with less artifacts and higher quality.

Conclusion: The proposed kernel regression based reconstruction method is capable
of constructing volume data with improved accuracy from irregularly sampled sparse
data for freehand 3D ultrasound imaging system.
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Nonparametric statistics

© 2014 Chen et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.

mailto:jia.gu@siat.ac.cn
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Chen et al. BioMedical Engineering OnLine 2014, 13:124 Page 2 of 15
http://www.biomedical-engineering-online.com/content/13/1/124

Introduction
Image-guided technique has been widely used in minimally invasive surgery which can
greatly reduce the patient’s pain, improve the operation success rate and accelerate post-
operative recovery. Compared with computed tomography (CT) imaging and magnetic
resonance imaging (MRI), ultrasound is more suitable in intraoperative imaging for its
real-time imaging advantage. Further more, ultrasound is non-invasive, non-ionizing,
portable, and low-cost.

As 2D ultrasound cannot provide complete volume data of tissues and organs, 3D
ultrasound imaging system is put forward to overcome such limitations by construct-
ing abundant 3D data. A number of approaches for constructing 3D ultrasound vol-
ume data have been proposed, which can be grouped into three categories: dedicated
3D probes, mechanical scanning and freehand scanning [1]. 3D probes relies on an
sophisticated mechanism for scanning a predefined region of interested (ROI), and can
provide 3D volume data in real-time. Nevertheless they are expensive and have lim-
itation on scanning large organs [2]. The mechanical scanning is usually formed of
a scanning head as well as a stepping motor, which move and rotate the 2D trans-
ducer and synchronously record positions and orientations data [3]. Unfortunately, the
scanning range is still limited [2]. In comparison with the above approaches, free-
hand 3D ultrasound is relatively low-cost and flexible. The irregularly sampled B-scan
images with corresponding positions and orientations are scanned and recorded by a 2D
probe with transducer, which can be manipulated freely to view the desired anatomical
section.

A number of algorithms for reconstructing 3D ultrasound images from these irregu-
larly 2D B-scan images. These algorithms fall into three groups: Voxel-Based Methods
(VBM), Pixel-Based Methods (PBM) and Function-Based Methods (FBM) [4]. VBMs tra-
verse all voxels in a target volume and inserts corresponding pixels from the input images.
An usual method of implementation this way is the Voxel Nearest Neighbor (VNN) [5].
VNN traverses each volume voxel and assigns the value of nearest image pixel. VNN
method can preserve the most original texture patterns from B-scan images, but it also
has a trend to generate large reconstruction artifacts when the distance of the voxel to
the B-scan image plane is large. Another algorithm is the Distance-Weighted (DW) [6].
DW traverses each volume voxel and assigns the value of average its local neighborhood
pixels weighted by the inverse distances between those pixels and the voxel center. DW
method trends to averaging, so it has the advantage of suppress speckle noise, however,
it also smooth out the 3D image boundaries. In [7], Huang et al. introduce a median-
filter-based reconstruction method to improve the quality of volume reconstruction by
utilizing median filter to reduce speckle noise. In [2,8-10], Huang et al. propose some
algorithms by improving the DW algorithm. Such as the recently present a adaptive
Gaussian distance weighted (AGDW) method to improve the quality of reconstructed
image. The AGDW evaluates the homogeneity of the neighborhood for each voxel
according to the local variance/mean of neighboring pixels. If a voxel is deemed as a
homogeneous region, its neighboring pixels are averaged. Otherwise, the voxel value is
calculated using an adaptive Gaussian distance weighted method with respect to the local
statistics. However, the AGDW method trends to over-emphasize the effect of speckle
reduction, the patch-like pattern can be observed from their experimental results. The
Probe Trajectory (PT) method [11] builds on the DW algorithm. Instead of using the
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orthogonal projection of points to the nearest B-scans, a probe trajectory is estimated and
used for finding the corresponding pixels in the nearest B-scans. PBMs traverse the input
pixels and insert them into the corresponding target volume voxels. it consist of two steps:
a Distribution Step (DS) and a Hole-Filling Step (HFS). An usual method of implementa-
tion this way is the Pixel Nearest Neighbor (PNN). In the DS, PNN traverses each pixel
in all the 2D Ultrasound images, each pixel value is filled into the nearest voxel (Distribu-
tion Step). if multiple pixels contribute to the same voxel, the averaged value [12,13], the
maximum value [12], the most recent value [14] or the first value [15] are usually selected
for assigned it. In the HFS, the volume from the DS has some empty voxels, each empty
voxel is filled with the nearby already filled voxels. The usual method for this purpose is
average or maximum [12,16] or a median [16] of those voxels. Dewi et al. [17] propose a
Hole-filling algorithm by improving the Olymplic operator. The algorithm shows a better
empty voxel estimation than conventional Olympic, Average, and Maximum. The PNN
method causes great blurring as well as relatively large reconstruction error. In [18], a
method named direct frame interpolation (DFI) method is presented to creates additional
intermediate image frames by directly interpolating between two or more adjacent image
frames of the original image series. Then the DFI method fills the the target volume using
the original frames in combination with the additionally constructed frames. The DFI
method requires the sampled B-scan slices not to be intersected. However, the intersec-
tion among the B-scan slices could not be avoided in the freehand scanning configuration.
In [3], a method based on Cyclic Regularized Savitzky-Golay (CRSG) filter is introduced
to reconstruct freehand 3D ultrasound volume with mechanical linear scanning sweep.
However, such parallel scanning sweep is usually not available for the freehand scanning.
To preserve the detail of boundaries, An Fast Marching Method (FMM) algorithm has
been recently proposed by [1], it consists of DS and HFS. In DS, it similar to DS of PNN,
In HFS, it advances the interpolation boundary along its normal direction and fills the
area closest to known voxel points in first. it improvement in reconstruction accuracy
and efficiency. FBMs utilize estimate functions by taking use of the input data for creat-
ing the voxel grid. Rohling et al. [6] propose the Radial Basis Function (RBF) interpolation
is an approximation with splines that tries to use the underlying shape of the data in
the volume reconstruction. Overfitting phenomenon is usually unavoidable for the Spline
method. Sanches and Marques [19] present the Rayleigh reconstruction/interpolation
with a Bayesian framework estimates a function for the tissue by statistical meth-
ods. The Rayleigh method also trend to suppress spckle noise but smooth out the
boundaries.

