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ABSTRACT. Cryptosporidiosis is one of the major causes of diarrhea in calves. Cryptosporidium 
parvum is considered the most important calf diarrhea pathogen in the Cryptosporidium species. 
Not only could infected calves spread C. parvum, but infected adult cattle could also shed oocysts. 
The objectives of this study were (1) to investigate the prevalence of C. parvum in dairy herds in 
Taiwan, including calves, the dams in delivery enclosure, the floor, and the drinking water; (2) to 
clarify the relationship of diarrhea, management, and C. parvum infection. Twenty dairy herds 
in Taiwan were selected by random sampling, including 226 calves and 198 dams, and other 
environmental samples were collected. A questionnaire was filled out by the farm owners to 
collect information regarding the management of calves and the delivery enclosure. Hierarchical 
logistic regression was used to analyze the risk factors for C. parvum infection. The prevalence 
of C. parvum infection in calves was 26.5% (60/226), while in dams, it was 19.7% (39/198). The C. 
parvum infection in calves increased with environmental contamination of C. parvum and clinical 
signs of diarrhea, while it decreased with a yard provided in the delivery enclosure. In conclusion, 
the management of the delivery enclosure appears to be more important for preventing 
cryptosporidiosis in calves in Taiwan.
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Dairy farms in Taiwan are mostly of small field size, with an open housing system. According to the year-end statistics in 
2017, dairy farms in Taiwan had reached a total number of 553, raising 130,413 cattle, or 236 cows per farm. The average size 
of a dairy farm was 6,607 m2. Most of farms have the single calf pen for every calf and others farms adopt group housing in 
calf-pen. Diarrhea in the calves of a dairy herd is a common disease and induces large economic losses [7]. Cryptosporidiosis is 
one of the major causes of calf diarrhea [5]. The genus Cryptosporidium includes several protozoan parasites that mainly infect 
the epithelial cells of the gastrointestinal, respiratory, and biliary tracts in animals [12]. The most common species in dairy herds 
are Cryptosporidium parvum, Cryptosporidium andersoni, Cryptosporidium bovis, and Cryptosporidium ryanae [10, 11], with C. 
parvum being considered the most important calf diarrhea pathogen in the Cryptosporidium species [23].

The main transmission route of C. parvum is fecal–oral infection, with only 5.8 oocysts needed for a median infectious dose for 
fecal oocyst shedding, or 9.7 for diarrhea [26]. Calves infected by C. parvum shed a large number of oocysts in their feces within 
three days, and infected calves can excrete oocysts for 4–16 days [12]. The characteristics of C. parvum, such as only needing a 
few oocysts to cause infection, shedding a large number in feces, and short lifecycle, lead to large-scale infection in dairy herds.

C. parvum can be transmitted by shedding oocysts from infected individuals in the enclosure [22]. This indicates that neonatal 
calves have a high risk of infection from infected dams with oocysts shedding in the delivery enclosure. Investigation of the 
relationship between C. parvum infection and the environment, such as the drinking tank and the floor of the delivery enclosure, 
is rare in Taiwan. The most recent research of the prevalence of Cryptosporidium in livestock in Taiwan was in 2005, which 
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comprised a fecal survey via the modified Ziehl–Neelsen method and an immunofluorescence assay in cattle and goats, showing 
a prevalence of 37.6% (173/460) and 35.8% (44/123), respectively [25]. The prevalence in the abovementioned research included 
all species of Cryptosporidium, and thus the real status of pathogenic Cryptosporidium, which is C. parvum in Taiwan, could 
have been overestimated. Therefore, the prevalence of C. parvum in dairy cattle in Taiwan is still unknown. The objectives of this 
study were (1) to investigate the prevalence of C. parvum in dairy herds in Taiwan, including calves and the dams in the delivery 
enclosure; (2) to clarify the relationship of diarrhea, management, and C. parvum infection.

