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Abstract: Forest tree breeding efforts have focused mainly on improving traits of economic impor-
tance, selecting trees suited to new environments or generating trees that are more resilient to biotic
and abiotic stressors. This review describes various methods of forest tree selection assisted by
genomics and the main technological challenges and achievements in research at the genomic level.
Due to the long rotation time of a forest plantation and the resulting long generation times necessary
to complete a breeding cycle, the use of advanced techniques with traditional breeding have been
necessary, allowing the use of more precise methods for determining the genetic architecture of traits
of interest, such as genome-wide association studies (GWASs) and genomic selection (GS). In this
sense, main factors that determine the accuracy of genomic prediction models are also addressed.
In turn, the introduction of genome editing opens the door to new possibilities in forest trees and
especially clustered regularly interspaced short palindromic repeats and CRISPR-associated protein
9 (CRISPR/Cas9). It is a highly efficient and effective genome editing technique that has been used
to effectively implement targetable changes at specific places in the genome of a forest tree. In this
sense, forest trees still lack a transformation method and an inefficient number of genotypes for
CRISPR/Cas9. This challenge could be addressed with the use of the newly developing technique
GRF-GIF with speed breeding.

Keywords: Bayesian genomic prediction; BLUP; CRISPR/Cas9; GRF-GIF; forest tree improvement

1. Introduction

Forest trees are a main source of wood, energy, pulp for paper, soil protection, cor-
rection of erosion problems and silvopastoral plantations, among other things. In this
sense, important efforts in forest tree breeding have been carried out to improve traits of
economic interest, to select trees (or hybrids) adapted to new habitats, or to generate trees
that are more tolerant to various biotic and abiotic stresses. From the point of view of wood
productivity, conventional breeding programs have continuously been improving traits
related to throughput, such as wood volume, tree height, diameter at breast height, stem
straightness, survival and wood quality, under various environmental conditions [1–7].

Conventional forest tree breeding considers phenotypic evaluations based on kinship
relationships between individuals to identify trees that are superior in a trait of interest.
The Henderson mixed-model method has been traditionally used to determine the genetic
merit of trees and best linear unbiased prediction (BLUP) has been the standard prediction
method [8,9]. The genetic merit is predicted according to the degree of kinship between
the trees of a breeding population under the assumption that individuals with a common
ancestor are phenotypically similar and share loci of interest. Due to the long rotation
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time of a forest plantation and the resulting long generation times necessary to complete a
breeding cycle, the advent of molecular marker technology along with traditional pheno-
typic selection has led to the development of marker-assisted selection (MAS) [10]. With
MAS, important advances have been made in forest selection and breeding. In this method,
the genotypic values of individuals are predicted by considering the effects of selected
markers, which predictions are more accurate for traits controlled by few quantitative trait
loci (QTLs), each of which controls a relatively large proportion of the phenotypic varia-
tion [11]. On the other hand, the development of high-throughput genotyping techniques
has allowed the use of more precise methods for determining the genetic architecture of
traits of interest, such as genome-wide association studies (GWASs) and genomic selection
(GS). For example, GS is a method that uses molecular markers distributed throughout the
genome, such as single-nucleotide polymorphisms (SNPs), which is preferred for complex
traits that are affected by many genes and are strongly affected by the environment [12–14].

Both in traditional selection methods and in GS, the predictive accuracy of the pheno-
type of an individual depends on how accurate the estimation of the genetic relationships
between individuals is [15–17]. The predictive power of a GS model can be greater if the
individuals which are used as references to estimate the additive effects (of the loci) are
genetically related to the individuals whose phenotype is to be predicted [17–19]. In this
context, to make good use of GS, several genetic factors that are intrinsic to the study
population should be considered [20], such as linkage disequilibrium (LD) patterns, the
genetic structure of the population and genetic diversity, among others [21–24] in order
to optimize the rates of genetic gain. Kinship relationships derived from pedigrees repre-
sent the (theoretical) proportion of the genome that is shared between individuals. This
makes the relationship matrix generated by genealogical background an unbiased esti-
mate of the kinship relationships between the genes that control the phenotype [15,25].
However, in some populations, it is not possible to perform a good reconstruction of the
genetic structure that defines the population (for example, due to pollen contamination
or in open pollination assays), which leads to lower precision in the estimation of ge-
netic parameters [26]. Even events in the evolutionary history of the population could
be ignored, which would make it difficult to accurately estimate the genetic parameters
that are key in the selection of superior trees. In this sense, kinship estimates based on
genomic regions are a better approximation of the real proportion of the genome that two
individuals share. Currently, kinship between individuals is determined based on SNPs
or haplotypes [27–29]. According to Edwards (2015) [27], haplotypes can establish more
precise and reliable genealogical relationships than a relationship matrix made purely from
SNPs because they allow us to examine the identity by descent that exists among the indi-
viduals of a population. Interestingly, haplotypes have been used in GS models, covering
extensive regions of the genome of some annual plants (such as wheat and maize), which
has increased the predictive power of complex phenotypic traits [30–34]. Interestingly,
the haplotype approach can be especially beneficial for predicting traits with a relatively
low heritability. Some authors suggest that these results can be explained by the fact that
the use of haplotypes in GS allows access to heritable genetic components that cannot
be detected by SNPs [31,35]. Despite these possible benefits demonstrated in silico and
experimentally, there is still little information on the use of haplotypes in GS, especially in
forest trees. In Eucalyptus globulus Labill., Ballesta et al. (2019) [36] emphasized that a GS
model that uses haplotypes as predictor variables can increase the ability to predict traits
with low genetic control by up to 21%. In addition, Mora-Poblete et al. (2021) [3] showed
that the genomic prediction of some metabolites and components of leaves could become
more accurate with the use of haplotypes in Eucalyptus cladocalyx F. Muell.

On the other hand, with the advent of genomic editing, great opportunities are
visualized in terms of the future development of plant science, including in forest trees and
in the rapid remodeling of crops. Genome editing is a relevant, versatile and preferred
tool for the improvement of annual crops, as well as for functional genomics [37]. Great
advances have been made in gene editing techniques, such as those using zinc finger



Int. J. Mol. Sci. 2021, 22, 10583 3 of 29

nucleases (ZFNs), transcription activator-type effector nucleases (TALENs) and clustered
regularly interspaced short palindromic repeats (CRISPR) associated with the Cas9 and
Cpf1 proteins [38–42]. Among the various genome editing tools, CRISPR has become the
most popular, which has helped to clarify the genomic structure and its role in plants, for
example, the transcriptional control of Cas9 and Cpf1, the monitoring of a genetic locus, the
mechanism and control of the promoter activity of a gene and the alteration and detection
of epigenetic behavior at SNPs as found through GWASs [38,43,44]. This review describes
various methods of forest tree selection assisted by genomics, from MAS to genomic editing
and the main technological challenges, highlighting the achievements and advances in
research at the genomic level.

2. Conventional Forest Tree Breeding and Marker-Assisted Selection (MAS)

In conventional forest tree breeding, phenotypic evaluations are performed and kin-
ship relationships are determined to identify the trees that are superior in a trait of inter-
est [26,45–47]. In general, evaluations are carried out in progeny trials, such as half and/or
full siblings, clones, hybrids, or a combination there of them [48–50]. Phenotypic selection
has contributed significantly to the increase in genetic gains in various forest species around
the world, such as Eucalyptus, Pinus, Populus, Picea and Cryptomeria [51–55]. However, the
maintenance of progeny trials, for example, involves a significant investment of resources,
intensive logistics and long selection cycles before usable results are seen [10,56,57].