This paper develops a new freehand 3D ultrasound reconstruction algorithm based on
kernel regression (KR) aims to suppress speckle noise and preserve boundaries. its cor-
responding ideas come from nonparametric estimation [20]. Nonparametric estimation
has various applications, such as 2D image denoising, upscaling, interpolation and fusion
[21], feature extraction for 3D MR image denoising [22]. In the following, we demonstrate
the details of KR applied in freehand 3D ultrasound reconstruction.

System and methods
System

The freehand 3D ultrasound system consists of three modules: a conventional 2D
ultrasound scanner (DC-7, Mindray Medical International Ltd., Shenzhen, China)
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used to acquire ultrasound image, an electromagnetic spatial sensing device
(Aurora [23], NDI, Ontario, Cannada) acquiring the position and orientation of ultra-
sound images and surgical instruments, and a workstation with custom-designed
software used for data collection, volume reconstruction, and visualization [1].
Figure 1 illustrate this system framework. The spatial information (position (x, y, z)
and orientation (Rx, Ry, Rz)) of ultrasonic probe and surgical instrument embed-
ing sensor is recorded by Aurora system connects to the workstation through
its USB port so that it can be acquired by a custom-designed software by use
of Aurora system API. Besides, the real-time ultrasound video is captured by a
video capture card (RGB-133, VTimage Inc., Shenzhen, China) installed in the
workstation.

a

b
Figure 1 Freehand 3D ultrasound system. (a) The main components of our system. (b) The framework of
our system.
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Data collection

Before volume reconstruction, data collection is a very important step which influ-
ences accuracy and efficiency of reconstruction. Data collection consists of two steps:
calibration between spatial data and 2D B-scan images, and selecting ROI (region of inter-
est). In this paper, the set of B-scan image Ii and its position Ti are collected by the data
collection method of [1].

Volume reconstruction

A 3D volume data is reconstructed from the collected data, including the 2D B-scan
images and its spatial information. In this study, the algorithm for volume reconstruction
is composed of two stages: bin-filling and regression.

