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Abstract
Injectable materials have shown great potential in tissue engineering applications. However, bacterial infection is one of the 
main challenges in using these materials in the field of regenerative medicine. In this study, biogenically synthesized silver 
nanoparticle-decorated multi-walled carbon nanotubes (Ag/MWCNTs) were deployed for adorning biogenic-derived AgNPs 
which were subsequently used in the preparation of thermosensitive hydrogels based on hyaluronic acid encompassing these 
green-synthesized NPs. The antibacterial capacity of AgNPs decorated on MWCNTs synthesized through Camellia sinensis 
extract in an organic solvent-free medium displayed a superior activity by inhibiting the growth of Gram-negative (E. coli 
and Klebsiella) and Gram-positive (S. aureus and E. faecalis). The injectable hydrogel nanocomposites demonstrated good 
mechanical properties, as well. The thermosensitive hyaluronic acid-based hydrogels also exhibited Tgel below the body tem-
perature, indicating the transition from liquid-like behavior to elastic gel-like behavior. Such a promising injectable nanocom-
posite could be applied as liquid, pomade, or ointment to enter wound cavities or bone defects and subsequently its transition 
in situ to gel form at human body temperature bodes well for their immense potential application in the biomedical sector.

Keywords  Ag NPs · Green synthesis · Camellia sinensis · Antibacterial · Nanomedicine · Injectable nanocomposite · 
Thermosensitive hydrogels

Introduction

Much attention has been paid to temperature-sensitive 
hydrogels in recent years in pharmaceutical industry as these 
hydrogels can be used in liquid or ointment form, easily enter Pooyan Makvandi, Milad Ashrafizadeh and Matineh Ghomi 
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wound cavities, or repair bone defects, and subsequently 
become in situ gel at human body temperature (Abbadessa 
et al. 2016; Yu et al. 2017). Amphiphilic block copolymers 
such as polyethylene oxide–polypropylene oxide copolymers 
(PPO–PEO–PPO, also termed Poloxamers and Pluronics,) 
serve as thermosensitive hydrogels exhibiting well tolerabil-
ity, low-level irritancy, and toxicity. Hence, they have been 
exploited in the biomedical arena, e.g., tissue engineering 
(Shim et al. 2005; Ju et al. 2013). At a specific composi-
tion, pluronics show dual behavior at lower or higher than 
its critical temperature. This critical temperature is intro-
duced as lower critical gelation temperature (LCGT) where 
pluronics behave as a low viscous liquid, and at the higher 
temperatures of LCGT, one gradually encounters higher vis-
cosity and the occurrence of gelification (Mayol et al. 2011). 
The appropriate and pertinent properties of Pluronics have 
led to their use in wound-healing applications (Khalil et al. 
2007; Kant et al. 2014). To enhance the biocompatibility of 
platforms encompassing pluronics, they have been adorned 
with polysaccharides such as hyaluronic acid (HA) (Mayol 
et al. 2008, 2011). HA, a natural glycosaminoglycan, is the 
main component of the extracellular matrix (ECM) in mam-
malian connective tissues, vitreous, and nucleus pulposus 
wherein it fulfills both, the physiochemical and biological 
functions. Due to its important biological functions, it accel-
erates tissue regeneration, e.g., dermal skin. Skin repairs are 
promoted by HA and it has been employed in dermal engi-
neering applications such as a dermal filler and wound dress-
ings (Barbucci et al. 2002; Kablik et al. 2009). When these 
pluronic hydrogels are applied in combination with HA, the 
viscoelastic properties of the ensuing gel and its biocompat-
ibility are improved. This condition occurs without affect-
ing the gelling process, while improving the mucoadhesive 
properties which makes it easier to attach to the damaged 
tissues (Makvandi et al. 2019a, b).

However, a bacterial infection is a key and generally 
unsolved issue in regenerative medicine (Makvandi et al. 
2020a). Thus, materials comprising antimicrobial com-
pounds have been employed for infection therapy (Zare 
et al. 2020; Makvandi et al. 2020a; Jamaledin et al. 2020). 
Among assorted nanometals, AgNPs have demonstrated 
great potential for biomedical applications. For instance, 
AgNPs remarkably improve fibroblast proliferation, colla-
gen synthesis, and cell adherence, showing their potential 
for wound healing (Li et al. 2017; Makvandi et al. 2020b; 
Wang et al. 2020). Among different approaches for the fab-
rication of silver NPs, the green nanotechnology strategy by 
deploying naturally occurring materials has garnered exten-
sive attention in the medicinal sector as they avoid organic 
passivation that is perilous both for the environment and the 
human body (Makvandi et al. 2019a, b, 2021a).