Parental genotypes are evaluated by the throughput of their progeny, such that allelic
combinations that generate offspring with superior throughput are considered genetically
superior and are put into successive breeding cycles. Therefore, an accurate estimation
or prediction of the “breeding value” of an individual is required. On the other hand,
it is common that it is complicated to analyze the results of a forest competition trial
because (1) usually only a subset of the parents is represented in each progeny trial;
(2) the parents are represented in different number of progeny trials; (3) the trials are
evaluated at different ages of the trees; and (4) the kinship background between individuals
may be wrong due to the management of a seed orchard or even due to inbreeding
processes [26,58]. The historical innovation for the breeding value estimation model taken
into account the effects caused by the genotypes as random effects instead of fixed [59–62].
This analytical method, known as best linear prediction (BLP) or best linear unbiased
prediction (BLUP), allows the maximization of the precision or the correlation between
the predicted and real values for genetic merits, which includes the pedigree information
of the individuals evaluated [63]. In this sense, the use of the Henderson mixed-model
method (based on BLUP) has traditionally been used to determine the genetic merit of
trees and it is considered a standard prediction method [8,9]. The genetic merit is predicted
according to the degree of kinship between the trees of a breeding population under the
assumption that individuals with a common ancestor are phenotypically similar and share
loci of interest. However, conventional breeding has allowed significant genetic gains in
different forest species [4,49,64], even when it presents clear disadvantages, such as the
long generation time required to complete a breeding cycle [10,65]. The advent of molecular
marker technology, in combination with traditional phenotypic selection, has led to the
development of marker-assisted selection (MAS) [10]. With MAS, important advances
have been achieved in forest selection and breeding. MAS predicts the genetic merit of the
trees by considering the effects of a group of selected markers (considering their statistical
significance) and it has become the preferred way to improve traits controlled by few loci,
each of which controls a relatively large proportion of the phenotypic variation [13,66].

3. High-Throughput Genotyping Techniques Enable Different Fields of Studies
on Plants

Molecular markers have been widely used in genetic and plant breeding studies [67–70].
SNPs, for example, are abundant in plant genomes and their usefulness as genetic mark-
ers has been well established in the last decade [71]. For this reason, SNP markers have
been applied to various areas of knowledge, such as forensic science and diagnostics in
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humans, aquaculture, livestock marker-assisted selection, agricultural crop breeding and
conservation studies [72–76].

In 2011, the number of sequenced plant genomes doubled compared to the previous
decade (http://phytozome.net, accessed on 1 September 2021), which was due to the
increasing throughput of sequencing methods. Second- and third-generation sequencing
platforms, such as Illumina’s various platforms, 454 pyrosequencing (Roche), SOLID
(Invitrogen) and Ion Torrent (Invitrogen), have the ability to obtain results from many
sequences, which can be used to discover new molecular markers in a viable way and at
low cost [77,78]. These techniques have been used on a large scale for the discovery of
SNPs in representative sets of individuals of various species of plants, such as rice [79],
wheat [80] and different trees [81,82]. The discovery of SNP markers has made important
contributions to advancements in various fields of study, such as genomics, transcriptomics
and population genetics, such as for mapping QTLs. Through knowledge of the genome
and the physical locations of these polymorphisms, DNA arrays have been made to type
SNPs of different species, such as cacao [83], cherry [84], wheat [85] and rice [86].

Given the need for molecular tools that support genomic studies of species of interest
in forestry, different SNP arrays that are transferable between taxa of the same genus,
such as Populus, Eucalyptus, Quercus, Picea, Araucaria, Pinus and Pseudotsuga have been
developed [87–93] (Table 1). For example, a 50 K Axiom array, developed from the genome
of Picea abies (L.) H. Karst., can be applied to at least four species of Picea, while EUChip60K
has been applied to more than 14 taxa of the genus Eucalyptus [81]. The numbers of SNPs
detected in coniferous and hardwood species have been relatively similar, but conifers
tend to have considerably larger genomes [94], which implies that SNP arrays developed
in conifers could have less genome coverage than those developed for broadleaves.

Table 1. Single nucleotide polymorphism (SNP) arrays developed for forest tree species. Genome size corresponds to the
estimated genome size, N-SNP is the number of SNPs contained in each array. The density of markers is expressed as the
number of SNPs per 1 Mb.

Species Genome Size a N-SNP Density (SNP/Mb) b Reference

Eucalyptus spp. 640 Mb 60 K 93.75 [81]
Populus spp. 420 Mb 34 K 91.5 [87]
Populus nigra 400–500 Mb 12 K 24–30 [95]
Quercus spp. 950–930 Mb 7.9 K 8 [89]

Picea spp. 20 Gb 7.3 K and 9.6 K 0.4–0.5 [88]
Picea spp. 20 Gb 50 K 2.5 [93]

Araucaria angustifolia
(Bertol.) Kuntze - 3 K - [90]

Pinus spp. 20–30 Gb 50 K 1.6–2.5 [91]
Pinus radiata D. Don 20–30 Gb 80–49 K 2–4 [96]
Pseudotsuga menziesii

(Mirb.) Franco 16 Gb 28 K 1.75 [92]

a Estimated size according to Ramos et al. (2018) [97], Zoldos et al. (1998) [98], Tuskan et al. (2006) [99], Kovach et al. (2010) [100],
Zimin et al. (2014), (2017) [101,102], Neale et al. (2017) [103], Myburg et al. (2005) [104]. b Density estimated according to the N-SNP and
Genome size.

4. Genomic Selection/Prediction, an Extension of BLUP Methods to Maximize
the Predictive Power of Traits of Interest

After the emergence of molecular markers on a large scale and the decrease in costs
associated with genomic tools, breeders began to use DNA markers to support selection
cycles. In general, genomic-assisted breeding can be based on MAS or genomic predic-
tion/selection [105–107]. The efficiency of each of the methods varies according to the
genetic architecture underlying the trait under study. MAS estimates the genotypic value
of an individual from the effects of selected molecular markers and it has greater effec-
tiveness in phenotypic traits that have an oligogenic genetic architecture [107]. GS is a
preferred method when studying complex traits that are affected by a large number of

http://phytozome.net
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genes and are highly influenced by the environment. In the case of forest trees, several
QTLs related to various traits of interest have been identified and mapped in association
studies, such as growth [108–111], flowering components [112–114], pulpability [115–117]
and wood properties [110,118–121]. However, effectively, the application of MAS in traits
with polygenic inheritance has been limited. In this sense, it is worth mentioning that the
important traits of a forest plantation, such as growth, are controlled by many genes that
each contribute little to the phenotypic variation [51,109].

GS was first proposed by Meuwissen et al. (2001) [105] in the context of animal
breeding as a method to specifically increase the efficiency of dairy cattle breeding pro-
grams. GS was born as an alternative to conventional BLUP based on pedigree information.
Unlike in MAS, in GS the effects of thousands of molecular markers are predicted simul-
taneously, even though these are not individually significant for a trait. According to
Daetwyler et al. (2013) [122], GS can widen the range of genetic gain since the individual
genetic merits are estimated with greater precision. Although GS does not allow us to iden-
tify the function of a gene controlling a trait, the predictive models provide a short-term
selection criterion of those individuals who have a better throughput. Moreover, GS has
helped us understand the genetic architecture of phenotypic traits and even to implement
ecological restoration and biological conservation plans [123,124]. The most widely known
GS methods incorporate models derived from the so-called Bayesian alphabet: Bayes A,
Bayes B, Bayes Cπ, Bayesian ridge regression (BRR), Bayesian least absolute shrinkage
and selection operator (LASSO) [105,125,126] and the conventional methods of genomic
BLUP (GBLUP) [127] and ridge-regression BLUP (RR-BLUP) [105]. RR-BLUP and GBLUP
assume that the markers have the same variance and that each marker makes a small
contribution to the prediction model (infinitesimal model). The prediction via GBLUP is
performed similarly to that via BLUP, the difference being that the BLUP pedigree matrix
is replaced by a relationship matrix constructed from molecular markers. RR-BLUP is a
multiple regression method in which the markers are thousands of regressors that explain
the variation in a phenotypic trait. In the context of the RR-BLUP method, the breeding
(genomic) value of each individual is defined by the following formula [128]:

GEBVj =
n

∑
i

Zij m̂i (1)

where n corresponds to the total number of markers, m̂i is the estimated effect of the ith
marker and Zij corresponds to the design matrix associated with the vector of the effects
of the markers, which encodes the genotype of the jth individual at the ith marker. The
abbreviation GEBV stands for genomic estimated breeding value.