MATERIALS AND METHODS

Animal population and sampling
From April 2017 to February 2018, the feces of 226 calves from 20 dairy herds in North, Middle, South, and East Taiwan. Farms 

were selected by random sampling, the average cow number was 366 ± 201 with 6 to 40 under 1.5 months old calves from each 
farm (Supplementary Table). All of the calves under 1.5 months old in the selected farms were sampled. The calves’ feces samples 
were defined as being either normal or diarrhea according to Uga’s research [10]. Next, 179 and 206 swab samples were taken from 
the calves’ drinking water and rearing enclosure, respectively. From dams in the delivery enclosure, 198 feces samples were taken, 
while 32 and 30 samples were taken from the drinking water and floor in the delivery enclosure, respectively. All owners agreed 
samples collection in this study. All sampling procedures were executed by veterinarians under the Animal Protection Act from the 
Council of Agriculture in Taiwan. No extra animals were intentionally used or purchased in this study.

Feces were collected from calves via the hand (with latex gloves) to stimulate the rectum to induce defecation. The drinking 
water of the calves was collected from the tank used to provide water to the calves. The swab samples of the rearing enclosure 
were collected using plastic spoons. If the calves were fed in independent cages, samples were collected from the upper, middle, 
and lower sites of the front and rear fences. If the calves were fed in groups, the sampling sites were taken in duplicate from the 
front, middle, and rear of all the feeding area. Samples from different sites of the same cages or feeding areas were mixed as the 
rearing enclosure swab sample for all of those calves that stay in that cage or feeding area. Feces from dams were collected via 
rectal palpation using a long plastic glove. The collected samples were stored at 0°C in an ice box and transferred to a −20°C 
refrigerator within 24 hr.

Oocyst concentration
All solid samples were filtered by gauze to remove most of the fiber. Then, the oocysts were concentrated by salt flotation after 

filtration. Depending on the samples having been collected from calves or dams, a 10 or 20 g sample was mixed with 30 or 50 ml 
of reverse osmosis water, and then filtered by gauze to remove most of the fiber. Thirty milliliters of the mixed sample were moved 
to a centrifuge tube and centrifuged at 3,500 g for 10 min. The supernate was removed and then reverse osmosis water was added 
to reach 30 ml. Centrifugation was repeated three times; for the third centrifugation, saturated salt solution was added to reach 30 
ml, then mixed and rested for 15 min. Following this, 3 ml of the supernate was collected and then reverse osmosis water was added 
to reach 30 ml in a new centrifuge tube. The tube was centrifuged at 3,500 g for 10 min, and then the supernate was removed; this 
process was repeated three times to remove the salt. After the third centrifugation, 5 ml 
of ultrapure water was added to the tube with precipitate. The tube was shaken to 
mix it completely, ready for DNA extraction. The FastDNA® SPIN Kit for Soil 
(MP Biomedicals, Carlsbad, CA, USA) was used to extract DNA from the samples. 
For the water samples without visible fiber, salt flotation after filtration was used 
to concentrate the oocytes without filtration, and the same DNA extraction step as 
for the solid samples was used.

Nested PCR
The extracted genomic DNA sample was used as a template to amplify the 

18S rRNA of C. parvum by nested PCR [21]. The first-step primers for nested 
PCR were the forward primer EF:5′-TTCTAGAGCTAATACATGCG-3′ and 
the reverse primer ER:5′-CCCATTTCTTCG AAACAGGA-3′. The second-step 
primers were the forward primer CphF:5′-AGAGTGCTTAAAGCAGGCATA-3′ 
and the reverse primer IR:5′- AAGGAGTAAGGAACAACCTCCA-3′. The first 
step of nested PCR was performed using 3 µl of extracted DNA, 10 µl of 2X Taq 
PCR MasterMix (Genomics Bioscience and Technology Co., Ltd., New Taipei 
City, Taiwan), 0.5 µl (10 µM) of each forward (EF) and reverse (ER) primer, and 
6 µl of pure water in a 0.2 ml Eppendorf. The PCR conditions were as follows: 
Denaturation at 94°C for 3 min, followed by 35 cycles of 94°C for 45 sec, 49°C 
for 45 sec, 72°C for 1 min, and extension at 72°C for 7 min. The second step of 
nested PCR was performed using 3 µl of the PCR product from the first reaction 
rather than the extracted DNA and the same cycling conditions as the first step. The 
final PCR products were analyzed by gel electrophoresis on a 2% agarose gel and 
visualized under blue light. The final target was a 305 bp fragment of 18S rRNA 
of C. parvum, as shown in Fig. 1.