Naturally occurring compounds present in extracts are 
potential candidates for the synthesis of AgNPs due to 

their minimal side effects (Ashrafizadeh and Ahmadi 2019; 
Mohammadinejad et al. 2019a; Sobhani et al. 2019), ease 
of availability, and large-scale synthesis (Mohammadinejad 
et al. 2019b). The plant extract-mediated synthesis of nano-
particles can protect the environment as the presence of bio-
molecules such as flavonoids, alkaloids, terpenoids, and sug-
ars, etc. serve as reducing agents and capping agents rather 
than toxic hydrides or hydrazines (Makvandi et al. 2020a). 
Native plants such as ginger, cinnamon, mustard, and garlic 
illustrate different degrees of antimicrobial characteristics 
(Noman et al. 2016; Mahdy et al. 2017). Azadirachta indica 
(Neem) exhibits antibacterial and antifungal properties (Das 
2014). Tea (Camellia sinensis) is widely used and cultivated 
as one of the most important industrial products in more 
than 45 countries with large consumption worldwide ~ 3 
billion kilograms every year (Pang et al. 2016; Pastoriza 
et al. 2017). Tea, with its unique taste/flavor, has many 
health benefits due to its various bioactive components, 
including flavanols, polyphenols, catechins, amino acids, 
caffeine, vitamins, carbohydrates, and phenolic acids (Pras-
anth et al. 2019; Feng et al. 2020) with valuable biological 
and therapeutic effects such as antimicrobial, antioxidant, 
anti-inflammatory, neuroprotective, hepatoprotective, and 
cardioprotective (Zare-Zardini et al. 2020). Tea extract has 
been extensively explored for the preparation of wide-rang-
ing nanoparticles of iron, silver, and copper among others 
(Nadagouda and Varma 2008; Hoag et al. 2009; Moulton 
et al. 2010; Nadagouda et al. 2010; Markova et al. 2014; 
Plachtová et al. 2018; Khatami et al. 2019).

The antibacterial activity of these nanoparticles has been 
exploited for usage in medical devices. To have access for 
maximum antibacterial effect, they have been integrated into 
multi-wall carbon nanotubes (MWCNTs) (Wang et al. 2020). 
Interestingly, MWCNTs are endowed with unique properties 
such as lightweight, chemical/thermal stability, antibacte-
rial activity, highly tensile strength, excellent conductivity, 
and large surface area (Akbari et al. 2010; Murugesan et al. 
2020). Pretreatment of MWCNTs generates oxygen-con-
taining functional groups (such as OH and COOH) on its 
surfaces. Subsequently, the formation of nucleation sites acts 
as a home of Ag ions by ions-functional groups interactions 
and provides a growth situation for Ag NPs. Ag-decorated 
MWCNTs exhibited bacterial inactivation (Verma et al.; Seo 
et al. 2014). It has been illustrated that various molecules 
such as proteins, nucleic acids, and proteins can be loaded 
onto MWCNTs, with potential applications in biology and 
medicine, including the targeted delivery to cancer cells 
(Delfi et al. 2021; Makvandi et al. 2021a, b; Saeednia et al. 
2019).

Herein, an easy, expeditious, and reproducible method-
ology is described for the greener synthesis AgNPs using 
Camellia sinensis extract and adorning the ensuing AgNPs 
on MWCNTs including their full characterization. Finally, 
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the antimicrobial activity was evaluated against the Gram-
positive (S. aureus and E. faecalis) and Gram-negative (E. 
coli and Klebsiella) bacteria with possible appliances in 
medicine. Afterward, we formulated the thermosensitive 
nanocomposite hydrogels based on Pluronics and HA and 
Ag NPs-decorated MWCNT for potential use as a wound 
care material.

Experimental section

Chemicals

The Camellia sinensis leaves were obtained from a local 
market (Ahvaz, Iran). Silver nitrate (99.98%) was purchased 
from Merck, Germany. MWCNTs, with 10 μm average 
length, were obtained from Sigma-Aldrich. To provide the 
highest dispersion, the MWCNTs suspension was stirred at 
55 °C for approximately 7 h, and then, it was sonicated in an 
ultrasonic bath (50 Hz, 0.138 kW) at 70 °C for 10 min. All 
other materials were of commercial reagent grades.