In contrast, the Bayes A, Bayes B and Bayesian LASSO methods assume that each
marker has its own variance, and the phenotypic variance is explained by loci with effects
of different magnitudes [129]. These Bayesian methods are differentiated by the prior
distributions that are established and the degree of fit chosen. A more detailed description
of each method can be found in Heslot et al. (2012) [130] and De Los Campos et al.
(2013) [131]. For example, the Bayesian LASSO method assumes that the effects of the
markers are distributed a priori according to a double exponential (DE) distribution:
p
(
mi

∣∣λ, σ2
ε

)
= DE(mi

∣∣∣0,λ /σ2
ε
) , where λ is a regularization parameter. The DE distribution

generates a strong contraction (close to 0) to estimate the effects of the markers. BRR
is a Bayesian method that is based on the model’s regressors (whether SNPs or other
markers), which have a common variance (σ2

m), so that those regressors with the same
allelic frequency explain the same proportion of the additive variance and have the same
contraction effect [132]. The a priori distribution of the marker effects (mi) is Gaussian, and
Var(mi) takes a single value of σ2

m. In the Bayes A model, it is assumed that each marker
(mi) follows an independent normal prior distribution with mean 0 and variance σ2

mi
, while

the variance of each of them is assumed to be distributed as σ2
m
∣∣v, S2 ∼ χ−2(v, S2), where

S2 and v are the parameters for scale and degrees of freedom, respectively. On the other



Int. J. Mol. Sci. 2021, 22, 10583 6 of 29

hand, the Bayes B and Bayes C methods include the parameter π, which corresponds to
the probability that the effect of a marker is equal to 0. For the parameter π, an a priori
distribution π ~ β (p0, π0) is assumed, such that p0 > 0 and π0 can take values between
0 and 1 [133]. In both Bayes B and Bayes C, the effects of the markers have an a priori
normal mixture distribution, such that mi|π ∼ (1− π)N

(
0, σ2

mi

)
+ πN

(
0, σ2

mi
= 0

)
. On

the one hand, in the Bayes Cπ method, it is considered that all the markers have a common
variance and this variance is distributed in a similar way as in the BRR method, while for
the Bayes B method, the variance of the markers follows a similar distribution to that in
Bayes A.

In practice, it is recommended to test all available GS methods [134], which should be
contrasted in terms of their accuracy or predictive ability. However, if the researcher has an
idea of how many loci explain the variation of a trait, he could use a particular method.
For example, the Bayes B model bases its analytical assumptions on highly heritable traits
and whose variation is explained by large-effect loci [134]. On the other hand, Bayes A
represents an option for traits that are controlled by a moderate number of genes. Some
studies have shown that Bayesian methods are usually more accurate than GBLUP when
the training and validation populations are weakly related genetically [135,136].

With computational advancement and algorithms enhancements, artificial neural
networks (ANNs) have emerged as an alternative statistical framework and have gained
increasing interest in genomic studies [1,137–140]. This method can be particularly useful
when the number of unknown variables is much higher than the number of samples
(high-dimensional genomic information), since ANNs have the ability to capture non-
linearities, adaptively [1,141]. In the context of plant/tree breeding, few approaches have
included non-parametric approaches and non-linear functions based on ANN methods.
Maldonado et al. (2020) [1], for instance, investigated several genomic selection models
to predict several complex traits in breeding populations of Zea mays L. and Eucalyptus
globulus Labill., including two Machine Learning (ML) methods, i.e., Deep Learning (DL)
and Bayesian Regularized Neural Network (BRNN), both in combination with different
hyperparameters. The results showed that DL had a superior performance than GBLUP,
BayesA, BayesB, BayesCπ, BRR, BL, RKHS and BRNN, in terms of predictive ability for
all traits (tree growth and stem quality-related traits in the case of E. globulus Labill.),
confirming the importance of deep learning models in genome-wide studies and crop/tree
improvement, which holds promise for accelerating breeding progress. Moreover, Pérez-
Rodríguez et al. (2012) [142] found that BRNN and Radial Basis Function Neural Networks
(RBFNNs) (non-linear models) had higher predictive accuracy for grain yield and days
to heading in wheat and smaller predictive mean-squared error than Bayesian linear
regression models. On the other hand, Zingaretti et al. (2020) [143] evaluated the predictive
accuracy of linear and DL techniques in two important small fruits or berries: strawberry
and blueberry (polyploid outcrossing species) and did not find an advantage of DL over
linear model methods BL and BRR, except when the non-additive component (epistasis)
was important. In fact, linear Bayesian models were better than convolutional neural
networks for the full additive genetic architecture, whereas the opposite was observed
under strong epistasis. Interestingly, Alves et al. (2020) [144] compared GBLUP with ANN
in a simulated study considering different levels of dominance effects. They found that
ANN had a higher prediction accuracy compared with GBLUP for traits with moderate
narrow-sense heritability (h2 = 0.30) and dominance effects of 0 or 0.15. In this regard,
Maldonado et al. (2020) [1] found that the DL approach outperformed GBLUP despite
the low dominance effect, confirming that DL is a promising alternative tool for genomic
prediction independent on the contribution of additive and/or dominance genetic effects.

In the context of forest tree breeding, GS was originally proposed for the analysis
of complex traits such as tree growth and wood-related traits. The main parameter that
reveals whether a GS model is adequate for the estimation of genetic merits is the precision
and predictive power, which expresses the degree of correlation that exists between the
genetic values predicted by the GS model and the adjusted phenotypic values (or adjusted
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breeding values) [145–147]. In the study by Beaulieu et al. (2014) [12], an accuracy of
up to 0.435 was obtained in the GS models to predict traits related to wood properties
in fir tree. In Pinus pinaster Aiton, Isik et al. (2015) [148] reported that even with a
relatively low density of markers, the ability to predict traits related to growth can be
moderate (0.43–0.49). The predictive ability of GS models can be increased using different
methodological strategies. For example, Cappa et al. (2019) [149] utilized the single-step
GBLUP (ssGBLUP) method, for growth and wood-quality traits in Eucalyptus, which
consists of simultaneously considering genotyped and nongenotyped trees. According
to the authors, the use of additional phenotypic information from nongenotyped trees
provided greater predictive ability than GBLUP. Additionally, Ballesta et al. (2020) [150]
showed that GS principles can be combined with the GWAS method to increase the ability
to predict phenotypic traits with different genetic architectures in Eucalyptus cladocalyx
F. Muell.

On the other hand, genomic tools have allowed access to heritable components that
cannot be examined through genealogical relationships between individuals [26,151,152].
For example, Müller et al. (2017) [151] determined that the heritability of the diameter
at breast height in a population of Eucalyptus pellita F. Muell was too low to calculate
(extremely low) by the pedigree method; however, the genomic heritability based on SNPs
reached a value of 0.55 (Bayes method B). Table 2 summarizes some of the studies on GS
published in the last 5 years on different productive traits in trees.

Table 2. Published studies on genomic prediction (GS) in forest tree species in the last 5 years. Population, N-Markers
and Model criteria correspond to the type of population used to implement GS, number of markers and the prediction
models, respectively.