Fig. 1. The specific fragment of the 18S rRNA 
of Cryptosporidium parvum. M: 100 bp DNA 
ladder marker; Lane 1: Positive; Lane 2: 
Negative.
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Questionnaire and records
A questionnaire was filled out by the farm owners to collect information regarding the management of calves and the delivery 

enclosure (Fig. 2). The diarrhea episodes of the calves were recorded at the time of sample collection. Whether a yard for 
prepartum cows were provided or not and the bedding materials in their delivery enclosure were also recorded.

Statistical analysis
We first estimated the prevalence of C. parvum infection and its 95% confidence interval (CI) in both calves and cows. 

Furthermore, we adopted hierarchical logistic regression to analyze the relationship between C. parvum infection in calves and 
other environmental explanatory variables (Table 1). We transformed all of the categorical explanatory variables into dummy 
variables, and centered and standardized the numerical variables. In addition, the farms were designed as a random effect for the 
model to evaluate the variance of intercept between the different farms. The hierarchical logistic regression was fit by maximum 
likelihood with Laplace approximation [16]. The computing environment R with the package lme4 [3, 19] was used for model 
construction.

For model construction, we first fitted the model with each univariable analysis and retained the variables with P-values of less 
than 0.1 for further multivariable model construction.

Multicollinearity between explanatory variables was evaluated using the variance inflation factor (VIF) [13]. The VIF threshold 
was set as 10 to avoid problematic effects of multicollinearity on the parameter estimations [1]. Variables were discarded from 
model construction if their VIF value was larger than 10.

The explanatory variables selected in the models were based on the Wald test with a P-value threshold set at 0.05 [4, 8]. The 
backward stepwise method was adopted for variable selection. Values of the Akaike information criterion (AIC) and the AIC 
weights were used to assess the models’ fit and to select the best-fitted model [4, 8]. Based on the fitted model, the receiver 
operating characteristic (ROC) curve and the area under the ROC curve (AUC) was calculated to evaluate the discriminate ability 
of the model.

RESULTS

The prevalence of C. parvum in Taiwan and the proportion of positives of C. parvum of different environmental factors
The prevalence of C. parvum infection in calves was 26.5% (60/226; 95% CI: 20.7–32.3%) and 19.7% (39/198; 95% CI: 

14.2–25.2%) in dams. The percentage of C. parvum-positive herds was 90.0% (18/20; 95% CI: 76.9–100%). The prevalence of C. 
parvum in North, Middle, South, and East Taiwan is shown in Table 2.

The proportion of positives in the rearing enclosure swab samples was 18% (38/206; 95% CI: 12.8–23.2%), while it was 2.2% 
(4/178; 95% CI: 0–4.1%) in the drinking water of the calves. The samples from the floor and drinking water in the delivery 
enclosure had a positive proportion of 16.7% (5/30; 95% CI: 3.6–30%) and 6.3% (2/32; 95% CI: 0–14.7%), respectively. The C. 
parvum-positive proportion of calves based on different environmental explanatory variables is shown in Table 3.