Preparation of green Camellia sinensis leaves extract

Camellia sinensis leaves of 50 g were washed with deionized 
water to eliminate the dust and dried in an oven at 40 °C. 
The dried leaves were ground into a fine powder (mesh size 
60 μm), pulverized in a knife mill, and sieved into a particle 
size of 0.4 μm and, then, kept refrigerated in glass containers 

before further processing. Next, the powder was added to 
500 mL of deionized water and the solution was stirred and 
heated to 80 °C for 20 min. Then, the mixture was filtered 
through Whatman No. 42 filter paper to remove any resid-
ual powder. Finally, the extract was stored at 4 °C until it 
was used for the experiments (Onitsuka et al. 2019). Sche-
matic illustration for the tea extraction process is depicted 
in Fig. 1a.

Synthesis of silver nanoparticle

The biosynthesis of AgNPs was conducted by employing a 
greener approach in an organic solvent-free medium. Briefly, 
50 mg of dried Camellia sinensis leaves extract was mixed 
with 47 mL water, and its pH was adjusted to 9 using NaOH. 
Then, under constant stirring of the solution (1000 rpm), 
silver nitrate aqueous solution (3.4 μg/mL) was gradually 
added and the contents stirred at room temperature (25 °C) 
for 20 min. The biosynthesized AgNPs in the extract was 
stored at 4 °C for further characterization (Khorrami et al. 
2018).

Synthesis of silver nanoparticle‑decorated MWCNTs

MWCNTs were first treated with a mixture of acids with 
concentrated H2SO4 and HNO3 (3:1, v/v) at 60 °C for 3 h. 
For the synthesis of Ag-MWCNTs, 20 mg of MWCNTs was 
dispersed in 50 mL of H2O and sonicated for 30 min. It was 
then mixed with 50 mL AgNO3 (3.4 μg/mL) and sonication 

Fig. 1   a Schematic presenta-
tion for the preparation of tea 
extract; b illustration for the 
fabrication of AgNPs-decorated 
MWCNT nanocomposites
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was continued for 20 min. Afterward, 50 mL of Camellia 
sinensis leave extract, as a reducing and stabilizing agent, 
was gradually added to the mixture under vigorous stir-
ring. Finally, the biosynthesized nanoparticle-decorated 
MWCNTs were stored at 4 °C for further characterization. 
The schematic of the fabrication of the process is shown in 
Fig. 1b.

Measurements

To evaluate and monitor the biosynthesis of AgNPs, a 
UV–Vis spectrophotometer (Cary 50, Australia) was used 
and was performed at a resolution of 1 nm and wavelength 
range between 300 and 600 nm. The morphologies of the 
AgNPs and AgNPs-decorated MWCNTs were ascertained 
by TEM (Jeol JEM-ARM200CFEG). The TEM samples 
were prepared by sonicating each sample for 15 min and 
placing a drop onto carbon-coated copper grids. Then, each 
grid was dried in the laboratory air at room temperature.

HPLC analysis

The Camellia sinensis leaves’ extract (200 mg) was added 
to 20 mL methanol solution 80% and mixed overnight in 
the dark. Then, the mixture was centrifuged at 3000 rpm 
for 10 min. The supernatant solution was decanted and 
stored for performing the HPLC analysis. The analysis was 
recorded using an HPLC system (Agilent 1200 series model, 
San Jose, CA, USA) equipped with a diode array detector 
for monitoring all wavelengths (227–550 nm) and C18 col-
umn (250 mm × 4.6 mm i.d., 5 µm, Phenomenex, USA) at 
40 °C. Chemical Station software (Rev B. 03. 02, Agilent 
Technologies) was also applied for the data acquisition; 
injection volume being 20 µL. The mobile phase comprised 
orthophosphoric (1% w/v, A) and acetonitrile (≥ 99.9%, 
B) in the following gradient elution program (flow rate: 
1 ml min−1). 10–57 min, B (8%) increase to 18%; at 78 min, 
B (24%); at 80 min, B (26%); at 92 min, B (28%); at 92 min, 
B (28%); at 98 min, B (80%) and finally at 108 min, B 
(8%). The concentration of standard solutions encompassed 
0.1 mg mL −1 [for (-)-epigallocatechin (EGC)], 0.01 mg mL 
−1 [for (-)-epicatechin (EC)], and (-)-catechin gallate (CG) in 
80% aqueous methanol. Moreover, (-)-gallocatechin (GC), 
(-)-gallocatechin gallate (GCG), (-)-epicatechin gallate 
(ECG), and (-)-epigallocatechin gallate (EGCG) standard 
solutions were prepared with 80% aqueous methanol to meet 
the concentration of 0.05, 0.025, 0.05, and 0.5 mg mL −1, 
respectively. The theobromine, caffeine, and rutin solutions 
were also 0.01, 0.1, and 0.01 mg mL −1.