Species Traits Population N-Markers Model Reference

Eucalyptus pellita F. Muell DBH, HT, VOL OP 19 K GBLUP, BA, BB, BC, BL,
BRR [151]

E. pellita F. Muell DBH, HT, VOL OP 2 K GBLUP, ssGBLUP [153]
E. robusta Sm. VOL, LIG, HCEL Provenance trial 2.9 K RKHS, GBLUP, EN [154]

E. benthamii Maiden & Cambage DBH, HT, VOL OP 13 K GBLUP, BA, BB, BC, BL,
BRR [151]

E. nitens (H.Deane & Maiden)
Maiden WD, DBH, TS, GST OP 4.3 K GBLUP [26]

E. nitens (H. Deane & Maiden)
Maiden DBH, WD, WS, GST, TAS OP 9.7 K GBLUP [155]

E. nitens (H. Deane & Maiden)
Maiden

DBH, HT, ST and 9 wood
related traits OP 12 K GBLUP [152]

E. urophylla x E. grandis HT, VOL, WD, PY, CBH Go and G1 10 K GBLUP, RRBLUP, BL,
RKHS [156]

E. grandis × E. urophylla VOL, KL, HCEL, Wi, δ13C Clones 3.3 K GBLUP [7]

E. grandis × E. urophylla DBH, VOL, HT, MAI, CELL,
S:G, LIG, WD Full-sibs 33.4 K ssGBLUP, GBLUP [149]

E. grandis DBH, HT, ST OP 2.8 K GBLUP multitrait [157]

E. grandis W. Hill FL, FW, CELL, S:G, WD,
DBH, HT Full-sibs 15 K GBLUP [65]

E. globulus Labill BQ, DBH, ST, VOL, HT Full-sibs and OP 14 K RRBLUP, RRBLUPB,
BA, BB, BL, PCR, SPCR [13]

E. globulus Labill HT, DBH, ST, BQ, PP Full-sibs and OP 14 K BA, BB, BC, BL, BRR [36]
E. globulus Labill VOL, WD Clones 12 K GBLUP, BL, BB, BC [158]

E. globulus Labill PP, ST, HT, DBH, BQ Full-sibs 14 K
BRR, BL, BA, BB, BC,
RKHS, GBLUP, DL,

BRNN
[1]

E. dunni Maiden DBH, ST OP 11 K ssGBLUP [159]

E. cladocalyx F. Muell HT, DBH, ST, SLD, PP, FI,
BHT OP 3.8 K GSq, BA, BB, BC, BRR [150]

Picea glauca (Moench) Voss hat, DBH, VOL, AV, WD Polycross, Full-sibs 4 K GBLUP [160]

P. glauca (Moench) Voss HT, DBH, VOL, AV, PIC,
PUN, PINC Full-sibs 4.1 K GBLUP [161]

P. mariana (Mill.) Britton, Sterns &
Poggenb WD, DBH, HT, MFA Full-sibs 5 K GBLUP [162]

P. abies (L.) H. Karst HT, WD OP 6.3 K HBLUP [163]

P. abies (L.) H. Karst AV, WD, MFA, DBH, HT,
SLD, WA Polycross 4 K GBLUP, BRR, BC [164]

P. abies (L.) H. Karst WD, MFA, MOE, AV OP 130 K GBLUP, BB, RKHS,
RRBLUP [64]

P. abies (L.) H. Karst PP, AV, MOE, HT Full-sibs 116 K BLASSO, BRR, GBLUP,
RKHS, BRR [165]
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Table 2. Cont.

Species Traits Population N-Markers Model Reference

Pinus contorta Douglas ex Loudon WD, MFA, HT Full-sibs and OP 19 K GBLUP, BC [166]
Pinus radiata D. Don BCF, ST, ICH, ERB Full-sibs and clones 67 K GBLUP [167]
Pinus radiata D. Don ST, DBH, WD, MOE Full-sibs 58.6 K GBLUP [155]

Pinus sylvestris Thunb. HT, DBH, MFA, MOE, WD Full-sibs 8.7 K GBLUP, BRR, BL [168]

Hevea brasiliensis Muell. Arg RB Full-sibs 0.3 K RKHS, RRBLUP, BL [169]

H. brasiliensis Muell. Arg CBH (Two watering
contrasting conditions) Full-sibs 30 K GBLUP [170]

Populus nigra L. HT, CBH, BF, BS, RST Clones 8 K GBLUP, BL [171]

Pseudotsuga menziesii (Mirb.)
Franco JHT Full-sibs 70 K RRBLUP, GRR, BB [32]

Pseudotsuga menziesii (Mirb.)
Franco HT, WD, DBH Full-sibs 70 K RRBLUP, GRR [172]

AV: acoustic velocity; BB: Bayes B; BC: Bayes C; BF: bud flush; BHT: first, bifurcation height; BL: Bayesian LASSO; BQF: branch-cluster
frequency; BRNN: Bayesian regularized neural network; BS: bud set; CELL: cellulose content; CBH: circumference at breast height; δ13C:
stable carbon isotope composition; DBH: diameter at breast height; DL: Deep Learning; EN: elastic net methods; ERB: external resin
bleeding; FI: flowering intensity; FL: fiber length; FW: fiber width; GRR: generalized ridge regression; GSq: combined method of GS
and GWAS; GST: growth strain; HBLUP: genomic and pedigree-derived relationship matrix; HCEL: holo-cellulose; HT: tree height; ICH:
internal checking; JHT: juvenile height; KL: Klason lignin; LIG: lignin content; MAI: mean annual increment; MFA: microfibril angle; MOE:
modulus of elasticity; OP: Open-pollinated; PCR: principal components regression; PIC: picein concentration in needles; PICN: piceol
concentration in needles; PP: pilodyn penetration; PUN: pungenol concentration in needles; PY: pulp yield; RB: rubber production; RKHS:
Reproducing Kernel Hilbert Spaces; RRBLUPB: RRBLUP with variable selection procedure; RST: resistance to rust; S:G: syringyl and
guaiacyl ratio; SLD: slenderness; SPCR: Supervised PCR; ssGBLUP: single-step GBLUP; ST: stem straightness; TAS: tangential air-dry
shrinkage; VOL: volume; WA: weevil attack; WD: wood density; Wi: intrinsic water use efficiency; WS: wood stiffness.

5. Factors That Determine the Accuracy of Genomic Prediction Models in Forest Trees

Above, it was discussed how the accuracy of genomic prediction methods changes
according to the analytical assumptions that support each method. However, genetic
factors that are specific to breeding populations determine the effectiveness of genomic-
assisted selection. The existing pattern of LD in a given breeding population is one of
the main factors that determines the power of genomic tools to predict phenotypic traits
because the extent of LD throughout the genome of a species determines the density of
markers that is necessary for accurate prediction [23,24]. Strictly speaking, if the LD spreads
across relatively large genomic distances, a lower density of markers could be necessary
because it increases the probability of detecting markers that are in LD with QTLs. In
contrast, if LD decreases within a relatively short genomic distance, a higher density of
markers would have to be used to obtain a more accurate prediction.

The magnitude of LD in a population comes from the history and dynamics of the
population [173]. In general, the LD in populations of cross-pollinating plants (such as
most species of interest for forestry) decreases rapidly as the physical distance between
markers increases because the number of effective recombinations is relatively higher
than in self-pollinating species. For example, LD ceases to be significant at distances of
3000–6000 bp in natural populations of Populus trichocarpa Torr. & A.Gray ex Hook. [174]
and within a distance of less than 1000 bp in Pinus taeda L. [175] while in self-pollinated
species, such as soybeans and rice, the LD can be significant (in some populations) at
interlocus distances of 10,000 bp and 25,000 bp, respectively (reviewed by [176]). Addi-
tionally, populations of forest species tend to be more heterozygous in their loci due to the
reproductive mechanisms that these species have, since they have large effective size, high
genetic diversity and low intrapopulation genetic differentiation [177,178].

Natural populations of forest species have lower LD values than cultivated and
improved populations [151,158,179–181]. For example, LD in a natural population of
Populus can decrease within 750–1000 bp [179,180], whereas in an improved population, LD
can extend up to 2500 bp [181,182]. In the case of coniferous populations, the disequilibrium
can decrease within much shorter genomic distances than for other tree species (<1000 bp).
In the case of breeding populations of Eucalyptus, LD can decrease rapidly over 3000 bp or
25,000 bp [26,36,121,158,183], while in populations that have not been subjected to selection,
the disequilibrium pattern can decrease within 500 bp [184].
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Another factor that affects the accuracy of GS is the effective population size [17,185].
According to Grattapaglia and Resende (2011) [186], the effective size is inversely propor-
tional to the level of accuracy of the GS model. For example, if it is desired to predict a
phenotype controlled by 50 QTLs, with an effective size of 100 individuals and a density
of 2 markers/cm, a predictive value of 0.36 is estimated, which can be increased to 0.8 if
we have a density of 20 markers/cm. However, with an effective size of 10 individuals,
under these same conditions, the predictive power can be increased from 0.73 to 0.88,
which shows that small effective sizes allow us to increase the predictive power of a model,
especially with a low density of markers.