Fig. 2. Questionnaire regarding the management of the calves and the delivery enclosure.
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Hierarchical logistic regression
The explanatory variables chosen for model construction with a P-value below 0.1 in the univariable analysis were 

Diarrheal=Yes, Rearing enclosure=Positive, BirthF-Clean=2 (once every two–three days), and Yard=Yes (Table 4).
The final fitted model included the explanatory variables of Diarrheal=Yes, Rearing enclosure=Positive, and yard provided had 

the lowest AIC value and AIC weight of 0.59 (Table 5). Furthermore, the AIC value indicated that the null model of hierarchical 
logistic regression fit better than that of logistic regression (Table 5).

Based on the final fitted model, the probability of C. parvum infection in calves increased with proportion of positives in the 
rearing enclosure of C. parvum and clinical signs of diarrhea, while it decreased with a yard provided in the delivery enclosure 
(Table 4). The estimated odds ratios of each univariable analysis and the final fitted variables in the hierarchical logistic regression 
model are shown in Table 4. We created a ROC curve (Fig. 3) and estimated the AUC based on the final fitted model. The 
computed value of AUC was 77.62% (95%CI: 70.45–84.88%), which indicated that the discriminate ability of fitted model was 
considered acceptable to excellent [17, 18].

DISCUSSION

This research comprised a survey of C. parvum infection in calves younger than 1.5 months and prepartum cows in dairy herds 
in Taiwan, which were analyzed using nested PCR. This is the first research of the prevalence of C. parvum in dairy cattle in 
Taiwan. The results show that the prevalence of C. parvum infection was 26.5% and 19.7% in calves and dams, respectively, and 
positivity rate in herds was 90.0%. The prevalence of C. parvum in pre-weaned claves was reported from 3.4 to 96.6% in different 

Table 1. The definitions of calves and other environmental explanatory variables

Variable Data type Description
C. parvum Binary The result of PCR detection for Cryptosporidium parvum. This variable was treated as a response variable in the 

hierarchical logistic regression model for understanding the association between explanatory variables and C. 
parvum infection.

Farm Categorical Farms where samples and questionnaire data were collected. In total, 20 farms were included in this study. This 
variable was used as the random effect in the model construction.

Farm size Continuous The number of calves in each farm was used to represent the farm size.
Diarrheal Binary If calves presented with diarrheal symptoms at the time that the sample was collected.
Tank Categorical Results of the PCR screening for Cryptosporidium parvum with samples of tank water. The variable was 

categorized into negative, positive, and no water tank in the calf rearing enclosure.
Rearing enclosure Binary C. parvum screening results for the swab samples collected from the calf rearing enclosure.
Floor-Clean Order Frequency of floor cleaning in the calves’ enclosure. 1, once per day; 2, once every two–three days; 3, once every 

four–five days; 4, once in more than five days.
Tank-Clean Order Frequency of water tank cleaning in the calves’ enclosure. 1, once per day; 2, once every two–three days; 3,  

once every four–five days; 4, once in more than five days.
BirthF-Clean Order Frequency of delivery enclosure cleaning. 1, once per day; 2, once every two–three days; 3, once every four–five 

days; 4, once in more than five days.
BirthT-Clean Order Frequency of cleaning of the water tank in the delivery enclosure. 1, once per day; 2, once every two–three days; 

3, once every four–five days; 4, once in more than five days.
Calf-dis Binary Disinfection of the calves’ enclosure. 1, yes; 0, no.
Birth-dis Binary Disinfection of the delivery enclosure. 1, yes; 0, no.
Close-lac Binary The distance between the calves’ enclosure and the lactating cows’ enclosure. 1, nearby; 0, not close to  

one another.
Yard Binary Yard provided in the delivery enclosure. 1, yes; 0, no.
Bedding Binary Bedding materials provided in the delivery enclosure. 1, yes; 0, no.
Dry-lac Binary The dry period enclosure and the delivery enclosure are separate. 1, yes; 0, no.
Cow-p Continuous The prevalence of C. parvum in the cows.