Antibacterial evaluation

The in vitro antibacterial activity of the samples was assayed 
using a direct contact test with agar diffusion. Gram-positive 
(S. aureus and E. faecalis) and Gram-negative (E. coli and 
Klebsiella) bacteria were used to assess the antibacterial 
activity of the prepared nanoparticles. Standard bacterial 
strains were purchased from Pasteur Institute, Iran. To exam-
ine the antibacterial activity of Ag and Ag/MWCNT, we 
used the primary concentration of each sample. For Gram-
negative bacteria (E. coli and Klebsiella), tetracycline was 
used. For negative control, we used a disc containing sterile 
distilled water. A positive control is a solution of ampicillin 
agar plate. Antibacterial activity was evaluated by meas-
uring the diameter of the inhibition zone (mm) on with a 
concentration of 100 mg mL−1. All tested bacteria were 
maintained in Muller–Hinton broth (Merck). The agar plates 
were inoculated from the standardized cultures of the test 
organisms using a sterile cotton swab to then spread as uni-
formly as possible throughout the entire media. The tablet 
(diameter: 9 mm) was introduced on the upper layer of the 
seeded the surface of plates and the results were reported as 
mean ± standard deviation (SD) after three repeats.

Preparation of thermosensitive hydrogel

The hydrogels were prepared by adding Pluronics F127 
(15% wt) and F68 (15% wt) to the aqueous dispersion of 
Ag NPs/MWCNT by mixing under continuous stirring at 
4 °C. Subsequently, HA was added to this mixture at room 
temperature to obtain the concentration of 1% wt of HA. The 
composition of the hydrogels was optimized by rheological 
analysis to obtain a gelification temperature (Tgel) around 
body temperature (Makvandi et al. 2019a, b).

Rheological properties

Small-amplitude oscillatory shear tests were performed to 
evaluate the time-dependent response of the thermosensitive 
hydrogels and their linear viscoelastic properties, i.e., G″ 
and G′; frequency was in the range from 0.01 to 10 Hz. The 
measurements were carried out through a rotational rheom-
eter (Mars III, HAAKE Rheometer, Waltham, MA, USA), 
using a parallel plate geometry. The tests were performed at 
the controlled temperatures of 20 and 40 °C using a thermo-
static bath. To identify the linear viscoelastic response range 
of the materials, preliminary strain sweep tests were per-
formed on the samples, at the oscillation frequency of 1 Hz. 
The tests were repeated at least three times for each sample. 
The gelation temperature of the formulation was evaluated 
by monitoring the viscoelastic parameters (G′ and G″) as a 
function of the temperature ranging from 25 to 40 °C at a 
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fixed oscillation frequency of 0.01 Hz. During all the tests, 
the samples were placed into a chamber properly designed 
to avoid the evaporation of the solvent. For the viscosity 
analysis, a steady-state shear test in terms of flow curves was 
performed to evaluate the dependence of viscosity upon the 
shear rate (Makvandi et al. 2019a, b).

Results

Synthesis and characterization

To determine whether AgNPs were biosynthesized by 
Camellia sinensis extract, the UV–Vis spectra were recorded 
after each part of the synthesis process. As can be seen from 
Fig. 2a, the maximum absorbance for AgNPs appeared at a 
wavelength of 480 nm, indicating the formation of AgNPs 
(Makvandi et al. 2019a, b). After 3 h of initiation of the 
reaction, the reduction of silver ions to nanoparticles was 
completed in approximately 24 h. After exposure to Camel-
lia sinensis, the reduction of Ag+ to Ag0 occurred, resulting 
in a color alteration of solution from colorless to yellow; 
this color alteration is a result of the excitation of surface 
plasmon vibration with the AgNPs. Figure 2b–d displays the 
color alteration of silver nitrate to AgNPs in the absence and 
presence of MWCNTs.