In this same context, both in GS methods and in pedigree-based prediction, the predic-
tive accuracy of the phenotype of an individual depends on how accurate the estimation of
the genetic relationships between the individuals of the population is [15,16]. The predic-
tive power of a GS model can be increased if the individuals who are used as references to
estimate the additive effects of the loci (training population) are genetically related to the
individuals whose phenotype is to be predicted (validation population) [17–19,187]. The
genetic structure of a population is a factor that influences the degree of precision that a
genomic prediction model can have [26,156,188–190]. The genetic structure of a population
is defined by the degree of kinship that exists between the individuals who make up the
population, which can be established by the genealogical background, or by genomic data.
In the case of individuals who come from a natural population, the genetic structure can be
given by the genealogical background and by the existence of subpopulations (genetically
differentiated groups) within the same population. For example, Tan et al. (2017) [156]
showed that the prediction of some traits in Eucalyptus hybrids could be favored by using a
training population that is closely related to the validation population in terms of pedigree
and population genetic structure. In contrast, if the training population is composed of
individuals genetically distant from the validation population, the predictive ability can be
reduced by up to 25%.

The determination of kinship relationships between individuals or organisms has been
an important aspect in several fields of knowledge, such as forensic science, conservation
genetics and animal and plant breeding [27]. Estimates of kinship between individuals
are traditionally based on pedigree data, in which it is assumed that those individuals
who act as founders of populations (for example, families) are not genetically related [191].
If the individuals of a population are genotyped, the polymorphic loci which are shared
may be identical by state (IBS) or identical by descent (IBD), depending on whether these
loci were inherited from the same ancestor. It is expected that individuals who share the
same parental lines (full siblings) have on average 50% alleles that are IBD. However,
the percentage of the genome they share is subject to variation due to random events
that may occur. In this sense, genetic relationships based on pedigrees are arbitrary
and theoretical; therefore, they are not necessarily a reflection of the real way in which
genomes are inherited. Despite this drawback, pedigree data have been widely used
to establish relationships between individuals of a population in quantitative genetics
research [191]. Based on this problem, VanRaden (2008) [127] proposed making predictions
via BLUP using molecular markers (SNPs) to determine kinship relationships within a
group of individuals instead of by using the pedigree matrix (this method later came to
be known as GBLUP). Additionally, Yu et al. (2006) [192] proposed using marker-based
relationship matrices as covariates in GWAS models. SNP biallelic markers do not have
enough information at the individual level, so some studies suggest that a high density of
markers is required to establish reliable genealogical relationships [193,194]. Additionally,
in populations with multiple founders, generations and few descendants, genotyping errors
are difficult to detect [195,196]. An alternative for kinship analysis is the identification
of haplotypes [27–29]. When two or more loci have a low probability of recombination
between them, combinations of alleles called haplotypes are formed [197,198], which are
genomic regions within a chromosome that tend to be inherited in joint form [199–201]. In
this context, Edwards (2015) [27] proposed evaluating the kinship between individuals
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based on the construction of haplotypes present in the study population. According
to this same author, these kinship relationships can estimate more precise genealogical
relationships than the VanRaden relationship matrix [127]. If one wants to know the
intrapopulation coancestry, it is most advisable to use haplotypes that are IBD. However,
haplotypes can have both IBD and IBS relationships.

6. The Detection of Alleles in Narrow LD Allows the Optimization of the Accuracy of
Genomic Prediction Models

Several studies have evaluated the predictive power of phenotypic traits in GS models
that include haplotypes from SNP arrays [35,202–206]. One of the advantages of using hap-
lotypes in GS is the ability to detect mutations [205]. According to Curtis et al. (2001) [207],
when mutations have occurred, it is possible that the allele frequencies will remain (al-
most) unaltered. However, when haplotypes are analyzed, mutations in different loci
tend to cause important changes in haplotype frequencies. Therefore, a QTL that is not
in complete LD with an individual marker may be in complete LD with a specific hap-
lotype. Moreover, haplotype-based approaches can include epistatic effects, in addition
to additive effects [208,209], which is of interest in forest tree breeding (for example, in
clonal selection and in the dissection of adaptive traits [4,210]. Additionally, the use of
haplotypes, instead of individual markers, reduces the degrees of freedom in the prediction
or genomic-association models, which contributes to greater accuracy in the detection of
QTLs [192]. An also relevant aspect is the size of a haplotype found in a given popula-
tion. The longer the haplotype (greater number of SNPs in LD), the fewer the effects that
must be estimated, which leads to more precise estimates [211] and they are simpler to
handle computationally.

The predictive power of haplotypes and molecular markers (individually) could
depend on the trait that sought to be improved. In the context of animal breeding, some
authors suggest that the haplotype approach may be especially beneficial for predicting
traits of relatively high heritability [205,212,213]. However, in plants, prediction based on
haplotypes has been especially beneficial for predicting low-heritability traits [31,33,34].
For example, Matias et al. (2017) [31] reported that the predictive accuracy of the models
based on haplotypes was higher than the accuracy based on SNPs (not grouped into
haplotypes) at predicting the yield of corn grains, but this result was not observed in the
genomic prediction of plant height. According to these same authors, the yield of maize
grains has low genetic control compared to the height of the plant. In the context of forest
species, Ballesta et al. (2019) [36] showed that genomic prediction based on haplotypes can
be an especially suitable approach for traits with low genetic control (h2 < 0.1) in Eucalyptus
globulus Labill.

Villumisen and Janss et al. (2009) [35] showed, through simulated data, that genomic
predictions based on haplotypes are especially beneficial for traits with low genetic control
(relatively low heritability), in which haplotypes formed by five SNPs in LD have better
goodness of fit and predictive power than models based on markers not grouped in
haplotypes. According to [214] the use of haplotypes permits evaluations at the multiallelic
level, which lead to a better representation of the variability associated with the traits with
low heritability, which are generally controlled by several QTLs of relatively small effect. In
this context, haplotypes would allow access to heritable components of certain phenotypic
traits that cannot be captured by SNPs. The effectiveness of the haplotype approach in GS
depends on how the haplotypes are defined in the study population [31,205]. For example,
a haplotype can be defined according to a certain number of polymorphic loci, a defined
size (genomic distance), or according to an LD threshold value. It is common for haplotypes
to be defined by a certain number of SNPs [30,35]. Since this approach does not consider
the LD between the markers and the historical recombination events of the population,
some genetic background may not be considered in quantifying the variability between
individuals [205].

Some studies suggest that GS based purely on molecular markers can lead to a loss
of genetic variability, which leads to an increase in the rate of inbreeding [215–218]. For
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example, Rutkoski et al. (2015) [215] showed that the genetic gains for rust resistance in
wheat obtained by GS and phenotypic selection are equivalent; however, GS generates a
faster reduction in genetic diversity (per year) than phenotypic selection. In a simulated
study, Lin et al. (2016) [216] reported that GS would double and triple the genetic gains
of persistence and throughput of Lolium perenne L. with respect to phenotypic selection,
respectively. However, GS led to a higher rate of inbreeding per selection cycle than
phenotypic selection. This compromise between genetic gain and loss of diversity has not
been a focus of study in forest species; however, it is also expected that GS can cause a
significant loss of genetic diversity compared to traditional schemes that use phenotypic
selection [219]. In this sense, several studies have proposed different strategies to establish
a balance between genetic gains and post selection conserved diversity [183,219–221].
According to Daetwyler et al. (2015) [122], GS based only on SNPs could generate the loss
of certain deleterious alleles (or those that apparently have no effect on the phenotype)
from the population; however, haplotypes allow us to manage a selection based on alleles
that do or do not have effects but remain in LD. In this sense, GS based on haplotypes
could also contribute to good management of genetic resources in such a way that genetic
gains could be obtained without sacrificing genetic variability.