Table 2. Prevalence of Cryptosporidium parvum in North, Middle, South, and East Taiwan

Regions Prevalence of C. parvum  
in calves

(%, 95%CI)

Prevalence of C. parvum  
in dams

(%, 95%CI)
Areas included in this region

North 1/10 (10.0, 8.6–28.6) 3/10 (30, 1.6–58.4) Yilan, New Taipei, Keelung, Taipei, Taoyuan, and Hsinchu
Middle 17/64 (26.6, 15.8–37.4) 9/57 (15.8, 6.3–25.3) Miaoli, Taichung, Nantou, Changhua, and Yunlin
South 36/107 (33.6, 24.7–42.5) 23/90 (25.6, 16.6–34.6) Chiayi, Tainan, Kaohsiung, Penghu, and Pingtung
East 6/45 (13.3, 3.4–23.2) 4/41 (9.8, 0.7–18.9) Hualien and Taitung

95% CI: 95% confidence interval.
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Table 3. The Cryptosporidium parvum-positive rate of calves based on different environmental explanatory variables

Variables Options 
n (%)

Flood-Clean Once per day Once every 2–3 days Once every 4–5 days Once in >5 days
48/188 (25.5) 4/11 (36.4) 7/17 (41.2) 0

Tank-Clean Once per day Once every 2–3 days Once every 4–5 days Once in >5 days
49/195 (25.1) 5/21 (23.8) 6/10 (60) 0

BirthF-Clean Once per day Once every 2–3 days Once every 4–5 days Once in >5 days
26/98 (26.5) 3/32 (9.3) 13/50 (26) 18/46 (39.1)

BirthT-Clean Once per day Once every 2–3 days Once every 4–5 days Once in >5 days
39/162 (24.1) 12/38 (31.6) 1/7 (14.3) 8/19 (42.1)

Calf-dis Yes No
29/94 (29.8) 32/132 (24.2)

Birth-dis Yes No
5/28 (17.9) 55/198 (27.8)

Close-lac Yes No
42/177 (23.7) 18/49 (36.7)

Yard Yes No
3/33 (9) 57/193 (29.5)

Bedding Yes No
19/60 (31.7) 41/166 (24.7)

Dry-lac Yes No
45/162 (27.8) 15/64 (23.4)

Table 4. Explanatory variables statistics and estimated odds ratios of univariable analysis and final fitted model

Variables
Univariable analysis Final fitted model

C SE Odds 
ratio 95%CI P-value C SE Odds 

ratio 95%CI P-value

Intercept −1.420 0.308 0.347 0.344–0.349 <0.001
Diarrheal=Yes 0.878 0.375 2.406 1.153–5.019 0.019 0.795 0.382 2.215 1.047–4.683 0.038
Rearing enclosure=Positive 0.993 0.412 2.700 1.204–6.056 0.016 0.901 0.422 2.462 1.076–5.634 0.033
Yard=Yes −1.463 0.815 0.231 0.047–1.144 0.073 −1.586 0.800 0.204 0.043–0.983 0.048
BirthF-Clean=2 −1.516 0.841 0.220 0.04–1.140 0.071
C: coefficient; SE: standard error; 95%CI: 95% confidence interval.

Table 5. Comparison of the Akaike information criterions (AIC) and 
the Akaike weights between the different models of Cryptosporidium 
parvum infection in calves

Model Variables included AIC DAIC2 Akaike 
weight

Hierarchical1 Final fitted model 245.4 0 0.586
Diarrheal=Yes
Rearing enclosure=Positive
Yard=Provided

Hierarchical Reduced model 247.5 2.1 0.205
Diarrheal=Yes
Rearing enclosure=Positive

Hierarchical Full model 245.7 0.3 0.504
Diarrheal=Yes
Rearing enclosure=Positive
BirthF-Clean=2
Yard=Yes

Hierarchical Null model 253.1 7.7 0.012
Logistic regression Null model 263.6 18.2  <0.001