HPLC methodology has been conducted for the simul-
taneous analysis of Camellia sinensis constituents such as 
polyphenols, flavonoids, purine alkaloids, etc. (Nishitani and 
Sagesaka 2004; Sharma et al. 2005). The reproducibility 
of the green synthesis method was evaluated through the 
investigation of the absorption spectra of AgNPs. The local-
ized surface plasmon resonance (LSPR) of the synthesized 
NPs was recorded for five tea extracts; absorption spectra 

Fig. 2   a UV–Vis spectra of AgNPs, tea extract, and AgNPs decorated 
on MWCNTs; the color of b tea extract c biosynthesized AgNPs and 
d biosynthesized AgNPs decorated on MWCNTs

Fig. 3   HPLC chromatogram of extractable ingredients from green tea

Table 1   The alkaloid, polyphenol, and theaflavin components of 
green tea (mg g−1)

Compounds Mean ± SD

Total alkaloids (theobromine, caffeine) 32.06 ± 0.271
Total catechins (GC, EGC, EC,EGCG,GCG,CG) 153.8 ± 0.271
Total theaflavins (TF, TF-3-G, TF-3′-G, TF-3,3′-DG) 1.72 ± 0.061
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compared with each other revealed no significant difference 
in LSPR. This confirms that the tea extract (as a bio-reduc-
ing agent) possesses enough bioactive components (viz., 
flavonols, polyphenols, catechins, amino acids, caffeine, 
vitamins, carbohydrates, and phenolic acids) in each of the 
examined Camellia sinensis leaves’ extracts. The extractable 
components in green tea through HPLC analysis are shown 
in Fig. 3 with the total alkaloid, polyphenol, and theaflavins 
of green tea being listed in Table 1. The major alkaloid was 
found to be caffeine. The catechin compounds (viz., EGCG, 
ECG, EGC, GC, and CG) were identified and the highest 
concentration belonged to EGCG.

Oxygenated functional groups on the MWCNTs serve as 
the active sites for loading Ag ions, their nucleations, and 

uniform distribution (Ebbesen 1996); AgNPs decorated on 
the MWCNTs were dispersed all over the MWCNTs sur-
faces, and their morphology size and shape were assessed 
by transmission electron microscopy (Mohseni-Dargah et al. 
2019). Figure 4 exhibits the TEM image of the prepared 
AgNPs (at the scale of 50 nm) and AgNPs decorated on 
MWCNTs (at the scale of 20 nm). Also, the average size 
distribution graphs of AgNPs (A) and AgNPs decorated 
on MWCNTs were determined by Digimizer software as 
depicted in Fig. 5.

Fig. 4   TEM images of a 
biosynthesized AgNPs and 
b MWCNTs decorated with 
biosynthesized AgNPs

Fig. 5   The size distribution graph of AgNPs (a) and AgNPs decorated on MWCNTs (b)
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Antibacterial activity

Figures 6 demonstrates the antibacterial activity of green-
synthesized nanoparticles after exposing Gram-negative 
and Gram-positive bacteria. All samples showed antibacte-
rial effect toward Gram-negative bacteria. As can be seen, 
the antibacterial activity of both AgNPs and Ag/MWCNT 
is higher for Gram-negative bacteria, compared to the 
Gram-positive bacteria. Besides, the antibacterial activ-
ity of Ag/MWCNT is slightly higher than Ag alone toward 

Gram-negative bacteria (Fig. 6). As expected, ampicillin 
showed a higher inhibition zone than the biosynthesized 
nanomaterials and negative controls did not show any anti-
bacterial activity.

Rheological behavior

To perceive the gelation behavior of solutions, rheological 
measurements were undertaken. The transformation tempera-
ture of hydrogels from viscous (G″ > G′) to elastic (G′ > G″) 

Fig. 6   Qualitative antibiogram test of biosynthesized NPs for a 
Gram-negative bacteria and the antibacterial property of multi-walled 
carbon nanotubes decorated with biosynthesized AgNPs on b Escher-
ichia coli, c Klebsiella; qualitative antibiogram test of biosynthesized 