Bin-filling stage

The bin-filling stage is to map the pixel in 2D B-scans into the voxel in 3D volume data
based on its corresponding positional information. In this freehand 3D ultrasound sys-
tem, the mapping of the coordinate system from the 2D B-scans to 3D volume is named
after forward mapping and is defined as

Vr = M × Vp (1)

where Vp is the physical position, M is the forward transformation matrix, and Vr is
the resulting voxel location in the reconstructed 3D volume data. The forward trans-
formation matrix M must be decomposed and implemented to find an matrix for this
transformation, which is discussed in detail in [1].

Regression stage

Since the scanning of freehand-style is subjective, the collected B-scan images are usually
irregular and highly sparse. Therefore, there are some gaps in the reconstructed volume
after the bin-filling stage, as addressed in Figure 2(a). The goal of the regression stage is
to make the nonparametric estimation [20] for the whole volume data from the previous
sparse volume data.

a b
Figure 2 A liver of human volumn data with our method. (a) The bin-filled result. (b) The reconstructed
result.
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The sparse volume data after the bin-filling stage are given by

Yi = r(Xi) + εi, i = 1, · · · , P (2)

where r(·) is the regression function, Xi = (Xi1, Xi2, Xi3)T is the three-dimension coor-
dinate of data, εis are the independent and identically distributed zero mean noise
values.

Specifically, if X is near the sample at Xi, we can approximate it with a N-term Taylor
series

r(Xi) ≈ r(X) + r
′
(X)(Xi − X) + 1

2!
r

′′
(X)(Xi − X)2

+ · · · + 1
N !

rN (X)(Xi − X)N (3)

= β0 + β1(Xi − X) + β2(Xi − X)2 + · · · + βN (Xi − X)N

A least-squares formulation capturing this idea is to solve the folowing optimization
problem:

min{βn}

P∑
i=1

[
Yi − β0 − β1 (Xi − X) − β2 (Xi − X)2

− · · · − βN (Xi − X)N ]2 1
h

K
(

Xi − X
h

)
(4)

where K(·) is the kernel function which penalizes distance away from the local position
where the approximation is centered, and the smoothing parameter h (bandwidth) con-
trols the strength of this penalty. In particular, the function K is a symmetric function
which attains its maximum at zero, satisfying

∫
R1

tK(t)dt = 0,
∫
R1

t2K(t)dt = c (5)

where c is a constant value. The choice of the particular form of the function K is usually
Gaussian, exponential, or other forms, which comply with the above constraints. Because
the choice of the kernel has little impact on the accuracy of estimation. Therefore, the
Gaussian kernel, being computational complexity, is selected in this paper.

For the estimation problem based on Least Square Method upon showed in Equation 4,
the order N effect the accuaracy and complexity of local approximation of the volume
data. Therefore, it must be appropriately chosen. In the nonparametric statistics litera-
ture, locally constant, linear, and quadratic approximations (corresponding to N = 0, 1, 2)
have been considered most widely [24-27].

The Kernel function K is now a function of 3 variables. Given a nonsingular positive
definite 3 × 3 bandwidth matrix H , which is defined

KH(X) = 1
|H| 1

2
K

(
H− 1

2 X
)

. (6)
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Often, one scales each covariate to have the same mean and variance, then use the
kernel

h−3K
( ||X||

h

)
(7)

where K is any one-dimensional kernel. therefore, there is a single bandwidth parameter
h. At a target value X = (X1, X2, X3)

T , the local sum of squares is given by

n∑
i=1

wi(X)

⎛
⎝Yi − β0 −

3∑
j=1

βj
(
Xij − Xj

)⎞⎠
2

(8)

where

wi(X) = K
( ||Xi − X||

h

)
. (9)

The estimator is

r̂(X) = β̂0 (10)

where β̂ =
(
β̂0, · · · , β̂3

)T
is the value of β = (β0, · · · , β3)

T that minimizes the weighted
sums of squares. The solution β̂ is

β̂ =
(

XT
x WxXx

)−1
XT

x WxY (11)

where

Xx =
⎛
⎜⎝

1 X11 − X1 X12 − X2 X13 − X3
1 X21 − X1 X22 − X2 X23 − X3
1 X31 − X1 X32 − X2 X33 − X3

⎞
⎟⎠ (12)

and Wx is the diagonal matrix whoses (i, i) element is wi(X). Therefore,

r̂(X) = β̂0 = eT
1

(
XT

x WxXx
)−1

XT
x WxY (13)

where e1 is a column vector with all elements equal to zero but the first element equal to
one, r̂(X) is the final values of reconstructed volume data.