Haplotype-based GS has been mainly implemented in agricultural crops and self-
pollinated plants (for example, wheat; [33], where high LD values can be found throughout
their genomes, which favors the identification of haplotypes in a population. In cross-
pollinated plants, such as forest species, LD usually decreases within short genomic dis-
tances, which allows the identification of smaller haplotypes made up of fewer alleles.
In this sense, the use of haplotypes in the GS of forest species could be restricted by the
genotyping density of the population. On the other hand, Mora-Poblete et al. (2021) [3]
showed that a low density of SNPs and consequently of haplotypes, could be compensated
for by the combined use of GS and the principles of GWASs. In E. cladocalyx F. Muell, the au-
thors reported that the genomic predictive ability of cyanogenic glycoside and anthocyanin
contents, based on haplotypes, can be improved by the use of haplotypes significantly
associated with these quantitative traits

7. Genome-Wide Association Studies (GWAS)

High-throughput genotyping technology and phenotyping platforms have enabled
large-scale marker-trait association analysis, such as GWAS, to precisely dissect the genetic
architecture of plant traits [222]. In trees, several studies have reported many putative
genomic regions associated with variation of related-traits to tree phenology [223,224],
wood properties [118,120,165,225–229], growth (i.e., wood volume, tree height and diame-
ter; [108,111,117,120,226,230–232], resistance to pests and diseases [233–236], among others.
For example, McKown et al. (2018) [223] implemented a GWAS analysis with the motiva-
tion to understand the molecular mechanisms of the variation in bud-break of flowers in
Populus trichocarpa Torr. & A.Gray ex Hook. The authors identified ~30 polymorphisms
within 16 annotated genes in the Populus trichocarpa genome, which were mainly associated
with meristem growth, bud activation, cell expansion and proliferation, cold acclimatiza-
tion and heat response. Recently, Elfstrand et al. (2020) [236] reported eleven marker-trait
associations (MTAs) associated with the resistance to Heterobasidion parviporum in Picea abies
(L.) H. Karst., which explained between 2 and 5% of the phenotypic variation of the studied
trait. Additionally, the authors demonstrated that the PaLAC5 gene, one of the candidate
genes related to resistance to H. parviporum, could be involved in the development of the
length of the lesion, as an induced defense response. Bai et al. (2019) [231] identified 29
nuclear collections from ~150 Pinus massoniana Lamb. trees, which were evaluated for dif-
ferent phenotypic traits. They found a large number of SNPs significantly associated with
resin production, wood volume, tree height and diameter. In general, many marker-trait
associations with relatively large effect have been detected for wood properties, disease
resistance and phenology [237].
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GWASs have been carried out considering different analysis strategies, which are
often complemented with studies of gene co-expression networks, transcriptomic studies,
heterologous expression assays, among others. For instance, Valenzuela et al. (2021) [111]
identified ~90 SNPs and haplotype blocks associated with growth and stem quality traits in
E. cladocalyx F. Muell under arid conditions, 11 of which were common between tree height,
wood hardness and diameter; a result consistent with the trade-off between hydraulic safety
and efficiency in Eucalyptus trees under drought conditions. Interestingly, the significant
SNPs and haplotype blocks were located close to genes involved in the primary metabolism,
biosynthesis of cell wall components and stress response genes, which could be related to
the mechanisms of adaptation to stressful conditions. Lamara et al. (2016) [225] developed
an integrative approach that involves association mapping results and co-expression
networks in white spruce trees (Picea glauca (Moench) Voss). In this study, the authors
tested SNPs into ~2000 candidate genes for statistical associations with microfibril angle,
wood density, stiffness and ring width. The co-expression networks revealed complex
interactions and pleotropic effects between genes involved in wood stiffness and microfibril
angle. Baison et al. (2019) [238] performed a GWAS for several wood-related traits in Picea
abies (L.) H. Karst., using ~170 K SNPs generated from exome genotyping of mother trees.
The authors identified more than 50 SNPs associated with 39 candidate genes, of which
their role in wood formation and tree growth has previously been recognized. Moreover,
to understand the genetic mechanisms underlying wood anatomical and morphological
traits in Populus trichocarpa Torr. & A.Gray ex Hook., Chhetri et al. (2020) [228] performed a
functional enrichment analysis on coexpression nearest neighbors for gene models by the
wood anatomical and morphological trait GWAS analyses. The results evidenced that the
genes affecting cell wall composition and transport related genes were enriched in wood
anatomy and stomatal density trait networks. Signaling and metabolism related genes were
also common in networks for stomatal density. They concluded that the identified genes
provide further insights into the genetic dissection of wood anatomical and morphological
traits in Populus, which are important determinants of the suitability and sustainability of
improved genotypes for lignocellulosic biofuel production.

Muchero et al. (2018) [234] employed a GWAS strategy to identify putative loci asso-
ciated with the resistance to the invasive fungal pathogen Sphaerulina musiva in Populus
trichocarpa Torr. & A.Gray ex Hook. About 90 SNPs encompassing 73 candidate genes were
significantly associated to the number of cankers, number of cankers cm−1 and disease
severity based on digital imagery. Interestingly, three loci were functionally validated by a
transcriptomic study, allele analysis, binding assays and overexpression assays. Recently,
Quan et al. (2021) [229] performed a combined approach that includes GWAS, transcrip-
tomic analysis and transgenic experiments to dissect the genetic architecture of wood
properties and photosynthesis in Populus tomentosa C.K. Schneid. The authors detected
SNPs related to ~170 candidate genes for the studied traits, 74 epistatic relationships be-
tween the phenotypes and several pleiotropic loci. In addition, the heterologous expression
of two pleiotropic genes in Arabidopsis thaliana (L.) Heynh. (i.e., PtoMYB62 and PtoMYB80)
demonstrated that these genes control the regulatory networks of photosynthesis and the
components of the secondary wall, respectively, in P. tomentosa.

In terms of new challenges to implementing the integration of different OMICs tech-
nologies, Du et al. (2018) [239] discussed about the challenges and prospects of GWAS
to improve wood properties in major timber species, including Eucalyptus, Populus and
various coniferous species. The authors summarized the recent progress in GWAS-based
functional genomics of these traits and concluded that the emerging high-throughput
phenotyping technology will be broadly used in the future to collect data for quantitative
studies of complex traits related to tree growth, adaptation, morphological and physiologi-
cal traits.8. Genome editing in forest trees

The anticipated expansion of the population in the coming decades will significantly
boost demand for forest products. Due to the long juvenile period and genomic complex-
ity of forests trees, the genetic improvement via conventional breeding is laborious and
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time-consuming. Therefore, genetic modification (GM) provides the potential for transfor-
mation in shorter timeframes but is challenged by existing genetically modified organism
(GMO) laws. Genome editing (GE), which may generate mutations in sites, allows for the
fast implementation of specific changes and is less restricted worldwide than genetically
modified technology [240,241]. Genome engineering in forestry is urgently needed given
the rise in human activity and the effects of climate change (for instance, changes in rainfall
distribution and the increase in severe droughts). Based on many field investigations, GE
technology strengthens wood products from intensively cultivated planted trees. It may be
especially relevant given the rapid increase in biotic and abiotic stress on forests [242,243].

GE techniques such as Zinc Finger Nuclease (ZFN) and transcription activator-like
effector nuclease (TALENs) may be used to modify the genome. However, these methods
are either labor demanding or prohibitively costly since the targeting mechanisms are all
dependent on protein-nucleic acid interactions, necessitating creating a unique protein
for each gene locus of interest [244]. Recent advancements in understanding prokaryotic
adaptive immune systems provide another approach for genome editing named clus-
tered regularly interspaced short palindromic repeats and CRISPR-associated protein 9
(CRISPR/Cas9). It is a highly efficient and effective genome editing technique that has
been used to effectively implement targetable changes at specific places in the genomes
of forest trees [245–248]. The Doudna group revealed the primary mechanism through
which Cas proteins and CRISPR arrays functioned in 2012 [249]. CRISPR/Cas9 is a more
versatile method among other genome engineering tools like Zinc Finger Nuclease (ZFN)
and transcription activator-like effector nuclease (TALENs) [250].