NPs for d Gram-positive bacteria and antibacterial property of multi-
walled carbon nanotubes decorated with biosynthesized AgNPs on e 
Enterococcus faecalis and f Staphylococcus aureus 
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behavior is named a gelation temperature (Tgel). The viscoe-
lastic properties of hydrogels alter by a gradual increase in the 
temperature and thus provide an ability to evaluate the behav-
ior of the gel. The temperature range of 20–40 °C was selected 
for the viscoelastic investigation. The gel point was obtained 
from the intersection of two elastic (G′) and viscous moduli 
(G″) (Mayol et al. 2008). Both moduli (elastic and viscous) of 
test samples at a specific frequency (0.1 Hz) are shown against 
the temperature in Fig. 7a. The examination of different con-
centrations (10–30% wt) of Pluronic aqueous solutions, viz., 
F127 or F68 exhibited no gelification process at a Tgel close 
to the body temperature (Tb). In contrast, their mixture (F127/
F68) with specific concentration ratios generates a hydrogel 
blend that possesses a gelling temperature close to the Tb. The 
mechanical spectra, G’ and G’’ as a function of frequency at a 
higher temperature than Tgel, are shown in Fig. 7b. According 
to the figure, the elastic modulus is higher than the viscous 
modulus at 40 °C and shows the rheological behavior of a gel-
like material, because the performance of both moduli at this 
temperature is independent of the frequency.

Fig. 7   a The sol–gel phase transition by rheological experiments. b Mechanical spectra of the hydrogels after gelation (40 °C). c Schematic illus-
tration of the injectable platform and gelling at body temperature

Fig. 8   The viscosity effect of the thermosensitive hydrogel against 
the various shearing rate at room temperature
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The shear-thinning and viscosity behavior of prepared 
hydrogel at 25 °C is shown in Fig. 8. The viscosity decreases 
with increasing shear rate until it reaches a constant pseudo-
Newtonian behavior at high shear rates. Polymeric solutions 
and physically bonded gels behave in such a way, which can be 
due to the breaking of physical bonds and topological interac-
tions between the polymer chains under shearing. The frac-
ture of the bonds increases the chain mobility and reduces the 
abrasion between the polymer and solvent moieties within the 
hydrogel bed. For easier injection of materials through the 
needle, it is better to have a higher shearing rate and lower 
viscosity (Mayol et al. 2011; Dessi et al. 2013).

Discussion

The synthesis of nanoparticles employing chemicals has 
been known for a while but invariably deploys toxic sub-
stances and organic solvents that are detrimental to the 
environment and humans (Pattabi and Uchil 2000). In con-
trast, the biosynthesis of NPs has been considered a grow-
ing need for the development of eco-friendly technologies 
(Varma 2012; Hebbalalu et al. 2013), the use of safer and 
renewable materials instead of toxic chemicals (Patra and 
Baek 2014; Zare et al. 2019).

Herein, the AgNPs are generated by safer entities pre-
sent in tea extract which are concurrently formed on the 
MWCNTs by reduction of Ag ions; prior to that, acid 
treatment is employed for forming functional groups on 
the surface of MWCNTs. for synthesis of Ag-decorated 
MWCNTs. The functional groups (such as COOH) on the 
MWCNTs improve the stability and chemical reactivity 
(Hamouda et al. 2021). Hence, the precise and controlled 
nuclei formation of Ag NPs on the surface of MWCNTs, 
strong Ag-carbon adhesion, and high dispersion forces 
between MWCNTs and Ag NPs can be achieved.

The reproducibility of our green protocol was also 
evaluated by a three-time analysis of extract using HPLC 
instrument which resulted in the reproducible data. The 
spherical shapes of these NPs were confirmed by TEM, 
while the MWCNTs improved the dispersibility of NPs 
and assisted in generating smaller NPs.

Antibacterial activity of nanoparticles has led to their 
application in the field of medicine and prevention of bacte-
rial resistance and our AgNPs adorned MWCNT displayed 
a higher antibacterial effect against Gram-negative bacte-
ria (Fig. 6). It has been demonstrated that multifunctional 
nanoparticles containing caffeic acid, phenethyl ester, and 
juglone have high antibacterial activity against S. aureus and 