Experiments and results
To evaluate the quality and performance of our proposed KR algorithm for freehand 3D
ultrasound reconstruction, a phantom and an in-vivo liver organ of human subject are

a b c
Figure 3 A 3D ultrasonic abdominal phantom with our method. (a) The outer structure of phantom.
(b) The inner structure of phantom. (c) The reconstructed volumn data of phantom with our method.
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Figure 4 The coronal, transverse and sagittal reconstructed slice (from left to right) of phantom with
different methods. (a) The bin-filled result. (b)-(g) The reconstructed result with (b) VNN, (c) PNN,
(d) Spline, (e) PT, (f) FMM and (g) KR.
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Figure 5 The coronal, transverse and sagittal reconstructed slice (from left to right) of liver with
different methods. (a) The bin-filled result. (b)-(g) The reconstructed result with (b) VNN, (c) PNN,
(d) Spline, (e) PT, (f) FMM and (g) KR.
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Table 1 Evaluate the quality of reconstruction of phantom image with RMSE for VNN, PNN,
Spline, PT, FMM and KR algorithms

VNN PNN Spline PT FMM KR

14.386524 19.371032 21.436066 13.061580 11.617232 9.335329

scanned with our freehand 3D reconstruction system. The parameters of the order N , the
size of kernel R and the bandwidth h of KR are assigned with 1, 15 and 0.5 respectively.
The proposed method is compared with the classical VNN, PNN, Spline and PT methods
and the recent FMM method. The accuracy of the reconstruction results is evaluated via
root mean square error (RMSE). The running time of different methods on all scanned
datasets are given for their performance and efficiency comparison. All of the methods
are implemented in C++, and the computer is equipped with a Intel Core i3-2120 3.3 GHz
and 2 GB RAM.

Qualitative results

The first experiment is conducted on an abdominal phantom (CIRS Model 057), which
is made from proprietary materials to accurately mimic human tissues under MRI, CT,
and ultrasound. The phantom mainly contains simulated lungs, liver, hepatic vesels, ribs,
vertebra, kidneys, and abdominal aorta. The freehand scan of the phantom is performed
with a 4.5 MHz probe. 102 B-scan slices are collected. Each B-scan is cropped to 400×400
pixels. A depth setting of 200 × 200 mm is used giving a resolution of 0.5 mm/pixel.
Figure 3 shows the phantom picture, its inner structure and the reconstructed volume
data with our freehand 3D ultrasound reconstruction system.

The second experiment object is an in-vivo liver organ of human, 167 B-scan slices are
collected. each B-scan is cropped to 347 × 242 pixels. A depth setting of 177 × 123 mm
is used giving a resolution of 0.511945 mm/pixel. Figure 2 shows the bin-filled volume
without interpolation and the reconstructed volume using our KR algorithm.

The coronal, sagittal and transverse slice of the phantom and liver using the VNN,
PNN, Spline, PT, FMM and KR algorithm are showed in Figure 4 and Figure 5. Accord-
ing to Figure 4(b) and Figure 5(b), the reconstructed slices using the VNN algorithm look
sharp and present more texture patterns. However, the anatomical structure is actually
distorted due to the misalignments of the pixels, as addressed by [6]. Figure 4(c) and
Figure 5(c) show the PNN method causes great blurring as well as relatively large recon-
struction error. Overfitting phenomenon is usually unavoidable for the Spline method,
as demonstrated in Figure 4(d) and Figure 5(d). Figure 4(e) and Figure 5(e) show the PT
method preserve more texture details. However, there are some gaps in the sagittal slice.
Figure 4(f ) and Figure 5(f ) show the recent FMM method performs much better than the
classical methods. However, it can’t preserve enough details in the big gap. Compared
with the classical methods and the recent FMM method, our KR algorithm has advan-
tages both in recovering missing data with more details and suppressing speckle noises,
as demonstrated in Figure 4(g) and Figure 5(g).