This method enables editing single to many genes by knock-in or knock-out genes from
the host genome. Thus, various traits may be introduced or metabolic pathways modified
concurrently by inserting double-stranded breaks (DSBs) at multiple locations [251–253].
The other most important aspect about the use of site-directed mutagenesis in plants
is that it is relatively inexpensive, effective and easy to apply compared to other tech-
niques [246,254]. CRISPR was also successfully used by targeting potential development
and biosynthesis pathway genes in grapes as well as in the tropical tree Parasponia ander-
sonii Planch [255,256]. Although CRISPR/Cas9 applications are expected to begin with
economically significant agricultural plants, the growing number of undescribed species
whose whole genomes are being sequenced will enable the technique to be used more
widely throughout the plant kingdom. The pipeline to adapt the CRISPR in forest tree is
given in Figure 1.

Most significant progress has been achieved in woody species to date with poplar,
which was the first stably transgenic tree to be genome-edited with high efficiency using
the CRISPR/Cas9 system [257,258]. The first time CRISPR/Cas9 has been used for bi-
allelic mutations in woody perennials [259]. Four members of the 4-coumarate: CoA
ligase (4CL) gene family were targeted in Populus using CRISPR/Cas9 genome editing.
One of the genes from the 4CL family is known as the 4CL1gene and it has been widely
studied for its role in lignin production (Table 3). The lignin content of all edited transgenic
plants was decreased by about 23%, with a corresponding reduction in the S/G lignin
ratio of around 30% [257,259,260]. Furthermore, the CRISPR/Cas9 technology was also
used to alter the genome of Populus tomentosa Carr. It was shown that a protospacer-
adjacent motif (PAM). is followed by four guide RNAs (gRNAs) that target the phytoene
desaturase gene 8 (PtoPDS-8) in poplar through Agrobacterium-mediated transformation
and albino phenotype were observed in homozygous plants. Researchers found that
mutation efficiency at these target locations was assessed to be 51.7% based on RNA-
guided genome editing events and suggesting that CRISPR/Cas9 is efficient method to
edit the genome of woody plants [248,259]. Most CRISPR studies have been addressed
phenylpropanoid metabolism and/or cell wall properties in poplar. CRISPR-knock out
(CRISPR-KO) of MYB transcriptive factors either raised the flow of phenylpropanoid
(PtoMYB156 and PtrMYB57) or reduced the flow (PtoMYB115 and PtoMYB170), influencing
the lignin deposition (PtoMYB156 and PtoMYB170) [261,262]. CRISPR-KO mutants showed
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a brassinosteroids biosynthetic gene, which was similarly affected by secondary wall
synthesis, indicating the involvement of brassinosteroids in the development of wood [263].

Figure 1. The pipeline of CRISPR/Cas9 to develop the transgenic plants in a forest tree. (a) Selection
of candidate gene according to the trait under selection. (b) Design of the target on the gene sequence
using any available online tool for sgRNA designing. (c) Construction of vector and transformation
of cas9 vector into the explant through agrobacterium mediated transformation. (d) Develop the
transgenic plants by tissue culture and regeneration of plant from the explant. (e) Regenerated
plants are grown under glasshouse conditions to check the phenotypic according to the proposed
objective. (f) Extract the DNA for genotypic analysis of plant carry mutation either homozygous or
heterozygous or mutation didn’t occur. This step can be performed before phenotypic evolution.
(g) On this step, check the evolutionary study if necessary, according to the trait under selection.
(h) Choose the best plant based on phenotype as well on genotypic analysis for field evaluation.

Additionally, CRISPR/Cas9 works very well and accurately in two poplar clones to
produce LEAFY(LFY) and AGAMOUS (AG) mutations through a transgenic approach. A
distinct mutation spectrum was observed LFY and AG in sgRNA-gene combinations. While
an AG-sgRNA construct containing two sgRNAs produced comparable mutation spectra
between two poplar clones, an LFY-sgRNA construct containing a single sgRNA produced
substantially different mutation spectra between the same two clones [241]. Similar genetic
studies were applied on Eucalyptus [264]. CRISPR Cas9 was used to produce transgenic
plants in the Eucalyptus orthologue of LFY by converting a Eucalyptus grandis x urophylla
wild-type hybrid and two Flowering Locus T (FT) overexpressing lines targeting the LFY
orthologues of ELFY. The CRISPR-KO mutants achieved 100% transgenic insertion such
as deletion, frameshift mutation and phenotypically transgenic plants as the absence of
male and female gametes and indeterminacy in floral development due to floral alteration
because of disruption of ELFY function. Similarly, Van Zeijl et al. (2018) [256] presented
a quick and effective technique for Agrobacterium tumefaciens-mediated transformation
and CRISPR/Cas9 mutation within 03 months in the fast-growing tropical tree species
Parasponia andersonii Planch. They edited the four genes PanHK4, PanEIN2, PanNSP1
and PanNSP2 that regulate cytokinin, ethylene, or strigolactone hormonal pathways and,
in legumes, perform important symbiotic activities. CRISP-KO mutants of PanHK4 and
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PanEIN2 reduced the procambium activity and disturbed sex differentiation, respectively. In
contrast, CRISP-KO mutants of PanNSP1 and PanNSP2 were essential for nodule formation.
Using CRISPR/Cas9, forest tree genomics may be taken to the next level by evaluating gene
function and its role in adapting trees to their environment [247,265]. Multiple DNA repair
pathways may be involved in CRISPR/Cas9-induced mutations, according to published
tree studies. These studies suggest that the sequence context at or near the target sites
may affect mutagenesis results. Available findings indicate persistent CRISPR-induced
mutations and related phenotypes across many clonal generations enabling commercial
production of elite trees propagated vegetatively [240,258,266].

Furthermore, in recent years, Landstrasse and Grosshansdorf (2019) [267] checked
the efficiency of sgRNA in a poplar species (Populus tremula L.) using CRISPR/Cas9. They
selected twelve genes for three distinct study areas, including SOC1, FUL, their paralogs,
four NFP-like genes and TOZ19. The sgRNAs were created for editing with Cas9 nuclease
and transferred into P. tremula L. and regenerated plants showed different types of editing,
with single nucleotide insertions being the most common occurrence. They attempted to
establish a correlation between genome editing and gRNA efficiency by evaluating the
genome editing effort. They suggested that the GC content, purine residues in the final
four nucleotides of the gRNA and an at least partially unpaired seed region all affected
the gRNAs effectiveness for target cleavage [267,268]. Similar study has done an in Pinus
radiata D. Don using CRISPR/Cas9. They explored the use of this system to edit the xylan 1
(GUX1) gene in P. radiata D. Don and showed genome editing using DNA and RNPs [269].
They concluded that CRISPR/Cas9 can generate biallelic and monoallelic INDELs in the
coniferous tree P. radiata D. Don using DNA and RNPs, respectively. This study enables
the use of genome editing in conifers to change the desired traits, or attributes, quickly.

Toxic diseases are causing just as much damage in forest plantations. They are a
worldwide concern for forest ecosystems and must be handled as soon as possible. Ideally,
CRISPR/Cas9 should be integrated into forest development projects to create more effective
disease resistance methods for long-term forest sustainability [240]. For example, using
CRISPR/Cas9 to combat Dutch elm disease (DED) pathogen Ophiostoma novo-ulmi is
another intriguing potential, in which it has been demonstrated that these genes are
excellent candidates for CRISPR/Cas9 gene editing to generate knockout mutants with
decreased capacity to switch the DED pathogen throughout the elm tree life cycle [270,271].
Due to their lengthy vegetative life and poor seed laying rates, it is challenging to produce
homozygous mutants via self-pollination in many forest tree species. Ding et al. (2020)
reported a feasible method to decrease the incidence of chimeric mutant poplar trees with
CRISPR/Cas9 with the second round of shoot regeneration utilizing leaves as the explants.
A total of 15 transgenic plantlets were screened for homozygous mutants of PdbPDS1.
Only one was found, which was confirmed by both phenotypic and genotypic analysis;
in T0 generation, all transgenic plants were chimeric. Still, during the second round of
shoot regeneration, about 27.0 percent or 19.1 percent of the regenerated shoots were
homozygous mutants with or without kanamycin selection, respectively.