1 Hierarchical logistic regression. 2 DAIC, difference in AIC value from final fitted 
model.

Fig. 3. Operating characteristic curve (ROC) and estimated the 
area under the ROC curve (AUC) value of the final fitting 
model.
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areas [23]. The differences mainly based on their different experiment designs and the detection methods of these studies, which 
resulted in diverse prevalence of C. parvum. Longitudinal study and sampling diarrheic calves only presented higher prevalence 
in the past studies. This study present point-prevalence and collect both diarrheic and non-diarrheic calves under 1.5 months old. 
The prevalence of this study was 26.5%, which showed the infection of C. parvum is severe in calves in Taiwan. In addition, 
hierarchical logistic regression showed that diarrhea in calves was positively related to C. parvum, indicating that the diarrhea in 
calves caused by C. parvum infection in Taiwan dairy herds is an important issue. C. parvum has been confirmed as not only a 
harmful pathogen in calves, but also being able to possibly infect humans—especially children [6]. Therefore, understanding the 
risk factors of C. parvum infection is very important for human and herd health. The rearing enclosure, which was investigated for 
C. parvum, was positively related to C. parvum infection in calves, showing that infected calves shed oocytes into environment. 
Even cleaning the cage every day or using disinfectant could not decrease the C. parvum infection rate in calves. This suggests that 
prevention of infection in dams and decontamination of delivery enclosures are more important for preventing cryptosporidiosis in 
calves in Taiwan.

This study also indicated that 19.7% of dams had been infected, with the floor and drinking water in the delivery enclosure 
having a C. parvum positive proportion of 16.7% and 6.3%, respectively. Even concrete flooring, which is commonly used in 
delivery enclosures in Taiwan and is easy to clean, the delivery enclosures were contaminated with C. parvum. A previous study 
indicated that the floor and drinking water in the delivery enclosure having a Cryptosporidium oocyte proportion of 80% and 
64% in a high contaminated farm [9]. These results support the insight that C. parvum can infected neonatal calve soon after 
delivery [26], suggesting that famers should consider more effective cleaning methods in delivery enclosures to decrease C. 
parvum infection in neonatal calves in Taiwan. However, the frequency of cleaning and the use of disinfectant were not related to 
C. parvum infection, perhaps because most disinfectants have limited efficacy against C parvum, including those recorded in this 
study [2]. Cleaning the environment and feeding tools by hot water or heating was more efficient for killing oocyte of C. parvum 
[14], but this kind of cleaning procedure was rarely performed in Taiwan dairy herds. That might explained no relationship between 
the frequency of cleaning (in delivery and calves’ enclosure) and C. parvum infection in this study. Although there were several 
studies indicated that large size farm has higher risk of C. parvum infection, the farm size did not relate to C. parvum infection in 
this study [20, 24]. It might because of few large farms (>500 adult cows) in Taiwan and only one farm had more than 500 adult 
cows in this study. So the farm size was not a significant factor of C. parvum infection in Taiwan.

On the contrary, provided yard for prepartum cows showed a lower infection rate for C. parvum in calves and tended to be 
negatively related to C. parvum infection. Even there is no study describing the relationship between providing yard for prepartum 
cows and C. parvum infection directly, minimizing the exposure of calves to C. parvum was indicated as an effective strategy for 
preventing infection of C. parvum [14]. A yard for prepartum cows could provide more space in calving area and decrease the 
opportunity to contact oocyte of C. parvum as the calves born. There was another report indicated the industrial farming system, 
compared to gracing farming system has higher risk for C. parvum infection [15]. That result also suggested large space in calving 
area may decrease the risk for C. parvum infection.

In conclusion, the relationship between diarrhea and C. parvum infection in calves is very high in Taiwanese dairy herds, and the 
management of the delivery enclosure such as providing a yard appears to be more important for preventing cryptosporidiosis in 
calves in Taiwan.
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