E. coli (Durak et al. 2020). It is worth mentioning that the 
wall of bacteria inhibits the entrance of antibacterial agents 
and stimulation of their effect. Green synthesized AgNPs 
using Artocarpus hirsutus extract showed high antibacterial 
activity against Enterobacter aerogenes and listeria monocy-
togenes which emanates from the ability of nanoparticles to 
penetrate the bacterial cell wall (Dhand et al. 2016). Despite 
the high antibacterial activity, the nanoparticles are biocom-
patible and display no or low toxicity against normal cells 
(Guo et al. 2020) as exemplified by plant-derived chemicals 
such as curcumin into silica nanoparticles with enhanced 
antibacterial activity (Mirzahosseinipour et al. 2020). Over-
all, these studies highlight the fact that nanostructures are 
capable of reducing and inhibiting the growth of bacteria 
and can be applied instead of conventional antibacterial 
agents to suppress bacterial resistance (Li et al. 2020; Zhen 
et al. 2020).

The antibacterial activity of AgNPs has been applied in 
different fields of medicine. For instance, after bone graft 
introduction in alveolar ridge construction, there is a risk 
of infection which may inhibit the formation of bone; sil-
ver nanoparticle-coated collagen membrane can stimulate 
antibacterial activity (Chen et al. 2018). It has been demon-
strated that S. aureus and Pseudomonas aeruginosa are fac-
tors that negatively affect bone substitution and after using 
AgNPs, the activity and growth of these bacteria undergo 
inhibitory effect, while these nanocarriers being biocompat-
ible exert no adverse effects on normal cells. Using antibac-
terial drugs would result in the development of resistance 
and it is necessary to identify novel methods for combating 
such bacteria (Makvandi et al. 2021b). AgNPs are promising 
agents in overcoming the bacterial infection with minimal 
chance of bacterial resistance due to minuscule concentra-
tion of AgNPs. Ambi and colleagues synthesized AgNPs 
with antibacterial activity (Ambi et al. 2018). Bacterial colo-
nization stimulates the activation of these AgNPs and it was 
found that they can effectively suppress the growth of Gram-
positive and Gram-negative bacteria such as Staphylococcus 
epidermis, methicillin-resistant Staphylococcus aureus, and 
E. coli. Shao and colleagues prepared AgNP-decorated gra-
phene nanocomposite and assessed its antibacterial activity 
(Shao et al. 2015); they exerted antibacterial impact against 
Gram-negative E. coli ATCC25922 and Gram-positive S. 
aureus ATCC6538 bacteria. Notably, it appears that the 
addition of multi-walled carbon nanotubes is an efficient 
strategy in improving the antibacterial activity of AgNPs. 
In the present study, AgNPs decorated MWCNTs display 
higher antibacterial activity relative to AgNPs; antibacterial 
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activity of biosynthesized AgNPs and Ag/MWCNTs against 
Gram-negative bacteria is schematically depicted in Fig. 9.

In this research, temperature-sensitive hydrogels were 
prepared wherein AgNPs decorated on MWCNTs using 
Camellia sinensis extract. The gel behavior of blending 
hydrogel occurs near the body temperature which is a signif-
icant advantage. The gelation process of Pluronic transpires 
without any need for toxic crosslinker or organic solvent, 
and hence, it can be applied in a biological application; the 
use of HA, the second component of a hydrogel, magnifies 
the biocompatibility of hydrogel. The polymer interactions 
between HA and pluronic followed by micelle generation 
and self-assembling process clarify the path of the possible 
underlying mechanism (Mayol et al. 2011).

Conclusion

In the present study, we have successfully synthesized AgNPs 
adorned on MWCNTs using Camellia sinensis. Notably, the 
method of preparation of nanoparticles was eco-friendly and 
synthesized nanoparticles demonstrated superb properties in 
terms of their spherical shape with maximum absorbance at 
480 nm and antibacterial activities. Camellia sinensis leaf 
extract was used as a reducing agent for the in situ synthesis 
of AgNPs due to its valuable biological and therapeutic effects 
such as antioxidant, anti-inflammatory, anti-tumor, hepatopro-
tective, and cardioprotective properties with barely any side 
effects. Finally, the antibacterial activity of nanoparticles 
against Gram-positive (S. aureus and E. faecalis) and Gram-
negative (E. coli and Klebsiella) bacteria was investigated, and 
it was found that these nanocarriers have a great antibacterial 
activity and can effectively inhibit the growth of bacteria. We 
have also introduced a thermosensitive and injectable hydrogel 
for potential medical applications in the biomedical sector. The 

rheological behavior of the prepared hydrogel was examined 
to investigate its viscoelastic moduli.
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