Despite the advancement in genome editing, CRISPR/Cas9 has limited use in the
formation of transgenic forest trees. Recently, CRISPR/Cas12a is a newly developed
novel CRISPR effector protein supporting the CRISPR/Cas to edit the larger genome
fragments. Two popular species, such as Populus alba L. and Populus glandulosa Moench
were subjected to CRISPR/Cas12a to achieve targeted mutations using three nucleases
AsCas12a, AsCas12a and LbCas12a. It has been utilized in using CRISPR/Cas12 to knock
off various targets of the PDS gene. AsCas12a is a more appropriate and efficient method
to edit the big part of the genome at editing sites with the most remarkable mutation.
For multi-gene knockout mutation in forest trees, the advantages of CRISPR/Cas12a for
the creation of transgenic tree species are only further amended. A method for forest
genetics for developing transgenic tree species will be provided using CRISPR/Cas12 [272].
There are still specific issues for the developing transgenic trees due to their longer life
span and vegetative growth developmental stages. In woody perennials, CRISPR-based
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transformations in the behavior of trees to grow under different sets of environments,
growth acceleration for the production of wood, nuts and barriers are much needed in the
modern era [273].

8. GRF-GIF Chimeras Could Be Gamer Changer Tools in Forest Editing to Boost
Tree Regeneration

Low plant regeneration efficiency and few transformable genotypes restrict the poten-
tial of genome editing to enhance the performance of crops and forest trees [264,266].
Genetic engineering of woody plants has many challenges, including poor transfor-
mation efficiency, a lack of knowledge on optimum expression cassettes and difficulty
isolating clonal-modified plants [274]. Additionally, low regeneration efficiency lim-
its the plant material from being transformed. Two independent investigations have
showed that GROWTH-REGULATING FACTORs (GRFs) alone or when combined with
GRF-INTERACTING FACTOR (GIF) may drastically increase tissue culture regeneration
from diverse plant species. In terms of plant transformation and gene editing, GRF-GIF
chimeras may be a game-changer for genome editing in dicot species and forest gene
editing [275]. Debernardi et al. (2020) [276] demonstrated that the efficiency and speed of
regeneration are improved in wheat, triticale and rice using a protein expression that
combines GRF4 and GIF1; this leads to an increase in the number of transformable wheat
genotypes. Moreover, a combination of GRF4–GIF1 and CRISPR/Cas9 genome editing
produced 30 altered wheat plants with mutations in the gene Q (AP2L-A5). Finally, they
demonstrated that a dicot GRF–GIF chimera increases regeneration efficiency in citrus,
indicating that this approach may be applied to other dicot crops [277].

According to the study performed by Debernardi et al. (2020) [276], we believe
that this strategy will also be helpful in forest gene editing, especially in those trees
in which there is no stable transformation method yet and no optimize genotype for
transformation through CRISPR/Cas9. For this method, we can prepare a CRISPR/Cas9
construct with the combination of dicot GRF–GIF chimera for any forest tree (e.g., poplar)
for the Agrobacterium transformation to generate the transgenic plant. By using this
strategy, the researcher can try different types of genotypes to check the regeneration
efficiencies. This hypothesis was already proved in wheat, rice and citrus and regeneration
efficiencies were high compared to control for detail [275]. The transformation protocol in
wheat was reduced and faster with the GRF4-GIF1 chimera five weeks than normal ones. It
is suggested that transformation will also be faster in trees. After generated the transgenic
tree plants, then grow the transgenic plants under speed breeding protocol to boost up the
growth of the plant for the screening of the homozygous or heterozygous plant as well
phenotypic evolution [278–281]. Speed breeding is a breeding method that reduces the
generation time and speeds up breeding research programs by a considerable amount.
Due to the 22-h photoperiod and the temperature control, the generation time has been
significantly shortened. As a result of speed breeding, spring wheat (Triticum aestivum L.),
durum wheat (T. durum Desf.), barley (Hordeum vulgare L.), chickpea (Cicer arietinum L.),
pea (Pisum sativum L.) and canola (Brassica napus L.) may produce up to six generations
each year instead of two or three under regular glasshouse circumstances (Figure 2). For
detail about speed breeding, see [278–281]). Using these strategies, a researcher can save
time to edit the genome of forest trees by CRISPR/Cas9.
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Figure 2. Construction of CRISPR/Cas9 vector with GRF-GIF chimeras to edit the genomes of
tree breeding populations. After constructing the vector, do the transformation as per available
protocol in the lab with different genotypes. The regenerated plant should be grown under speed
breeding protocol to boost the growth period for the phenotypic and genotypic analysis to do further
investigation quickly modified by [275].

Table 3. List of tree species successfully transformed genetically and potential candidates to be genome-edited with
CRISPR/Cas9 and CRISPR/Cas12.

Tree Species Method Targeted Gene Transformation
Method Findings References

Populus CRISPR/Cas9 4CL1, 4CL2, 4CL5 AT

Role in lignin production. The lignin content of all
edited transgenic plants was decreased by about 23%,
with a corresponding reduction in the S/G lignin ratio

of around 30%.

[259]

Populus tomentosa Carr CRISPR/Cas9 PtoPDS AT Chlorophyll biosynthesis, albino phenotype [248]

Populus tomentosa Carr CRISPR/Cas9
MYB57,

MYB115, MYB156,
MYB170

AT Ectopic deposition of lignin, xylan and cellulose
during secondary cell wall formation [261]

Populus tomentosa Carr CRISPR/Cas9 BRC1-1, BRC2- AT
Secondary wall synthesis, which is responsible the

involvement of brassinosteroids in the
development of wood

[263]

Populus tremula × P. alba CRISPR/Cas9 AG1, AG2, LFY AT
A distinct mutation spectrum was observed LFY

and AG in sgRNA-gene
combinations

[241]

Parasponia andersonii
Planch (tropical tree) CRISPR/Cas9 EIN2, HK4, NSP1, NSP2 AT

Regulate cytokinin, ethylene, or
strigolactone

hormonal pathways and, in legumes, perform
important symbiotic activities

[256]

Populus tremula L. CRISPR/Cas9 SOC1, FUL, NFP TOZ19 AT

GC content, purine residues in the final four
nucleotides of the gRNA and an at least partially

unpaired seed region all affected the gRNAs
effectiveness for target cleavage

[267]

Pinus radiata D. Don CRISPR/Cas9 GUX1 AT biallelic and monoallelic INDELs can be generated in
the coniferous tree P. radiata using DNA and RNPs [282]

Populus davidiana ×
Populus bolleana CRISPR/Cas9 PdbPDS1 AT

Second, regeneration could produce homozygous
mutant shoots at a high frequency and that kanamycin
selection could increase the frequency of homozygous

mutant shoots.

[266]

Eucalyptus grandis ×
urophylla CRISPR/Cas9 LFY,

FT AT
The absence of male and female gametes and

indeterminacy in floral development due to floral
alteration because of disruption of ELFY function

[264]

Populus alba × Populus
glandulosa CRISPR/Cas12 PDS AT

AsCas12a system is the most efficient and
optimization of the co-cultivation temperature after

Agrobacterium-mediated transformation from
22 to 28 ◦C to increase the Cas12a nuclease editing

efficiency in poplar

[272]

AT = Agrobacterium-mediated transformation.

9. Conclusions

Due to the long rotation time of a forest plantation and the resulting long generation
times necessary to complete a breeding cycle, the use of advanced methods with traditional
breeding, such as high-throughput genotyping techniques, have been necessary, allowing
the use of more precise approaches for determining the genetic architecture of traits of
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interest, such as genome-wide association studies and genomic selection. Moreover, the
introduction of genome editing opens the door to new possibilities and perspectives
in theoretical genetics and breeding science of forest trees and the fast remodeling of
varieties. In this sense, mutations have greatly enhanced genetic resources for forest trees
throughout the globe. With the development of TILLING as a high-throughput mutant
screening method, stable gene-specific mutations are now extremely efficient. TILLING
screening allows for more accurate detection of mutations at particular loci or genes. On
the other hand, the development of new techniques such as CRISPR-based method has the
potential to sustain productivity with less effort and cost substantially. More sophisticated
techniques must be used to further complicate matters in selecting genome editing reagents
and procedures for the regeneration of mutant plants. According to this, we believe that
such problems will be adequately handled in the future.
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