Table 2 Evaluate the quality of reconstruction of liver image with RMSE for VNN, PNN,
Spline, PT, FMM and KR algorithms

VNN PNN Spline PT FMM KR

9.473721 14.149041 8.307448 11.268841 7.188029 6.682401
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a b

c d

e f

g h
Figure 6 Comparisons for phantom data with different reconstruction methods. (a) The original
removed phantom image. (b) The bin-filled image. (c)-(h) The reconstructed result with (c) VNN, (d) PNN, (e)
Spline, (f) PT, (g) FMM and (h) KR.
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Figure 7 Comparisons for liver data with different reconstruction methods. (a) The original removed
liver image. (b) The bin-filled image. (c)-(h) The reconstructed result with (c) VNN, (d) PNN, (e) Spline, (f) PT,
(g) FMM and (h) KR.

Table 3 Computational time complexity for VNN, PNN, Spline, PT, FMM and KR algorithms

VNN PNN Spline PT FMM KR

O
(

N · Np
)

O
(

N · R3
)

O(N) O
(

N · N2
p

)
O

(
Nm · log (Nm) · R3

)
O

(
N · R6 · D

)
Nx , Ny , Nz are the dimensions of the volume grid in x, y and z direction, N = Nx · Ny · Nz , Np is the number of B-scans.
Nm = max(Nx , Ny , Nz), R is the size of cubic region, d is the number of dimsentions of the volume, D = d + 1.
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Table 4 The running time with VNN, PNN, Spline, PT, FMM and KR in the experiment of
phantom

VNN PNN Spline PT FMM KR

1349.371s 1051.297s 55.911s 2528.297s 50.294731s 23366.637s

Quantitative results

For the quantitative evaluation, we deliberatly remove a slice from the collected B-Scan
slices. Then different reconstruction algorithms are applied to the removed data. Such
evaluation method is capable of measuring the ability of a reconstruction algorithm in
preserving true intensity values at the locations where a part of original data is removed.
A good reconstruction algorithm should interpolate the removed data with values very
close to the original data. In this study, root mean square error (RMSE) [28] is used for
the image quality measure. It can be described as follow:

RMSE =
√∑

x,y
(Ir(x, y) − Io(x, y))2 (14)

where Io is the removed slice from B-scan images, Ir is an image resliced the reconstructed
volume with Io’ position. (x, y) is the coordinate of pixels.

Table 1 and Table 2 summarize the RMSE of the evaluation tests using the VNN, PNN,
Spline, PT, FMM and our KR reconstruction algorithms. The RMSE of our KR algorithm
is smallest among these reconstruction mehods. Figure 6 and Figure 7 show that the KR
based reconsturcted slice is more close to the original slice.

Computation complexity analysis

In order to perform an objective and theoretical estimations to the computation time, the
big O notation is used to identify the complexity function. Table 3 lists the computational
time complexity of VNN, PNN, Spline, PT, FMM and our KR approaches.

The practical time costs are demonstrated in Table 4 for the phantom test (with a
dimension of 424 × 421 × 131) and Table 5 for the liver test (with a dimension of
387 × 338 × 350). From Table 4 and Table 5, the KR takes more computation time than
VNN, PNN, Spline, PT, and FMM algorithms.

Conclusion
In this paper, A novel freehand 3D ultrasound system based on kernel regression is
proposed. A phantom and an in-vivo liver organ of human subject are scanned and recon-
structed with this system for experiments. Root mean square error (RMSE) is used for
the quantitative evaluation. Both of the qualitative and quantitative experimental results
have demonstrated that our method can reconstruct image with less artifacts and higher
quality than the classical VNN, PNN, Spline, PT methods and the recent FMM method.
Therefore, the proposed kernel regression based reconstruction method is capable of con-
structing volume data with improved accuracy from irregularly sampled sparse data for
freehand 3D ultrasound imaging system. Of course, the practical time cost experiments

Table 5 The running time with VNN, PNN, Spline, PT, FMM and KR in the experiment of liver

VNN PNN Spline PT FMM KR

3786.954s 2803.087s 74.583s 7580.02s 60.768321s 38821.058s
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show it costs more computation time. So the time complexity is required to improve
for higher efficiency in freehand 3D ultrasound reconstruction in the future work. More
over, in respect to quality, automatic and dynamic bandwidth will be studied for spatial
adaptation.
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